Debugging with GDB

Debugging with GDB
The GNU Source-Level Debugger
Ninth Edition, for GDB version 5.1.1

January 2002

Richard Stallman, Roland Pesch, Stan Shebs, et al.

Table of Contents

Summary of GDB
o Free software
o Free Software Needs Free Documentation
o Contributorsto GDB
. A Sample GDB Session
. Getting In and Out of GDB
o Invoking GDB
« Choosing files
« Choosing modes
o Quitting GDB
o Shell commands
. GDB Commands
o Command syntax
o Command completion
o Getting help
« Running Programs Under GDB
o Compiling for debugging
o Starting your program
o Y Our program's arguments
o Your program's environment
o Your program's working directory
o Your program's input and output

file://IC|/gdb.html (1 of 352)19. 1. 2004 20:32:03

Debugging with GDB

o Debugging an already-running process
o Killing the child process
o Debugging programs with multiple threads
o Debugging programs with multiple processes
. Stopping and Continuing
o Breakpoints, watchpoints, and catchpoints
« Setting breakpoints
« Setting watchpoints
« Setting catchpoints
« Deleting breakpoints
« Disabling breakpoints
« Break conditions
« Breakpoint command lists
« Breakpoint menus
« "Cannot insert breakpoints"
o Continuing and stepping
o Signals
o Stopping and starting multi-thread programs
. Examining the Stack
o Stack frames
o Backtraces
o Selecting aframe
o Information about aframe
. Examining Source Files
o Printing source lines
o Searching sourcefiles
o Specifying source directories
o Source and machine code
. Examining Data
o EXpressions
o Program variables
o Artificial arrays
o Output formats
o Examining memory
o Automatic display
o Print settings
o Vaue history
o Convenience variables

file://IC|/gdb.html (2 of 352)19. 1. 2004 20:32:03

Debugging with GDB

o Registers
o Floating point hardware
o Memory Region Attributes
« Attributes
« Memory Access Mode
« Memory Access Size
« DataCache

. Tracepoints
n Commands to Set Tracepoints

« Create and Delete Tracepoints
« Enable and Disable Tracepoints
= Tracepoint Passcounts
« Tracepoint Action Lists
« Listing Tracepoints
« Starting and Stopping Trace Experiment
o Using the collected data
« tfind n
« tdunp
- save-tracepoints fil enane
o Convenience Variables for Tracepoints
. Using GDB with Different Languages
o Switching between source languages
« List of filename extensions and languages
« Setting the working language
» Having GDB infer the source lanquage
o Displaying the language
o Type and range checking
= Anoverview of type checking
= Anoverview of range checking
o Supported languages
« Cand C++
« Cand C++ operators
« C and C++ constants
« C++ expressions
« Cand C++ defaults
» C and C++ type and range checks
« GDBandC
« GDB featuresfor C++

file:///Cl/gdb.html (3 of 352)19. 1. 2004 20:32:03

Debugging with GDB

« Modula-2
« Operators
« Built-in functions and procedures
« Congtants
« Modula-2 defaults
« Deviations from standard Modula-2
« Modula-2 type and range checks
« Thescopeoperators: . and.
« GDB and Modula-2

« How modes are displayed
« Locations and their accesses
« Vaues and their Operations
« Chill type and range checks
« Chill defaults
. Examining the Symbol Table
Altering Execution
o Assignment to variables
o Continuing at adifferent address
o Giving your program asignal
o Returning from afunction
o Calling program functions
o Patching programs
GDB Files
o Commands to specify files
o Errorsreading symbol files
Specifying a Debuqgging Target
o Activetargets
o Commands for managing targets
o Choosing target byte order
o Remote debugging
« The GDB remote serial protocol
« What the stub can do for you
« What you must do for the stub
« Putting it all together
» Communication protocol

« Using thegdbser ver program
« Usingthegdbser ve. nl mprogram

file://IC|/gdb.html (4 of 352)19. 1. 2004 20:32:03

Debugging with GDB

o Kernel Object Display
. Configuration-Specific Information
o Native
« HP-UX
« SVR4 process information
« Featuresfor Debugging DJGPP Programs
o Embedded Operating Systems
« Using GDB with VxWorks
« Connecting to VxWorks
« VXWorks download
« Running tasks
o Embedded Processors
= AMD A29K Embedded
« A29K UDI
« EBMON protocol for AMD29K
« Communications setup
« EB29K cross-debugging
« Remotelog
« ARM
= Hitachi H8/300
« Connecting to Hitachi boards
« Using the E7000 in-circuit emul ator
« Specia GDB commands for Hitachi micros
= HB8/500
« Intel 1960
« Startup with Nindy
« Options for Nindy
« Nindy reset command
« Mitsubishi M32R/D
« M68k
« M88K
= MIPS Embedded
« PowerPC
= HP PA Embedded
« Hitachi SH
« [sgware Sparclet
« Setting file to debug
« Connecting to Sparclet

file:///Cl/gdb.html (5 of 352)19. 1. 2004 20:32:03

Debugging with GDB

« Sparclet download
« Running and debugging
= Fujitsu Sparclite
« Tandem ST2000
= Zilog Z8000
o Architectures
« A29K
= Alpha
= MIPS
. Controlling GDB
0 Prompt
o Command editing
o Command history
o Screensize
o Numbers
o Optional warnings and messages
o Optional messages about internal happenings
. Canned Sequences of Commands
o User-defined commands
o User-defined command hooks
o Command files
o Commands for controlled output
GDB Text User Interface
o TUI overview
o TUI Key Bindings
o TUI specific commands
o TUI configuration variables
Using GDB under GNU Emacs
GDB Annotations
o What is an Annotation?
o The Server Prefix
o Vaues
o Frames
0 DI§Q|@S
o Annotation for GDB Input
o Errors
o Information on Breakpoints
o Invalidation Notices

file:///Cl/gdb.html (6 of 352)19. 1. 2004 20:32:03

Debugging with GDB

O

O

Running the Program

Displaying Source

» Annotations We Might Want in the Future
. The GDB/MI Interface

O

O

O

Function and Purpose

Notation and Terminology

GDB/MI Command Syntax

« GDB/MI Input Syntax

« GDB/MI Output Syntax

« Simple Examples of GDB/MI Interaction
GDB/MI Compatibility with CLI

GDB/MI Output Records

« GDB/MI Result Records

« GDB/MI Stream Records

« GDB/MI Out-of-band Records
GDB/MI Command Description Format

GDB/MI Breakpoint table commands

GDB/MI Data Manipulation

GDB/MI Program control

Miscellaneous GDB commands in GDB/M|

GDB/MI Stack Manipulation Commands

GDB/MI Symbol Query Commands

GDB/MI Target Manipulation Commands

GDB/MI Thread Commands

GDB/MI Tracepoint Commands

GDB/MI Variable Objects

. Reporting Bugsin GDB

O

O

Have you found a bug?

How to report bugs

. Command Line Editing

O

O

O

Introduction to Line Editing

Readline Interaction

« Readline Bare Essentials

« Readline Movement Commands

« Readline Killing Commands

« Readline Arguments

« Searching for Commands in the History
Readline Init File

file://IC|/gdb.html (7 of 352)19. 1. 2004 20:32:03

Debugging with GDB

« Readline Init File Syntax
« Conditiona Init Constructs
« Samplelnit File
o Bindable Readline Commands
« Commands For Moving
« Commands For Manipulating The History
« Commands For Changing Text
« Killing And Yanking
= Specifying Numeric Arguments
« Letting Readline Type For You
« Keyboard Macros
« Some Miscellaneous Commands
o Readlinevi Mode
. Using History Interactively
o History Expansion
« Event Designators
« Word Designators
« Modifiers
. Formatting Documentation
. Installing GDB
o Compiling GDB in another directory
o Specifying names for hosts and targets
o confi gur e options
« GNU Free Documentation License
o ADDENDUM: How to usethis License for your documents
. Index

@dircategory Programming & development tools. * Gdb: (gdb). The GNU debugger.

Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc. Published by the Free Software Foundation

59 Temple Place - Suite 330,

Boston, MA 02111-1307 USA

ISBN 1-882114-77-9

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
with the Invariant Sections being "Free Software" and " Free Software Needs Free Documentation™, with

file:///Cl/gdb.html (8 of 352)19. 1. 2004 20:32:03

Debugging with GDB

the Front-Cover Texts being "A GNU Manual," and with the Back-Cover Textsasin (a) below.

(a) The Free Software Foundation's Back-Cover Text is. "Y ou have freedom to copy and modify this
GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for
GNU development." @node Top @top Debugging with @value{ GDBN} Thisfile describes @value

{ GDBN}, the @sc{ gnu} symbolic debugger. Thisisthe @vaue{ EDITION} Edition, @value{ DATE},
for @value{ GDBN} Version @value{ GDBVN}. Copyright (C) 1988-2000 Free Software Foundation,
Inc. @menu * Summary:: Summary of @value{ GDBN} * Sample Session:: A sample @value{ GDBN}
session * Invocation:: Getting in and out of @value{ GDBN} * Commands:: @value{ GDBN}
commands * Running:: Running programs under @value{ GDBN} * Stopping:: Stopping and continuing
* Stack:: Examining the stack * Source:: Examining source files* Data:: Examining data* Languages::
Using @vaue{ GDBN} with different languages* Symbols:: Examining the symbol table * Altering::
Altering execution * GDB Files:: @value{ GDBN} files* Targets.: Specifying a debugging target *
Configurations:: Configuration-specific information * Controlling GDB:: Controlling @value{ GDBN}

* Sequences:: Canned sequences of commands * Emacs.: Using @value{ GDBN} under @sc{ gnu}
Emacs* Annotations:: @value{ GDBN}'s annotation interface. * GDB Bugs:: Reporting bugs in @value
{ GDBN} * Formatting Documentation:: How to format and print @vaue{ GDBN} documentation *
Command Line Editing:: Command Line Editing * Using History Interactively:: Using History
Interactively * Installing GDB:: Installing GDB * GNU Free Documentation License:: The license for
this documentation * Index:: Index @end menu

Summary of GDB

The purpose of a debugger such as GDB isto allow you to see what is going on "inside" another
program while it executes--or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugsin
the act:

. Start your program, specifying anything that might affect its behavior.

. Make your program stop on specified conditions.

. Examine what has happened, when your program has stopped.

. Change thingsin your program, so you can experiment with correcting the effects of one bug and
go on to learn about another.

Y ou can use GDB to debug programs written in C and C++. For more information, see section
Supported languages. For more information, see section C and C++.,

Support for Modula-2 and Chill is partial. For information on Modula-2, see section Modula-2. For
information on Chill, see section Chill.

file://IC)/gdb.html (9 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Debugging Pascal programs which use sets, subranges, file variables, or nested functions does not
currently work. GDB does not support entering expressions, printing values, or similar features using
Pascal syntax.

GDB can be used to debug programs written in Fortran, although it may be necessary to refer to some
variables with atrailing underscore.

. Free Software: Freely redistributable software
. Contributors: Contributorsto GDB

Free software

GDB isfree software, protected by the GNU General Public License (GPL). The GPL gives you the
freedom to copy or adapt alicensed program--but every person getting a copy also gets with it the
freedom to modify that copy (which means that they must get access to the source code), and the
freedom to distribute further copies. Typical software companies use copyrights to limit your freedoms;
the Free Software Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is alicense which says that you have these freedoms and that
you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software--it is the lack of good
free documentation that we can include with the free software. Many of our most important programs do
not come with free reference manuals and free introductory texts. Documentation is an essential part of
any software package; when an important free software package does not come with afree manual and a
free tutorial, that isamajor gap. We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are non-free. How did this
come about? Because the authors of those manuals published them with restrictive terms--no copying,
no modification, source files not available--which exclude them from the free software world.

That wasn't the first time this sort of thing happened, and it was far from the last. Many times we have
heard a GNU user eagerly describe a manual that he is writing, hisintended contribution to the
community, only to learn that he had ruined everything by signing a publication contract to make it non-
free.

Free documentation, like free software, is a matter of freedom, not price. The problem with the non-free
manual is not that publishers charge a price for printed copies--that in itself isfine. (The Free Software
Foundation sells printed copies of manuals, too.) The problem is the restrictions on the use of the

file:///Cl/gdb.html (10 of 352)19. 1. 2004 20:32:03

Debugging with GDB

manual. Free manuals are available in source code form, and give you permission to copy and modify.
Non-free manuals do not allow this.

The criteria of freedom for afree manual are roughly the same as for free software. Redistribution
(including the normal kinds of commercial redistribution) must be permitted, so that the manual can
accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people modify the software,
adding or changing features, if they are conscientious they will change the manual too--so they can
provide accurate and clear documentation for the modified program. A manual that leaves you no choice
but to write a new manual to document a changed version of the program is not really available to our
community.

Some kinds of limits on the way modification is handled are acceptable. For example, requirements to
preserve the original author's copyright notice, the distribution terms, or the list of authors, are ok. Itis
also no problem to require modified versions to include notice that they were modified. Even entire
sections that may not be deleted or changed are acceptable, as long as they deal with nontechnical topics
(like this one). These kinds of restrictions are acceptable because they don't obstruct the community's
normal use of the manual.

However, it must be possible to modify all the technical content of the manual, and then distribute the
result in all the usual media, through all the usual channels. Otherwise, the restrictions obstruct the use
of the manuadl, it is not free, and we need another manual to replaceit.

Please spread the word about this issue. Our community continues to lose manual's to proprietary
publishing. If we spread the word that free software needs free reference manuals and free tutorials,
perhaps the next person who wants to contribute by writing documentation will realize, before it istoo
late, that only free manuals contribute to the free software community.

If you are writing documentation, please insist on publishing it under the GNU Free Documentation
License or another free documentation license. Remember that this decision requires your approval--you
don't have to let the publisher decide. Some commercial publisherswill use afreelicense if you insist,
but they will not propose the option; it is up to you to raise the issue and say firmly that thisis what you
want. If the publisher you are dealing with refuses, please try other publishers. If you're not sure whether
aproposed license is free, write to licensing@gnu.org.

Y ou can encourage commercial publishersto sell more free, copylefted manuals and tutorials by buying
them, and particularly by buying copies from the publishers that paid for their writing or for major
improvements. Meanwhile, try to avoid buying non-free documentation at all. Check the distribution
terms of a manual before you buy it, and insist that whoever seeks your business must respect your
freedom. Check the history of the book, and try to reward the publishers that have paid or pay the
authorsto work oniit.

file:///Cl/gdb.html (11 of 352)19. 1. 2004 20:32:03

mailto:licensing@gnu.org

Debugging with GDB

The Free Software Foundation maintains a list of free documentation published by other publishers, at
http://www.fsf.org/doc/other-free-books.html.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs. Many others have
contributed to its development. This section attempts to credit major contributors. One of the virtues of
free software is that everyone is free to contribute to it; with regret, we cannot actually acknowledge
everyone here. Thefile” ChangelLog' inthe GDB distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additionsto this section are particularly welcome. If you or your friends (or
enemies, to be evenhanded) have been unfairly omitted from thislist, we would like to
add your names!

So that they may not regard their many labors as thankless, we particularly thank those who shepherded
GDB through major releases. Andrew Cagney (releases 5.0 and 5.1); Jim Blandy (release 4.18); Jason
Molenda (release 4.17); Stan Shebs (release 4.14); Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10,
and 4.9); Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases
4.3,4.2,4.1, 4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1,
and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and Richard Mlynarik,
handled releases through 2.8.

Michael Tiemann isthe author of most of the GNU C++ support in GDB, with significant additional
contributions from Per Bothner and Daniel Berlin. James Clark wrote the GNU C++ demangler. Early
work on C++ was by Peter TerMaat (who aso did much general update work leading to release 3.0).

GDB uses the BFD subroutine library to examine multiple object-file formats, BFD was a joint project
of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support for encapsul ated
COFF.

Brent Benson of Harris Computer Systems contributed DWARF2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner, Noboyuki
Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete contributed Sun 386i

file:///Cl/gdb.html (12 of 352)19. 1. 2004 20:32:03

http://www.fsf.org/doc/other-free-books.html

Debugging with GDB

support. Chris Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki Hasel
contributed Sony/News OS 3 support. David Johnson contributed Encore Umax support. Jyrki Kuoppala
contributed Altos 3068 support. Jeff Law contributed HP PA and SOM support. Keith Packard
contributed NS32K support. Doug Rabson contributed Acorn Risc Machine support. Bob Rusk
contributed Harris Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran
debugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed SPARC
support. Tim Tucker contributed support for the Gould NP1 and Gould Powernode. Pace Willison
contributed Intel 386 support. Jay Vosburgh contributed Symmetry support.

Andreas Schwab contributed M68K Linux support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several machine instruction
Sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped devel op remote debugging. Intel
Corporation, Wind River Systems, AMD, and ARM contributed remote debugging modules for the 1960,
VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 support, and
contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the command-completion
support to cover C++ overloaded symbols.

Hitachi America, Ltd. sponsored the support for H8/300, H8/500, and Super-H processors.
NEC sponsored the support for the v850, Vr4xxx, and VI5xXxX processors.

Mitsubishi sponsored the support for D10V, D30V, and M32R/D processors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.

Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.

file:///Cl/gdb.html (13 of 352)19. 1. 2004 20:32:03

Debugging with GDB
Michael Snyder added support for tracepoints.
Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, lan Taylor, and Stu Grossman made nearly innumerable bug fixes and
cleanups throughout GDB.

The following people at the Hewlett-Packard Company contributed support for the PA-RISC 2.0
architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP's implementation of kernel threads, HP's
aC++ compiler, and the terminal user interface: Ben Krepp, Richard Title, John Bishop, Susan Macchia,
Kathy Mann, Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase provided HP-
specific information in this manual.

DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert Hoehne made significant
contributions to the DJGPP port.

Cygnus Solutions has sponsored GDB maintenance and much of its development since 1991. Cygnus
engineers who have worked on GDB fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim Ingham, John Gilmore, Stu
Grossman, Kung Hsu, Jim Kingdon, John Metzler, Fernando Nasser, Geoffrey Noer, Dawn Perchik,
Rich Pixley, Zdenek Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In addition,
Dave Brolley, lan Carmichael, Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie,
Ulrich Drepper, Frank Eigler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson,
Jeff Holcomb, Jeff Law, Jm Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill,
Catherine Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, lan Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and
David Zuhn have made contributions both large and small.

A Sample GDB Session

Y ou can use thismanual at your leisure to read all about GDB. However, a handful of commands are
enough to get started using the debugger. This chapter illustrates those commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick out from the
surrounding outpuit.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the following bug:
sometimes, when we change its quote strings from the default, the commands used to capture one macro
definition within another stop working. In the following short nd session, we define amacro f oo which
expands to 0000; we then use the m4 built-in def n to define bar as the same thing. However, when
we change the open quote string to <QUOTE> and the close quote string to <UNQUOTE>, the same

file:///Cl/gdb.html (14 of 352)19. 1. 2004 20:32:03

Debugging with GDB

procedure fails to define a new synonym baz:

$ cd gnu/ m4
$./ m
def i ne(f oo, 0000)

foo
0000
defi ne(bar,defn(foo'))

bar
0000

changequot e(<QUOTE>, <UNQUOTE>)

def i ne(baz, def n(<QUOTE>f 00<UNQUOTE>))

baz

C-d

md: End of input: O: fatal error: EOF in string

Let ususe GDB to try to see what is going on.

$ gdb mt

GB is free software and you are wel cone to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.

There is absolutely no warranty for GDB; type "show warranty"
for details.

GB 5.1.1, Copyright 1999 Free Software Foundation, Inc...
(gdb)

GDB reads only enough symbol data to know where to find the rest when needed; as a result, the first
prompt comes up very quickly. We now tell GDB to use a narrower display width than usual, so that

examplesfit in this manual.

(gdb) set width 70

We need to see how the m4 built-in changequot e works. Having looked at the source, we know the
relevant subroutineismt_changequot e, so we set a breakpoint there with the GDB br eak

command.

(gdb) break m_changequot e

file:///Cl/gdb.html (15 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the r un command, we start m4 running under GDB control; as long as control does not reach the
md_changequot e subroutine, the program runs as usual:

(gdb) run
Starting program /work/Editorial/gdb/gnu/ mi/ mi
defi ne(f oo, 0000)

f oo
0000

To trigger the breakpoint, we call changequot e. GDB suspends execution of n¥, displaying
information about the context where it stops.

changequot e(<QUOTE>, <UNQUOTE>)

Breakpoint 1, md _changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 I f (bad_argc(TOKEN DATA TEXT(argv[0]),argc, 1, 3))

Now we use the command n (next) to advance execution to the next line of the current function.

(gdb) n
882 set _quotes((argc >= 2) ? TOKEN DATA TEXT(argv[1])\
onil,

set _quot es lookslike apromising subroutine. We can go into it by using the command s (st ep)
instead of next . st ep goesto the next line to be executed in any subroutine, so it stepsinto
set quot es.

(gdb) s

set _quotes (Il gq=0x34c78 "<QUOTE>", rq=0x34c88 " <UNQUOTE>")
at i nput.c:530

530 I f (lquote != def _| quote)

The display that shows the subroutine where n¥ is now suspended (and its arguments) is called a stack
frame display. It shows a summary of the stack. We can use the backt r ace command (which can also

be spelled bt), to see where we are in the stack as awhole: the backt r ace command displays a stack
frame for each active subroutine.

(gdb) bt

file:///Cl/gdb.html (16 of 352)19. 1. 2004 20:32:03

Debugging with GDB

#0 set _quotes (1 g=0x34c78 "<QUOTE>", rq=0x34c88 " <UNQUOTE>")
at i nput.c:530

#1 0x6344 in md_changequote (argc=3, argv=0x33c70)
at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at nacro.c: 242

#3 O0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c: 71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at nd.c: 195

We step through afew more lines to see what happens. The first two times, wecanuse " s' ; the next
two times we use n to avoid falling into the xst r dup subroutine.

(gdb) s

Ox3b5c 532 if (rquote != def _rquote)

(gdb) s

0x3b80 535 | quote = (I == nil || *Iqg == "\0") ? \

def | quote : xstrdup(lq);

(gdb) n

536 rquote = (rg == nil || *rgq == '\0") ? def _rquote\
xstrdup(rq);

(gdb) n

538 | en_|I quote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables| quot e and r quot e to seeif
they arein fact the new left and right quotes we specified. We use the command p (pri nt) to see their
values.

(gdb) p I quote

$1 = 0x35d40 "<QUOTE>"
(gdb) p rquote

$2 = 0x35d50 " <UNQUOTE>"

| quot e and r quot e are indeed the new left and right quotes. To look at some context, we can display
ten lines of source surrounding the current linewiththel (I'i st) command.

(gdb) |

533 xfree(rquote);

534

535 | quote = (I == nil || *Iq =="\0") ? def_Iquote\
xstrdup (1Qq);

536 rquote = (rgq == nil || *rgq == '"\0") ? def_rquote\

file:///Cl/gdb.html (17 of 352)19. 1. 2004 20:32:03

Debugging with GDB

xstrdup (rq);
537
538 | en_| quot e
539 | en_rquot e
540 }
541
542 voi d

strlen(rquote);
strlen(l quote);

Let us step past thetwo linesthat set | en_I| quot e and | en_r quot e, and then examine the values of
those variables.

(gdb) n

539 | en_rquote = strlen(lquote);
(gdb) n

540 }

(gdb) p len_|quote

$3 =9

(gdb) p len_rquote

$4 = 7

That certainly looks wrong, assuming | en_| quot e and | en_r quot e are meant to be the lengths of
| quot e and r quot e respectively. We can set them to better values using the p command, since it can
print the value of any expression--and that expression can include subroutine calls and assignments.

(gdb) p len_Iquote=strlen(lquote)

$5 = 7
(gdb) p len_rquote=strlen(rquote)
$6 = 9

|s that enough to fix the problem of using the new quotes with the m4 built-in def n? We can allow n#
to continue executing with the ¢ (cont i nue) command, and then try the example that caused trouble
initialy:

(gdb) c
Cont i nui ng.

def i ne(baz, def n(<QUOTE>f 00<UNQUOTE>))

baz
0000

Success! The new quotes now work just as well as the default ones. The problem seems to have been

file:///Cl/gdb.html (18 of 352)19. 1. 2004 20:32:03

Debugging with GDB

just the two typos defining the wrong lengths. We allow m# exit by giving it an EOF asinpuit:

Cd
Program exited normal ly.

Themessage ™ Program exi ted normal | y."' isfrom GDB,; it indicates n¥ has finished
executing. We can end our GDB session with the GDB qui t command.

(gdb) quit

Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:

. type gdb' to start GDB.
typequi t or C- d to exit.

. Invoking GDB: How to start GDB
Quitting GDB: How to quit GDB
. Shell Commands: How to use shell commands inside GDB

Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the terminal until
you tell it to exit.

Y ou can also run gdb with avariety of arguments and options, to specify more of your debugging
environment at the outset.

The command-line options described here are designed to cover avariety of situations; in some
environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable program:
gdb program
Y ou can also start with both an executable program and a core file specified:

gdb program core

file:///C/gdb.html (19 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Y ou can, instead, specify a process |D as a second argument, if you want to debug a running process:
gdb program 1234

would attach GDB to process 1234 (unless you also have afile named * 1234' ; GDB does check for a
corefilefirst).

Taking advantage of the second command-line argument requires afairly complete operating system;
when you use GDB as a remote debugger attached to a bare board, there may not be any notion of
"process’, and there is often no way to get a core dump. GDB will warn you if it is unable to attach or to
read core dumps.

Y ou can run gdb without printing the front material, which describes GDB's non-warranty, by
specifying - si | ent :

gdb -sil ent

Y ou can further control how GDB starts up by using command-line options. GDB itself can remind you
of the options available.

Type
gdb -help
to display all available options and briefly describe their use (" gdb - h' isashorter equivalent).

All options and command line arguments you give are processed in sequential order. The order makes a
differencewhenthe ™ - x' optionisused.

. File Options: Choosing files
. Mode Options: Choosing modes

Choosing files

When GDB starts, it reads any arguments other than options as specifying an executable file and core
file (or process ID). Thisisthe same asif the arguments were specified by the " - se' and " - ¢' options
respectively. (GDB reads the first argument that does not have an associated option flag as equivalent to
the - se' option followed by that argument; and the second argument that does not have an associated
option flag, if any, asequivalent tothe " - ¢ option followed by that argument.)

file:///Cl/gdb.html (20 of 352)19. 1. 2004 20:32:03

Debugging with GDB

If GDB has not been configured to included core file support, such as for most embedded targets, then it
will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list. GDB also recognizes
the long forms if you truncate them, so long as enough of the option is present to be unambiguous. (If
you prefer, you can flag option argumentswith ™ - - * rather than ™ - ' , though we illustrate the more
usual convention.)

-synbol s file
-s file
Read symbol table from filefile.
-exec file
-e file

Usefilefile as the executable file to execute when appropriate, and for examining pure datain
conjunction with a core dump.
-se file
Read symbol table from file file and use it as the executable file.
-core file
-c file
Usefilefile as a core dump to examine.
-C nunber
Connect to process ID number, aswith the at t ach command (unlessthereisafilein core-
dump format named number, inwhich case ™ - ¢' specifiesthat file as a core dump to read).
-command file
-x file
Execute GDB commands from file file. See section Command files.
-directory directory
-d directory
Add directory to the path to search for sourcefiles.

-m

- mapped
Warning: this option depends on operating system facilities that are not supported on all systems.
If memory-mapped files are available on your system through the mmap system call, you can use
this option to have GDB write the symbols from your program into a reusable file in the current
directory. If the program you are debugging iscalled "/ t np/ fred’ , the mapped symbol fileis
“/tp/ fred. syns' . Future GDB debugging sessions notice the presence of thisfile, and can
quickly map in symbol information from it, rather than reading the symbol table from the
executable program. The " . syns' fileis specific to the host machine where GDB isrun. It
holds an exact image of the internal GDB symbol table. It cannot be shared across multiple host
platforms.

-r

- readnow
Read each symbol file's entire symbol table immediately, rather than the default, which isto read

file:///Cl/gdb.html (21 of 352)19. 1. 2004 20:32:03

Debugging with GDB
it incrementally asit is needed. This makes startup slower, but makes future operations faster.

Y ou typicaly combine the - mapped and - r eadnowoptionsin order tobuilda™ . syns' filethat
contains complete symbol information. (See section Commands to specify files, for information on ™ .

syns' files.) A ssimple GDB invocation to do nothing but builda™ . syns' filefor future useis:

gdb -batch -nx -napped -readnow programane

Choosing modes

Y ou can run GDB in various alternative modes--for example, in batch mode or quiet mode.

- X

-n
Do not execute commands found in any initialization files (normally called " . gdbi nit' , or
“gdb. i ni' onPCs). Normally, GDB executes the commands in these files after al the
command options and arguments have been processed. See section Command files.

- qui et

-sil ent

-]

"Quiet". Do not print the introductory and copyright messages. These messages are also
suppressed in batch mode.

- bat ch
Run in batch mode. Exit with status O after processing all the command files specified with ~ -
x" (and al commands from initiaization files, if not inhibited with ™ - n"). Exit with nonzero
status if an error occurs in executing the GDB commands in the command files. Batch mode may
be useful for running GDB as afilter, for example to download and run a program on another
computer; in order to make this more useful, the message

Programexited normally.

(which is ordinarily issued whenever a program running under GDB control terminates) is not
Issued when running in batch mode.
- now ndows
S\
"No windows". If GDB comes with agraphical user interface (GUI) built in, then this option tells
GDB to only use the command-line interface. If no GUI is available, this option has no effect.
- W ndows
-w
If GDB includes a GUI, then this option requiresit to be used if possible.
-cd directory
Run GDB using directory as its working directory, instead of the current directory.

file:///Cl/gdb.html (22 of 352)19. 1. 2004 20:32:03

Debugging with GDB

-full name

- f

GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to output the full

file name and line number in a standard, recognizable fashion each time a stack frameis
displayed (which includes each time your program stops). This recognizable format |ooks like
two "\ 032" characters, followed by the file name, line number and character position separated
by colons, and a newline. The Emacs-to-GDB interface program usesthetwo ~ \ 032' characters
asasignal to display the source code for the frame.

- epoch

The Epoch Emacs-GDB interface sets this option when it runs GDB as a subprocess. It tells GDB
to modify its print routines so asto allow Epoch to display values of expressionsin a separate
window.

-annotate | evel

This option sets the annotation level inside GDB. Its effect isidentical to using ~ set
annotate | evel ' (seesection GDB Annotations). Annotation level controls how much
information does GDB print together with its prompt, values of expressions, source lines, and
other types of output. Level 0 isthe normal, level 1 isfor use when GDB is run as a subprocess
of GNU Emacs, level 2 isthe maximum annotation suitable for programs that control GDB.

-async

Use the asynchronous event loop for the command-line interface. GDB processes all events, such
as user keyboard input, via a specia event loop. This allows GDB to accept and process user
commands in parallel with the debugged process being run(1), so you don't need to wait for
control to return to GDB before you type the next command. (Note: as of version 5.1, the target
side of the asynchronous operation isnot yet in place, so " - async' does not work fully yet.)
When the standard input is connected to aterminal device, GDB uses the asynchronous event
loop by default, unless disabled by the ™ - noasync' option.

- noasync

Disable the asynchronous event loop for the command-line interface.

- baud bps
-b bps

Set the line speed (baud rate or bits per second) of any serial interface used by GDB for remote
debugging.

-tty device
-t device

-t ui

Run using device for your program's standard input and output.

Activate the Terminal User Interface when starting. The Terminal User Interface manages several
text windows on the terminal, showing source, assembly, registers and GDB command outputs
(see section GDB Text User Interface). Do not use this option if you run GDB from Emacs (see

section Using GDB under GNU Emacs).

-interpreter interp

Use the interpreter interp for interface with the controlling program or device. Thisoptionis

file:///Cl/gdb.html (23 of 352)19. 1. 2004 20:32:03

Debugging with GDB

meant to be set by programs which communicate with GDB using it asaback end. ™ - -

interpreter=m"' (or --interpreter=m 1') causes GDB to use the gdb/mi interface
(see section The GDB/MI Interface). The older GDB/MI interface, included in GDB version 5.0
can be selected with " --interpreter=m Q' .

-write

Open the executable and core files for both reading and writing. Thisis equivalent to the ™ set
write on' commandinside GDB (see section Patching programs).

-statistics
This option causes GDB to print statistics about time and memory usage after it completes each
command and returns to the prompt.

-version
This option causes GDB to print its version number and no-warranty blurb, and exit.

Quitting GDB

quit [expression]

q
To exit GDB, usethe qui t command (abbreviated q), or type an end-of-file character (usually
C-d). If you do not supply expression, GDB will terminate normally; otherwise it will terminate
using the result of expression as the error code.

Aninterrupt (often G- ¢) does not exit from GDB, but rather terminates the action of any GDB
command that isin progress and returns to GDB command level. It is safe to type the interrupt character
at any time because GDB does not allow it to take effect until atime when it is safe.

If you have been using GDB to control an attached process or device, you can release it with the
det ach command (see section Debugging an already-running process).

Shell commands

If you need to execute occasional shell commands during your debugging session, there is no need to
leave or suspend GDB; you can just usetheshel | command.

shell command string
Invoke a standard shell to execute command string. If it exists, the environment variable SHEL L
determines which shell to run. Otherwise GDB uses the default shell (" / bi n/ sh' on Unix
systems, - COMVAND. COM on MS-DOS, €tc.).

The utility make is often needed in development environments. Y ou do not have to usethe shel |
command for this purpose in GDB:

file:///Cl/gdb.html (24 of 352)19. 1. 2004 20:32:03

Debugging with GDB

make make- args
Execute the make program with the specified arguments. Thisisequivalentto " shel | make
make- ar gs' .

GDB Commands

Y ou can abbreviate a GDB command to the first few letters of the command name, if that abbreviation is
unambiguous; and you can repeat certain GDB commands by typing just RET. Y ou can also use the TAB
key to get GDB to fill out the rest of aword in acommand (or to show you the aternatives available, if
there is more than one possibility).

. Command Syntax: How to give commands to GDB
« Completion: Command completion
. Help: How to ask GDB for help

Command syntax

A GDB command isasingle line of input. Thereisno limit on how long it can be. It startswith a
command name, which isfollowed by arguments whose meaning depends on the command name. For
example, the command st ep accepts an argument which is the number of timesto step, asin ~ st ep
5' . You can aso usethe st ep command with no arguments. Some commands do not allow any
arguments.

GDB command names may always be truncated if that abbreviation is unambiguous. Other possible
command abbreviations are listed in the documentation for individual commands. In some cases, even
ambiguous abbreviations are allowed; for example, s is specially defined as equivalent to st ep even
though there are other commands whose names start with s. Y ou can test abbreviations by using them as
argumentsto the hel p command.

A blank line asinput to GDB (typing just RET) means to repeat the previous command. Certain
commands (for example, r un) will not repeat this way; these are commands whose unintentional
repetition might cause trouble and which you are unlikely to want to repeat.

Thel i st and x commands, when you repeat them with RET, construct new arguments rather than
repeating exactly astyped. This permits easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in away similar to the common

utility nor e (see section Screen size). Sinceit is easy to press one RET too many in this situation, GDB
disables command repetition after any command that generates this sort of display.

file:///Cl/gdb.html (25 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Any text from a# to the end of the lineis a comment; it does nothing. Thisis useful mainly in command
files (see section Command files).

Command completion

GDB canfill in therest of aword in acommand for you, if there is only one possibility; it can also show
you what the valid possibilities are for the next word in acommand, at any time. Thisworks for GDB
commands, GDB subcommands, and the names of symbolsin your program.

Press the TAB key whenever you want GDB to fill out the rest of aword. If there is only one possibility,
GDB fillsin the word, and waits for you to finish the command (or press RET to enter it). For example,
if you type

(gdb) info bre TAB

GDB fillsin therest of theword ™ br eakpoi nt s’ , sincethat istheonly i nf o subcommand
beginning with ~ br e’ :

(gdb) info breakpoints

Y ou can either press RET at this point, to runthei nf o br eakpoi nt s command, or backspace and
enter something else, if ~ br eakpoi nt s’ does not look like the command you expected. (If you were
sureyou wanted i nf o br eakpoi nt s inthefirst place, you might as well just type RET immediately
after i nfo bre',toexploit command abbreviations rather than command compl etion).

If there is more than one possibility for the next word when you press TAB, GDB sounds a bell. Y ou can
either supply more characters and try again, or just press TAB a second time; GDB displays all the
possible completions for that word. For example, you might want to set a breakpoint on a subroutine
whose name beginswith ~ make ' , but when you typeb make_ TAB GDB just sounds the bell.
Typing TAB again displays all the function namesin your program that begin with those characters, for
example:

(gdb) b nmake_ TAB

GDB sounds bell; press TAB again, to see:

make a section fromfile make_environ

make abs_secti on make_function_type

make_ bl ockvect or make_poi nter_type

make_ cl eanup make reference_type

make comand make_synbol conpl etion_|i st
(gdb) b make_

file:///Cl/gdb.html (26 of 352)19. 1. 2004 20:32:03

Debugging with GDB

After displaying the available possibilities, GDB copies your partia input (" b nake_' inthe example)
so you can finish the command.

If you just want to see thelist of alternativesin the first place, you can press M ? rather than pressing
TAB twice. M ? means META ?. You can type this either by holding down a key designated as the
IVETA shift on your keyboard (if there is one) while typing ?, or as ESC followed by ?.

Sometimes the string you need, whilelogically a"word", may contain parentheses or other characters
that GDB normally excludes from its notion of aword. To permit word completion to work in this
situation, you may enclose wordsin' (single quote marks) in GDB commands.

The most likely situation where you might need thisisin typing the name of a C++ function. Thisis
because C++ allows function overloading (multiple definitions of the same function, distinguished by
argument type). For example, when you want to set a breakpoint you may need to distinguish whether
you mean the version of nane that takesani nt parameter, nane(i nt), or the version that takes a

f 1 oat parameter, nane(f | oat) . To usethe word-completion facilitiesin this situation, type asingle
guote ' at the beginning of the function name. This aerts GDB that it may need to consider more
information than usual when you press TAB or M ? to request word completion:

(gdb) b 'bubble(M?
bubbl e(doubl e, doubl e) bubbl e(int,int)
(gdb) b ' bubbl e(

In some cases, GDB can tell that completing a name requires using quotes. When this happens, GDB
inserts the quote for you (while completing as much asit can) if you do not type the quote in the first
place:

(gdb) b bub TAB
GDB alters your input line to the followng, and rings a bell:
(gdb) b ' bubbl e(

In general, GDB can tell that a quote is needed (and insertsit) if you have not yet started typing the
argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see section C++ expressions. Y ou can use the
command set overl| oad-resol uti on of f to disable overload resolution; see section GDB
featuresfor C++.

Getting help

Y ou can always ask GDB itself for information on its commands, using the command hel p.

file:///Cl/gdb.html (27 of 352)19. 1. 2004 20:32:03

Debugging with GDB

hel p
h
You can use hel p (abbreviated h) with no arguments to display a short list of named classes of
commands:
(gdb) help
Li st of classes of conmands:
aliases -- Aliases of other commands
breakpoints -- Making programstop at certain points
data -- Exam ning data
files -- Specifying and exam ning files
I nternals -- Miintenance conmands
obscure -- Cbscure features
runni ng -- Running the program
stack -- Exam ning the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution w thout

st oppi ng the program
user -defined -- User-defined conmands

Type "hel p" followed by a class nane for a |ist of
commands in that class.

Type "hel p" followed by conmand nane for ful
docunent at i on.

Command nane abbrevi ations are allowed if unanbi guous.

(gdb)
hel p cl ass

Using one of the general help classes as an argument, you can get alist of the individual
commands in that class. For example, here isthe help display for the class st at us:

(gdb) hel p status
Status inquiries.

Li st of commands:

info -- Generic conmmand for show ng things
about the program bei ng debugged
show -- Generic command for show ng things

file:///Cl/gdb.html (28 of 352)19. 1. 2004 20:32:03

Debugging with GDB

about the debugger

Type "hel p* followed by conmand nanme for full
docunent ati on.
Command nane abbrevi ations are allowed if unanbi guous.

(gdb)

hel p command
With acommand name as hel p argument, GDB displays a short paragraph on how to use that
command.

apr opos args
Theapr opos ar gs command searches through all of the GDB commands, and their
documentation, for the regular expression specified in args. It prints out al matches found. For
example:

apropos rel oad

resultsin:

set synbol -rel oading -- Set dynam c synbol table rel oading
multiple tinmes in one run

show synbol -rel oadi ng -- Show dynam c synbol table rel oading

multiple tines in one run

conpl ete args
Theconpl et e ar gs command lists all the possible completions for the beginning of a
command. Use args to specify the beginning of the command you want completed. For example:

conpl ete |

resultsin:

| f

I gnore

i nfo

I nspect

Thisisintended for use by GNU Emacs.
In addition to hel p, you can use the GDB commandsi nf o and showto inquire about the state of your
program, or the state of GDB itself. Each command supports many topics of inquiry; this manual

introduces each of them in the appropriate context. The listings under i nf o and under showin the

file:///Cl/gdb.html (29 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Index point to all the sub-commands. See section Index.

i nfo
This command (abbreviated i) isfor describing the state of your program. For example, you can
list the arguments given to your program withi nf o ar gs, list the registers currently in use
withi nfo regi sters, orlist the breakpoints you have set withi nf o br eakpoi nts. You
can get acomplete list of thei nf o sub-commandswith hel p i nf o.

set
Y ou can assign the result of an expression to an environment variable with set . For example,
you can set the GDB prompt to a$-sign withset pronpt $.

show

In contrast to i nf 0, showisfor describing the state of GDB itself. Y ou can change most of the
things you can show, by using the related command set ; for example, you can control what
number system is used for displayswith set r adi x, or smply inquire which is currently in use
withshow r adi x. To display all the settable parameters and their current values, you can use
showwith no arguments; you may also usei nf o set . Both commands produce the same

display.

Here are three miscellaneous s how subcommands, al of which are exceptional in lacking corresponding
set commands:

show versi on
Show what version of GDB is running. Y ou should include thisinformation in GDB bug-reports.
If multiple versions of GDB arein use at your site, you may need to determine which version of
GDB you are running; as GDB evolves, new commands are introduced, and old ones may wither
away. Also, many system vendors ship variant versions of GDB, and there are variant versions of
GDB in GNU/Linux distributions as well. The version number is the same as the one announced
when you start GDB.

show copyi ng
Display information about permission for copying GDB.

show war ranty
Display the GNU "NO WARRANTY" statement, or awarranty, if your version of GDB comes
with one.

Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information when you compile
it.

Y ou may start GDB with its arguments, if any, in an environment of your choice. If you are doing native
debugging, you may redirect your program's input and output, debug an already running process, or kill

file:///Cl/gdb.html (30 of 352)19. 1. 2004 20:32:03

Debugging with GDB

achild process.

. Compilation: Compiling for debugging

. Starting: Starting your program

. Arguments: Y our program's arguments

« Environment: Y our program's environment

. Working Directory: Your program's working directory

« Input/Output: Your program's input and output

. Attach: Debugging an already-running process

. Kill Process: Killing the child process

. Threads: Debugging programs with multiple threads

« Processes: Debugging programs with multiple processes

Compiling for debugging

In order to debug a program effectively, you need to generate debugging information when you compile
it. This debugging information is stored in the object file; it describes the data type of each variable or
function and the correspondence between source line numbers and addresses in the executabl e code.

To request debugging information, specify the ™ - g' option when you run the compiler.

Many C compilers are unableto handlethe ™ - g' and " - O options together. Using those compilers,
you cannot generate optimized executables containing debugging information.

GCC, the GNU C compiler, supports ™ - g* with or without * - O , making it possible to debug
optimized code. We recommend that you alwaysuse " - g' whenever you compile a program. Y ou may
think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled with ™ - g - O , remember that the optimizer is rearranging your
code; the debugger shows you what isreally there. Do not be too surprised when the execution path does
not exactly match your source file! An extreme example: if you define avariable, but never useit, GDB
never sees that variable--because the compiler optimizesit out of existence.

Some things do not work aswell with™ - g - O aswithjust " - g' , particularly on machines with
instruction scheduling. If in doubt, recompile with ™ - g' aone, and if this fixes the problem, please
report it to us as a bug (including atest case!).

Older versions of the GNU C compiler permitted a variant option * - gg' for debugging information.
GDB no longer supports this format; if your GNU C compiler has this option, do not useit.

file:///Cl/gdb.html (31 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Starting your program

run
;
Usether un command to start your program under GDB. Y ou must first specify the program
name (except on VxWorks) with an argument to GDB (see section Getting In and Out of GDB),

or by usingthefi | e or exec-fi | e command (see section Commands to specify files).

If you are running your program in an execution environment that supports processes, r un creates an
inferior process and makes that process run your program. (In environments without processes, r un
jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its superior. GDB
provides ways to specify thisinformation, which you must do before starting your program. (Y ou can
change it after starting your program, but such changes only affect your program the next time you start
it.) Thisinformation may be divided into four categories:

The arguments.
Specify the arguments to give your program as the arguments of ther un command. If ashell is
available on your target, the shell is used to pass the arguments, so that you may use normal
conventions (such as wildcard expansion or variable substitution) in describing the arguments. In
Unix systems, you can control which shell is used with the SHELL environment variable. See
section Y our program's arguments.

The environment.
Y our program normally inherits its environment from GDB, but you can use the GDB commands
set environnment andunset environnment to change partsof the environment that
affect your program. See section Y our program's environment.

The working directory.
Y our program inherits its working directory from GDB. Y ou can set the GDB working directory
with the cd command in GDB. See section Y our program's working directory.

The standard input and output.
Y our program normally uses the same device for standard input and standard output as GDB is
using. You can redirect input and output in ther un command line, or you can usethetty
command to set a different device for your program. See section Y our program's input and
output. Warning: While input and output redirection work, you cannot use pipesto pass the
output of the program you are debugging to another program; if you attempt this, GDB islikely
to wind up debugging the wrong program.

When you issue the r un command, your program begins to execute immediately. See section Stopping
and Continuing, for discussion of how to arrange for your program to stop. Once your program has
stopped, you may call functions in your program, using thepr i nt or cal | commands. See section

file:///C/gdb.html (32 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Examining Data.

If the modification time of your symbol file has changed since the last time GDB read its symbols, GDB
discards its symbol table, and reads it again. When it does this, GDB tries to retain your current
breakpoints.

Your program's arguments

The arguments to your program can be specified by the arguments of the r un command. They are
passed to a shell, which expands wildcard characters and performs redirection of 1/0, and thence to your
program. Your SHELL environment variable (if it exists) specifies what shell GDB uses. If you do not
define SHELL, GDB uses the default shell (" / bi n/ sh* on Unix).

On non-Unix systems, the program is usually invoked directly by GDB, which emulates 1/O redirection
viathe appropriate system calls, and the wildcard characters are expanded by the startup code of the
program, not by the shell.

r un with no arguments uses the same arguments used by the previousr un, or those set by the set
ar gs command.

set args
Specify the arguments to be used the next time your programisrun. If set ar gs hasno
arguments, r un executes your program with no arguments. Once you have run your program
with arguments, using set ar gs before the next r un isthe only way to run it again without
arguments.

show ar gs
Show the arguments to give your program when it is started.

Your program's environment

The environment consists of a set of environment variables and their values. Environment variables
conventionally record such things as your user name, your home directory, your terminal type, and your
search path for programs to run. Usually you set up environment variables with the shell and they are
inherited by all the other programs you run. When debugging, it can be useful to try running your
program with a modified environment without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path for executables)
that will be passed to your program. The value of PATH used by GDB does not change. Y ou may
specify several directory names, separated by whitespace or by a system-dependent separator
character (" : ' onUnix, ;' on MS-DOS and MS-Windows). If directory is already in the path,

file:///Cl/gdb.html (33 of 352)19. 1. 2004 20:32:03

Debugging with GDB

it ismoved to the front, so it is searched sooner. Y ou can usethe string ™ $cwd' to refer to
whatever is the current working directory at the time GDB searches the path. If you use " .
instead, it refersto the directory where you executed the pat h command. GDB replaces ™ .
the directory argument (with the current path) before adding directory to the search path.

show pat hs
Display the list of search paths for executables (the PATH environment variable).

show envi ronnent [var nane]
Print the value of environment variable varname to be given to your program when it starts. If
you do not supply varname, print the names and values of all environment variables to be given
to your program. Y ou can abbreviateenvi r onnent asenv.

set environnment varnane [=val ue]
Set environment variable varname to value. The value changes for your program only, not for
GDB itsdlf. value may be any string; the values of environment variables are just strings, and any
Interpretation is supplied by your program itself. The value parameter is optiondl; if itis
eliminated, the variable is set to a null value. For example, this command:

in

set env USER = foo

tells the debugged program, when subsequently run, that its user isnamed ™ f 00" . (The spaces
around " ="' are used for clarity here; they are not actually required.)

unset environnent varname
Remove variable varname from the environment to be passed to your program. Thisis different
from set env varname =';unset environnent removesthe variable from the
environment, rather than assigning it an empty value.

Warning: On Unix systems, GDB runs your program using the shell indicated by your SHELL
environment variableif it exists (or / bi n/ sh if not). If your SHELL variable names a shell that runs an
initialization file--suchas ™ . cshrc' for C-shell, or " . bashr ¢’ for BASH--any variablesyou set in
that file affect your program. Y ou may wish to move setting of environment variables to files that are
only runwhenyousignon,suchas™ .l ogin' or .profile'.

Your program's working directory

Each time you start your program with r un, it inherits its working directory from the current working
directory of GDB. The GDB working directory isinitially whatever it inherited from its parent process
(typically the shell), but you can specify a new working directory in GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify filesfor GDB to
operate on. See section Commands to specify files.

cd directory
Set the GDB working directory to directory.

file:///C|/gdb.html (34 of 352)19. 1. 2004 20:32:03

Debugging with GDB

pwd
Print the GDB working directory.

Your program's input and output

By default, the program you run under GDB does input and output to the same terminal that GDB uses.
GDB switches the terminal to its own terminal modes to interact with you, but it records the terminal
modes your program was using and switches back to them when you continue running your program.

I nfo term nal
Displays information recorded by GDB about the terminal modes your program is using.

Y ou can redirect your program's input and/or output using shell redirection with the r un command. For
example,

run > outfile
starts your program, diverting its output to thefile out fi l e' .

Another way to specify where your program should do input and output iswith thet t y command. This
command accepts a file name as argument, and causes thisfile to be the default for futurer un
commands. It also resets the controlling terminal for the child process, for future r un commands. For
example,

tty /dev/ttyb

directs that processes started with subsequent r un commands default to do input and output on the
terminal " / dev/ ttyb' and have that astheir controlling terminal.

Anexplicit redirectioninr un overridesthet t y command's effect on the input/output device, but not
its effect on the controlling terminal.

When you usethet t y command or redirect input in ther un command, only the input for your
programis affected. The input for GDB still comes from your terminal.

Debugging an already-running process

attach process-id
This command attaches to a running process--one that was started outside GDB. (i nfo fil es
shows your active targets.) The command takes as argument a process ID. The usua way to find

file///Cligdb.html (35 of 352)19. 1. 2004 20:32:03

Debugging with GDB

out the process-id of aUnix processiswith the ps utility, or withthe " j obs -1"' shell
command. at t ach does not repeat if you press RET a second time after executing the
command.

Touseat t ach, your program must be running in an environment which supports processes; for
example, at t ach does not work for programs on bare-board targets that lack an operating system. Y ou
must also have permission to send the process asignal.

When you use at t ach, the debugger finds the program running in the process first by looking in the
current working directory, then (if the program is not found) by using the source file search path (see
section Specifying source directories). You can also usethef i | e command to load the program. See

section Commands to specify files.

Thefirst thing GDB does after arranging to debug the specified processisto stop it. Y ou can examine
and modify an attached process with all the GDB commands that are ordinarily available when you start
processes with r un. Y ou can insert breakpoints; you can step and continue; you can modify storage. If
you would rather the process continue running, you may use the cont i nue command after attaching
GDB to the process.

det ach
When you have finished debugging the attached process, you can use the det ach command to
release it from GDB control. Detaching the process continues its execution. After thedet ach
command, that process and GDB become completely independent once more, and you are ready
to at t ach another process or start onewithr un. det ach does not repesat if you press RET
again after executing the command.

If you exit GDB or use ther un command while you have an attached process, you kill that process. By
default, GDB asks for confirmation if you try to do either of these things; you can control whether or not
you need to confirm by using theset confi r mcommand (see section Optional warnings and

messages).

Killing the child process

Kill
Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process. GDB ignores
any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have breakpoints set
onitinside GDB. You can usetheki | I command in this situation to permit running your program

file:///Cl/gdb.html (36 of 352)19. 1. 2004 20:32:03

Debugging with GDB
outside the debugger.
Theki | I command isalso useful if you wish to recompile and relink your program, since on many
systems it isimpossible to modify an executable file while it is running in a process. In this case, when

you next typer un, GDB notices that the file has changed, and reads the symbol table again (while
trying to preserve your current breakpoint settings).

Debugging programs with multiple threads

In some operating systems, such as HP-UX and Solaris, a single program may have more than one
thread of execution. The precise semantics of threads differ from one operating system to another, but in
genera the threads of a single program are akin to multiple processes--except that they share one
address space (that is, they can all examine and modify the same variables). On the other hand, each
thread has its own registers and execution stack, and perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:

. automatic notification of new threads

. thread threadno',acommand to switch among threads

. info threads', acommand toinquire about existing threads

. thread apply [threadno] [all] args',acommand to apply acommand to alist
of threads

. thread-specific breakpoints

Warning: These facilities are not yet available on every GDB configuration where the
operating system supports threads. If your GDB does not support threads, these
commands have no effect. For example, a system without thread support shows no output
from i nfo threads',andawaysregectsthet hr ead command, like this:

(gdb) info threads

(gdb) thread 1

Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your program runs--but
whenever GDB takes control, one thread in particular is aways the focus of debugging. Thisthread is
called the current thread. Debugging commands show program information from the perspective of the
current thread.

Whenever GDB detects a new thread in your program, it displays the target system's identification for
the thread with amessage intheform ~ [New syst ag] ' . systag is athread identifier whose form

file:///Cl/gdb.html (37 of 352)19. 1. 2004 20:32:03

Debugging with GDB

varies depending on the particular system. For example, on LynxOS, you might see
[New process 35 thread 27]

when GDB notices a new thread. In contrast, on an SGI system, the systag is ssimply something like
“process 368, with no further qualifier.

For debugging purposes, GDB associates its own thread number--always a single integer--with each
thread in your program.

I nfo threads
Display a summary of all threads currently in your program. GDB displays for each thread (in
this order):
1. thethread number assigned by GDB
2. thetarget system's thread identifier (systag)
3. the current stack frame summary for that thread
Anasterisk * *' to the left of the GDB thread number indicates the current thread. For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c: 68

On HP-UX systems:

For debugging purposes, GDB associates its own thread number--a small integer assigned in thread-
creation order--with each thread in your program.

Whenever GDB detects a new thread in your program, it displays both GDB's thread number and the
target system's identification for the thread with amessageintheform ™ [New syst ag] ' . systagisa
thread identifier whose form varies depending on the particular system. For example, on HP-UX, you
See

[New thread 2 (systemthread 26594)]
when GDB notices a new thread.

I nfo threads
Display asummary of all threads currently in your program. GDB displays for each thread (in
this order):
1. thethread number assigned by GDB

file:///Cl/gdb.html (38 of 352)19. 1. 2004 20:32:03

Debugging with GDB

2. thetarget system's thread identifier (systag)
3. the current stack frame summary for that thread
Anasterisk ~ *' to theleft of the GDB thread number indicates the current thread. For example,

(gdb) info threads
* 3 systemthread 26607 worker (wptr=0x7b09c318 "@) \

at qui cksort.c: 137
2 systemthread 26606 0x7b0030d8 in __ksleep () \

from/usr/lib/libc.2
1 systemthread 27905 0x7b003498 in _brk () \

from/usr/lib/libc.2

t hread t hreadno
Make thread number threadno the current thread. The command argument threadno is the
internal GDB thread number, as shown in thefirst field of the " i nf o t hr eads’ display. GDB
responds by displaying the system identifier of the thread you selected, and its current stack
frame summary:

(gdb) thread 2
[Swtching to process 35 thread 23]
Ox34e5 in sigpause ()

Aswiththe [New . ..]" message, theform of thetext after * Swi t chi ng t o' dependson
your system's conventions for identifying threads.

thread apply [threadno] [all] args
Thet hread appl y command allows you to apply acommand to one or more threads. Specify
the numbers of the threads that you want affected with the command argument threadno.
threadno is the internal GDB thread number, as shown in the first field of the " i nf o
t hr eads' display. To apply acommand to all threads, uset hr ead apply al |l args.

Whenever GDB stops your program, due to a breakpoint or asignal, it automatically selects the thread
where that breakpoint or signal happened. GDB alerts you to the context switch with a message of the
form [Switching to systag]' toidentify the thread.

See section Stopping and starting multi-thread programs, for more information about how GDB behaves
when you stop and start programs with multiple threads.

See section Setting watchpoints, for information about watchpoints in programs with multiple threads.

file:///Cl/gdb.html (39 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Debugging programs with multiple processes

On most systems, GDB has no specia support for debugging programs which create additional
processes using the f or k function. When a program forks, GDB will continue to debug the parent
process and the child process will run unimpeded. If you have set a breakpoint in any code which the
child then executes, the child will get a SI GTRAP signal which (unlessit catchesthe signal) will cause it
to terminate.

However, if you want to debug the child process there is a workaround which isn't too painful. Put a call
to sl eep in the code which the child process executes after the fork. It may be useful to Sleep only if a
certain environment variable is set, or a certain file exists, so that the delay need not occur when you
don't want to run GDB on the child. While the child is Sleeping, use the ps program to get its process
ID. Thentell GDB (anew invocation of GDB if you are aso debugging the parent process) to attach to
the child process (see section Debugging an already-running process). From that point on you can debug

the child process just like any other process which you attached to.

On HP-UX (11.x and later only?), GDB provides support for debugging programs that create additional
processes using thef or k or vf or k function.

By default, when a program forks, GDB will continue to debug the parent process and the child process
will run unimpeded.

If you want to follow the child process instead of the parent process, use the command set f ol | ow
f or k- node.

set followfork-node node
Set the debugger response to a program call of f or k or vf or k. A call tof or k or vf ork
creates a new process. The mode can be:

par ent
The original processis debugged after afork. The child process runs unimpeded. Thisis
the default.

child

The new process is debugged after afork. The parent process runs unimpeded.
ask
The debugger will ask for one of the above choices.
show f ol | ow f or k- node
Display the current debugger response to af or k or vf or k call.

If you ask to debug a child process and avf or k isfollowed by an exec, GDB executes the new target
up to the first breakpoint in the new target. If you have a breakpoint set on mai n inyour original
program, the breakpoint will also be set on the child processs mai n.

file:///C|/gdb.html (40 of 352)19. 1. 2004 20:32:03

Debugging with GDB

When achild processis spawned by vf or k, you cannot debug the child or parent until an exec call
completes.

If youissuear un command to GDB after an exec call executes, the new target restarts. To restart the
parent process, usethef i | e command with the parent executable name as its argument.

Y ou can usethe cat ch command to make GDB stop whenever af or k, vf or k, or exec call is made.
See section Setting catchpoints.

Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before it terminates;
or so that, if your program runs into trouble, you can investigate and find out why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a breakpoint, or
reaching anew line after a GDB command such as st ep. Y ou may then examine and change variables,
set new breakpoints or remove old ones, and then continue execution. Usually, the messages shown by
GDB provide ample explanation of the status of your program--but you can also explicitly request this
information at any time.

I nfo program
Display information about the status of your program: whether it is running or not, what process
itis, and why it stopped.

. Breakpoints: Breakpoints, watchpoints, and catchpoints

. Continuing and Stepping: Resuming execution

. Signds: Signals

. Thread Stops: Stopping and starting multi-thread programs

Breakpoints, watchpoints, and catchpoints

A breakpoint makes your program stop whenever a certain point in the program is reached. For each
breakpoint, you can add conditions to control in finer detail whether your program stops. Y ou can set
breakpoints with the br eak command and its variants (see section Setting breakpoints), to specify the

place where your program should stop by line number, function name or exact address in the program.

In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set breakpointsin shared
libraries before the executable is run. Thereisaminor limitation on HP-UX systems. you must wait
until the executableisrun in order to set breakpointsin shared library routines that are not called directly

file:///Cl/gdb.html (41 of 352)19. 1. 2004 20:32:03

Debugging with GDB

by the program (for example, routines that are argumentsin apt hr ead_cr eat e cal).

A watchpoint is a special breakpoint that stops your program when the value of an expression changes.
Y ou must use a different command to set watchpoints (see section Setting watchpoints), but aside from
that, you can manage a watchpoint like any other breakpoint: you enable, disable, and delete both
breakpoints and watchpoints using the same commands.

Y ou can arrange to have values from your program displayed automatically whenever GDB stops at a
breakpoint. See section Automatic display.

A catchpoint is another special breakpoint that stops your program when a certain kind of event occurs,
such as the throwing of a C++ exception or the loading of alibrary. Aswith watchpoints, you use a
different command to set a catchpoint (see section Setting catchpoints), but aside from that, you can
manage a catchpoint like any other breakpoint. (To stop when your program receives asignal, use the
handl e command; see section Signals.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create it; these numbers
are successive integers starting with one. In many of the commands for controlling various features of
breakpoints you use the breakpoint number to say which breakpoint you want to change. Each
breakpoint may be enabled or disabled; if disabled, it has no effect on your program until you enable it

again.

Some GDB commands accept a range of breakpoints on which to operate. A breakpoint range is either a
single breakpoint number, like ™ 5" , or two such numbers, in increasing order, separated by a hyphen,
like™ 5- 7" . When abreakpoint range is given to a command, all breakpoint in that range are operated
on.

« Set Breaks: Setting breakpoints

. Set Watchpoints: Setting watchpoints

. Set Catchpoints: Setting catchpoints

. Delete Breaks: Deleting breakpoints

. Disabling: Disabling breakpoints

. Conditions: Break conditions

. Break Commands: Breakpoint command lists

. Breakpoint Menus. Breakpoint menus

« Error in Breakpoints: " Cannot insert breakpoints'

Setting breakpoints

Breakpoints are set with the br eak command (abbreviated b). The debugger convenience variable

file:///Cl/gdb.html (42 of 352)19. 1. 2004 20:32:03

Debugging with GDB

$bpnum records the number of the breakpoint you've set most recently; see section Convenience
variables, for a discussion of what you can do with convenience variables.

Y ou have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using source languages that permit
overloading of symbols, such as C++, function may refer to more than one possible place to
break. See section Breakpoint menus, for adiscussion of that situation.

break +offset

break -offset
Set a breakpoint some number of lines forward or back from the position at which execution
stopped in the currently selected stack frame. (See section Stack frames, for a description of stack
frames.)

break |inenum
Set a breakpoint at line linenum in the current source file. The current source fileisthelast file
whose source text was printed. The breakpoint will stop your program just before it executes any
of the code on that line.

break filenane:|inenum
Set a breakpoint at line linenum in source file filename.

break fil enane: function
Set a breakpoint at entry to function function found in file filename. Specifying afile name as
well as afunction name is superfluous except when multiple files contain similarly named
functions.

break *address
Set a breakpoint at address address. Y ou can use this to set breakpointsin parts of your program
which do not have debugging information or source files.

br eak
When called without any arguments, br eak sets a breakpoint at the next instruction to be
executed in the selected stack frame (see section Examining the Stack). In any selected frame but

the innermost, this makes your program stop as soon as control returns to that frame. Thisis
similar to the effect of af i ni sh command in the frame inside the sel ected frame--except that

f i ni sh does not leave an active breakpoint. If you use br eak without an argument in the
innermost frame, GDB stops the next time it reaches the current location; this may be useful
inside loops. GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to proceed past a
breakpoint without first disabling the breakpoint. This rule applies whether or not the breakpoint
already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; eval uate the expression cond each time the breakpoint is
reached, and stop only if the value is nonzero--that is, if cond evaluatesastrue. . . . ' standsfor

one of the possible arguments described above (or no argument) specifying where to break. See

file:///C|/gdb.html (43 of 352)19. 1. 2004 20:32:03

Debugging with GDB

section Break conditions, for more information on breakpoint conditions.

t break args

Set a breakpoint enabled only for one stop. args are the same as for the br eak command, and
the breakpoint is set in the same way, but the breakpoint is automatically deleted after the first
time your program stops there. See section Disabling breakpoints.

hbr eak args

Set a hardware-assisted breakpoint. args are the same as for the br eak command and the
breakpoint is set in the same way, but the breakpoint requires hardware support and some target
hardware may not have this support. The main purpose of thisis EPROM/ROM code debugging,
S0 you can set a breakpoint at an instruction without changing the instruction. This can be used
with the new trap-generation provided by SPARClite DSU and some x86-based targets. These
targets will generate traps when a program accesses some data or instruction address that is
assigned to the debug registers. However the hardware breakpoint registers can take alimited
number of breakpoints. For example, on the DSU, only two data breakpoints can be set at atime,
and GDB will rgject this command if more than two are used. Delete or disable unused hardware
breakpoints before setting new ones (see section Disabling breakpoints). See section Break

conditions.

t hbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the same as for the

hbr eak command and the breakpoint is set in the same way. However, likethet br eak
command, the breakpoint is automatically deleted after the first time your program stops there.
Also, likethe hbr eak command, the breakpoint requires hardware support and some target
hardware may not have this support. See section Disabling breakpoints. See also section Break

conditions.

rbreak regex

i nfo
I nfo
i nfo

Set breakpoints on all functions matching the regular expression regex. This command sets an
unconditional breakpoint on all matches, printing alist of al breakpointsit set. Once these
breakpoints are set, they are treated just like the breakpoints set with the br eak command. Y ou
can delete them, disable them, or make them conditional the same way as any other breakpoint.
The syntax of the regular expression is the standard one used with toolslike ™ gr ep' . Note that
thisis different from the syntax used by shells, so for instance f 0o* matches all functions that
include an f o followed by zero or more os. Thereisan implicit . * leading and trailing the
regular expression you supply, so to match only functions that begin with f oo, use~f oo. When
debugging C++ programs, r br eak is useful for setting breakpoints on overloaded functions that
are not members of any special classes.

br eakpoi nts [n]

break [n]

wat chpoi nts [n]

Print atable of all breakpoints, watchpoints, and catchpoints set and not deleted, with the
following columns for each breakpoint:

Breakpoint Numbers

Type

file:///Cl/gdb.html (44 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Breakpoint, watchpoint, or catchpoint.
Disposition

Whether the breakpoint is marked to be disabled or deleted when hit.
Enabled or Disabled

Enabled breakpoints are marked with " y' .~ n' marks breakpoints that are not enabled.
Address

Where the breakpoint isin your program, as a memory address.
What

Where the breakpoint isin the source for your program, as afile and line number.
If abreakpoint is conditional, i nf o br eak shows the condition on the line following the
affected breakpoint; breakpoint commands, if any, are listed after that. i nf o br eak with a
breakpoint number n as argument lists only that breakpoint. The convenience variable $_ and the
default examining-address for the x command are set to the address of the last breakpoint listed
(see section Examining memory). i nf o br eak displays a count of the number of times the
breakpoint has been hit. Thisis especially useful in conjunction with thei gnor e command.
Y ou can ignore alarge number of breakpoint hits, look at the breakpoint info to see how many
times the breakpoint was hit, and then run again, ignoring one less than that number. Thiswill get
you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your program. There is nothing
silly or meaningless about this. When the breakpoints are conditional, thisis even useful (see section
Break conditions).

GDB itself sometimes sets breakpointsin your program for special purposes, such as proper handling of
| ongj np (in C programs). These internal breakpoints are assigned negative numbers, starting with - 1;
“info breakpoints' doesnot display them.

Y ou can see these breakpoints with the GDB maintenance command ~ mai nt i nfo
br eakpoi nts'.

mai nt i nfo breakpoints
Using the sameformat as " i nf o br eakpoi nt s’ , display both the breakpoints you've set
explicitly, and those GDB isusing for internal purposes. Internal breakpoints are shown with
negative breakpoint numbers. The type column identifies what kind of breakpoint is shown:
br eakpoi nt
Normal, explicitly set breakpoint.
wat chpoi nt
Normal, explicitly set watchpoint.
| ongj np
Internal breakpoint, used to handle correctly stepping through | ongj np calls.
| ongj np resune
Internal breakpoint at the target of al ongj np.

file:///C|/gdb.html (45 of 352)19. 1. 2004 20:32:03

Debugging with GDB

unti |

Temporary internal breakpoint used by the GDB unt i | command.
finish

Temporary internal breakpoint used by the GDB f i ni sh command.
shlib events

Shared library events.

Setting watchpoints

Y ou can use a watchpoint to stop execution whenever the value of an expression changes, without
having to predict a particular place where this may happen.

Depending on your system, watchpoints may be implemented in software or hardware. GDB does
software watchpointing by single-stepping your program and testing the variable's value each time,
which is hundreds of times slower than normal execution. (But this may still be worth it, to catch errors
where you have no clue what part of your program isthe culprit.)

On some systems, such as HP-UX, Linux and some other x86-based targets, GDB includes support for
hardware watchpoints, which do not slow down the running of your program.

wat ch expr
Set a watchpoint for an expression. GDB will break when expr is written into by the program and
its value changes.

rwat ch expr
Set awatchpoint that will break when watch expr is read by the program.

awat ch expr
Set awatchpoint that will break when expr is either read or written into by the program.

I nf o wat chpoi nts
This command prints alist of watchpoints, breakpoints, and catchpoints; it isthe same asi nf o
br eak.

GDB sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly, and the
debugger reports a change in value at the exact instruction where the change occurs. If GDB cannot set a
hardware watchpoint, it sets a software watchpoint, which executes more slowly and reports the change
in value at the next statement, not the instruction, after the change occurs.

When you issue the wat ch command, GDB reports
Har dwar e wat chpoi nt num expr

if it was able to set a hardware watchpoint.

file:///Cl/gdb.html (46 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Currently, theawat ch and r wat ch commands can only set hardware watchpoints, because accesses to
datathat don't change the value of the watched expression cannot be detected without examining every
instruction as it is being executed, and GDB does not do that currently. If GDB finds that it is unable to
set a hardware breakpoint with the awat ch or r wat ch command, it will print a message like this:

Expressi on cannot be inplenented with read/ access wat chpoi nt.

Sometimes, GDB cannot set a hardware watchpoint because the data type of the watched expression is
wider than what a hardware watchpoint on the target machine can handle. For example, some systems
can only watch regions that are up to 4 bytes wide; on such systems you cannot set hardware
watchpoints for an expression that yields a double-precision floating-point number (which istypically 8
bytes wide). As awork-around, it might be possible to break the large region into a series of smaller
ones and watch them with separate watchpoints.

If you set too many hardware watchpoints, GDB might be unable to insert all of them when you resume
the execution of your program. Since the precise number of active watchpoints is unknown until such
time as the program is about to be resumed, GDB might not be able to warn you about this when you set
the watchpoints, and the warning will be printed only when the program is resumed:

Har dwar e wat chpoi nt num Could not insert watchpoint
If this happens, delete or disable some of the watchpoints.

The SPARClite DSU will generate traps when a program accesses some data or instruction address that
Is assigned to the debug registers. For the data addresses, DSU facilitates the wat ch command.
However the hardware breakpoint registers can only take two data watchpoints, and both watchpoints
must be the same kind. For example, you can set two watchpoints with wat ch commands, two with
rwat ch commands, or two with awat ch commands, but you cannot set one watchpoint with one
command and the other with a different command. GDB will reject the command if you try to mix
watchpoints. Delete or disable unused watchpoint commands before setting new ones.

If you call afunction interactively using pri nt or cal | , any watchpoints you have set will be inactive
until GDB reaches another kind of breakpoint or the call completes.

GDB automatically deletes watchpoints that watch local (automatic) variables, or expressions that
involve such variables, when they go out of scope, that is, when the execution leaves the block in which
these variables were defined. In particular, when the program being debugged terminates, all local
variables go out of scope, and so only watchpoints that watch global variables remain set. If you rerun
the program, you will need to set all such watchpoints again. One way of doing that would be to set a
code breakpoint at the entry to the mai n function and when it breaks, set al the watchpoints.

Warning: In multi-thread programs, watchpoints have only limited usefulness. With the

file:///Cl/gdb.html (47 of 352)19. 1. 2004 20:32:03

Debugging with GDB

current watchpoint implementation, GDB can only watch the value of an expressionin a
single thread. If you are confident that the expression can only change due to the current
thread's activity (and if you are also confident that no other thread can become current),
then you can use watchpoints as usual. However, GDB may not notice when a non-current
thread's activity changes the expression.

HP-UX Warning: In multi-thread programs, software watchpoints have only limited
usefulness. If GDB creates a software watchpoint, it can only watch the value of an
expression in a single thread. If you are confident that the expression can only change due
to the current thread's activity (and if you are also confident that no other thread can
become current), then you can use software watchpoints as usual. However, GDB may not
notice when a non-current thread's activity changes the expression. (Hardware
watchpoints, in contrast, watch an expression in all threads.)

Setting catchpoints

Y ou can use catchpoints to cause the debugger to stop for certain kinds of program events, such as C++
exceptions or the loading of a shared library. Use the cat ch command to set a catchpoint.

catch event

Stop when event occurs. event can be any of the following:

t hr ow
The throwing of a C++ exception.

catch
The catching of a C++ exception.

exec
A call to exec. Thisis currently only available for HP-UX.

fork
A cal tof or k. Thisiscurrently only available for HP-UX.

vfork
A cal tovf or k. Thisis currently only available for HP-UX.

| oad

| oad |i bnane
The dynamic loading of any shared library, or the loading of the library libname. Thisis
currently only available for HP-UX.

unl oad

unl oad | i bnane
The unloading of any dynamically loaded shared library, or the unloading of the library
libname. Thisis currently only available for HP-UX.

tcatch event
Set a catchpoint that is enabled only for one stop. The catchpoint is automatically deleted after
the first time the event is caught.

file:///C|/gdb.html (48 of 352)19. 1. 2004 20:32:03

Debugging with GDB
Usethei nf o br eak command to list the current catchpoints.

There are currently some limitations to C++ exception handling (cat ch t hrowandcat ch cat ch)
in GDB:

. If you call afunction interactively, GDB normally returns control to you when the function has
finished executing. If the call raises an exception, however, the call may bypass the mechanism
that returns control to you and cause your program either to abort or to simply continue running
until it hits a breakpoint, catches asignal that GDB islistening for, or exits. Thisisthe case even
If you set a catchpoint for the exception; catchpoints on exceptions are disabled within interactive
cals.

« You cannot raise an exception interactively.

« You cannot install an exception handler interactively.

Sometimes cat ch is not the best way to debug exception handling: if you need to know exactly where
an exception israised, it is better to stop before the exception handler is called, since that way you can
see the stack before any unwinding takes place. If you set a breakpoint in an exception handler instead, it
may not be easy to find out where the exception was raised.

To stop just before an exception handler is called, you need some knowledge of the implementation. In
the case of GNU C++, exceptions are raised by calling alibrary function named
__rai se_excepti on which hasthefollowing ANSI C interface:

/* addr is where the exception identifier is stored.
id is the exception identifier. */
void _ raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding takes place, set a breakpoint on
__rai se_excepti on (see section Breakpoints, watchpoints, and catchpoints).

With a conditional breakpoint (see section Break conditions) that depends on the value of id, you can

stop your program when a specific exception israised. Y ou can use multiple conditional breakpoints to
stop your program when any of a number of exceptions are raised.

Deleting breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has done its job and you
no longer want your program to stop there. Thisis called deleting the breakpoint. A breakpoint that has
been deleted no longer exists; it is forgotten.

With the cl ear command you can del ete breakpoints according to where they are in your program.

file:///Cl/gdb.html (49 of 352)19. 1. 2004 20:32:03

Debugging with GDB

With the del et e command you can delete individual breakpoints, watchpoints, or catchpoints by
specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores breakpoints on
the first instruction to be executed when you continue execution without changing the execution address.

cl ear
Delete any breakpoints at the next instruction to be executed in the selected stack frame (see
section Selecting aframe). When the innermost frame is selected, thisis a good way to delete a

breakpoint where your program just stopped.

cl ear function

clear filenane:function
Delete any breakpoints set at entry to the function function.

cl ear |inenum

clear filenane:!|inenum
Delete any breakpoints set at or within the code of the specified line.

del ete [breakpoints] [range...]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint ranges specified as
arguments. If no argument is specified, delete all breakpoints (GDB asks confirmation, unless
you haveset confirm of f).You can abbreviate thiscommand as d.

Disabling breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable it. This makes
the breakpoint inoperative asif it had been deleted, but remembers the information on the breakpoint so
that you can enableit again later.

Y ou disable and enable breakpoints, watchpoints, and catchpoints with the enabl e and di sabl e
commands, optionally specifying one or more breakpoint numbers as arguments. Usei nf o br eak or
i nf o wat ch to print alist of breakpoints, watchpoints, and catchpointsif you do not know which
numbersto use.

A breakpoint, watchpoint, or catchpoint can have any of four different states of enablement:

. Enabled. The breakpoint stops your program. A breakpoint set with the br eak command starts
out in this state.

. Disabled. The breakpoint has no effect on your program.

. Enabled once. The breakpoint stops your program, but then becomes disabled.

. Enabled for deletion. The breakpoint stops your program, but immediately after it doesso it is
deleted permanently. A breakpoint set with thet br eak command starts out in this state.

Y ou can use the following commands to enable or disable breakpoints, watchpoints, and catchpoints:

file:///Cl/gdb.html (50 of 352)19. 1. 2004 20:32:03

Debugging with GDB

di sabl e [breakpoi nts] [range...]
Disable the specified breakpoints--or all breakpoints, if none are listed. A disabled breakpoint has
no effect but is not forgotten. All options such as ignore-counts, conditions and commands are
remembered in case the breakpoint is enabled again later. Y ou may abbreviatedi sabl e asdi s.

enabl e [breakpoi nts] [range...]
Enable the specified breakpoints (or all defined breakpoints). They become effective once again
In stopping your program.

enabl e [breakpoi nts] once range...
Enable the specified breakpoints temporarily. GDB disables any of these breakpoints
immediately after stopping your program.

enabl e [breakpoi nts] del ete range...
Enable the specified breakpoints to work once, then die. GDB deletes any of these breakpoints as
S00N as your program stops there.

Except for abreakpoint set witht br eak (see section Setting breakpoints), breakpoints that you set are
initially enabled; subsequently, they become disabled or enabled only when you use one of the
commands above. (The command unt i | can set and delete a breakpoint of its own, but it does not
change the state of your other breakpoints; see section Continuing and stepping.)

Break conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place. Y ou can also
specify a condition for a breakpoint. A condition isjust a Boolean expression in your programming
language (see section Expressions). A breakpoint with a condition evaluates the expression each time

your program reaches it, and your program stops only if the condition istrue.

Thisisthe converse of using assertions for program validation; in that situation, you want to stop when
the assertion is violated--that is, when the condition isfalse. In C, if you want to test an assertion
expressed by the condition assert, you should set the condition " ! assert' onthe appropriate
breakpoint.

Conditions are a so accepted for watchpoints; you may not need them, since a watchpoint is inspecting
the value of an expression anyhow--but it might be smpler, say, to just set awatchpoint on avariable
name, and specify a condition that tests whether the new value is an interesting one.

Break conditions can have side effects, and may even call functions in your program. This can be useful,
for example, to activate functions that |og program progress, or to use your own print functions to format
special data structures. The effects are completely predictable unless there is another enabled breakpoint
at the same address. (In that case, GDB might see the other breakpoint first and stop your program
without checking the condition of this one.) Note that breakpoint commands are usually more
convenient and flexible than break conditions for the purpose of performing side effects when a

file:///Cl/gdb.html (51 of 352)19. 1. 2004 20:32:03

Debugging with GDB

breakpoint is reached (see section Breakpoint command lists).

Break conditions can be specified when a breakpoint is set, by using " i ' in the arguments to the
br eak command. See section Setting breakpoints. They can also be changed at any time with the

condi ti on command.

You can also usethei f keyword with thewat ch command. The cat ch command does not recognize
thei f keyword; condi t i on isthe only way to impose afurther condition on a catchpoint.

condi ti on bnum expression
Specify expression as the break condition for breakpoint, watchpoint, or catchpoint number
bnum. After you set a condition, breakpoint bnum stops your program only if the value of
expression is true (nonzero, in C). When you use condi t i on, GDB checks expression
immediately for syntactic correctness, and to determine whether symbolsin it have referentsin
the context of your breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, GDB prints an error message:

No synmbol "foo" in current context.

GDB does not actually evaluate expression at the timethe condi t i on command (or a
command that sets a breakpoint with a condition, likebreak if ...)isgiven, however. See
section Expressions.

condi tion bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary unconditional
breakpoint.

A specia case of a breakpoint condition isto stop only when the breakpoint has been reached a certain
number of times. Thisis so useful that there is a special way to do it, using the ignore count of the
breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the ignore count
Is zero, and therefore has no effect. But if your program reaches a breakpoint whose ignore count is
positive, then instead of stopping, it just decrements the ignore count by one and continues. As a resullt,
if the ignore count value is n, the breakpoint does not stop the next n times your program reaches it.

| gnore bnum count
Set the ignore count of breakpoint number bnum to count. The next count times the breakpoint is
reached, your program'’s execution does not stop; other than to decrement the ignore count, GDB
takes no action. To make the breakpoint stop the next time it is reached, specify a count of zero.
When you use cont i nue to resume execution of your program from a breakpoint, you can
specify an ignore count directly as an argument to cont i nue, rather thanusingi gnor e. See
section Continuing and stepping. If a breakpoint has a positive ignore count and a condition, the

condition is not checked. Once the ignore count reaches zero, GDB resumes checking the
condition. Y ou could achieve the effect of the ignore count with a condition such as * $f 0o- -

file:///Cl/gdb.html (52 of 352)19. 1. 2004 20:32:03

Debugging with GDB

<= 0' using adebugger convenience variable that is decremented each time. See section
Convenience variables.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

Breakpoint command lists

Y ou can give any breakpoint (or watchpoint or catchpoint) a series of commands to execute when your
program stops due to that breakpoint. For example, you might want to print the values of certain
expressions, or enable other breakpoints.

commands [bnunj
command- | i st

end
Specify alist of commands for breakpoint number bnum. The commands themselves appear on
the following lines. Type aline containing just end to terminate the commands. To remove all
commands from a breakpoint, type comrands and follow it immediately with end; that is, give
no commands. With no bnum argument, conmands refers to the last breakpoint, watchpoint, or
catchpoint set (not to the breakpoint most recently encountered).

Pressing RET as a means of repeating the last GDB command is disabled within a command-list.

Y ou can use breakpoint commands to start your program up again. Simply usethecont i nue
command, or st ep, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, areignored. Thisis
because any time you resume execution (even with asimple next or st ep), you may encounter
another breakpoint--which could have its own command list, leading to ambiguities about which list to
execute.

If the first command you specify in acommand list issi | ent , the usual message about stopping at a
breakpoint is not printed. This may be desirable for breakpoints that are to print a specific message and
then continue. If none of the remaining commands print anything, you see no sign that the breakpoint
was reached. si | ent ismeaningful only at the beginning of a breakpoint command list.

The commands echo, out put ,and pri nt f alow you to print precisely controlled output, and are
often useful in silent breakpoints. See section Commands for controlled outpui.

For example, hereis how you could use breakpoint commands to print the value of x at entry tof oo
whenever X is positive.

file:///Cl/gdb.html (53 of 352)19. 1. 2004 20:32:03

Debugging with GDB

break foo if x>0
commands

si | ent

printf "x is %\n", x
cont

end

One application for breakpoint commands is to compensate for one bug so you can test for another. Put a
breakpoint just after the erroneous line of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values to any variables that need them.
End with the cont i nue command so that your program does not stop, and start with the si | ent
command so that no output is produced. Here is an example:

break 403
commands
si | ent

set x =y + 4
cont

end

Breakpoint menus

Some programming languages (notably C++) permit a single function name to be defined several times,
for application in different contexts. Thisis called overloading. When a function name is overloaded,
“break function' isnotenough to tell GDB where you want a breakpoint. If you realize thisisa
problem, you can use something like " br eak function(types)" to specify which particular
version of the function you want. Otherwise, GDB offers you a menu of numbered choices for different
possible breakpoints, and waits for your selection with the prompt * >' . The first two options are always
"[0] cancel' and [1] all"'.Typing 1l setsabreakpoint at each definition of function, and
typing O aborts the br eak command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the overloaded
symbol St ri ng: : af t er . We choose three particular definitions of that function name:

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; line nunber: 867
[3] file:String.cc; line nunber: 860
[4] file:String.cc; line nunber: 875
[5] file:String.cc; |ine nunber: 853
[6] file:String.cc; |ine nunber: 846

file:///C|/gdb.html (54 of 352)19. 1. 2004 20:32:03

Debugging with GDB

[7] file:String.cc; |ine nunber: 735

>2 46

Breakpoint 1 at Oxb26c¢c: file String.cc, |line 867.
Breakpoint 2 at Oxb344: file String.cc, |line 875.
Breakpoint 3 at Oxafcc: file String.cc, |ine 846.
Mul tipl e breakpoints were set.

Use the "delete” command to del ete unwant ed

br eakpoi nt s.

(gdb)

"Cannot insert breakpoints"

Under some operating systems, breakpoints cannot be used in a program if any other processis running
that program. In this situation, attempting to run or continue a program with a breakpoint causes GDB to
print an error message:

Cannot insert breakpoints.
The sanme program may be running in another process.

When this happens, you have three ways to proceed:

1. Remove or disable the breakpoints, then continue.

2. Suspend GDB, and copy the file containing your program to a new name. Resume GDB and use
theexec- fi | e command to specify that GDB should run your program under that name. Then
start your program again.

3. Relink your program so that the text segment is nonsharable, using the linker option ™ - N' . The
operating system limitation may not apply to nonsharable executables.

A similar message can be printed if you request too many active hardware-assisted breakpoints and
watchpoints:

St opped; cannot insert breakpoints.
You nmay have requested too many hardware breakpoi nts and wat chpoi nts.

This message is printed when you attempt to resume the program, since only then GDB knows exactly
how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-assisted breakpoints
and watchpoints, and then continue.

Continuing and stepping

file:///Cl/gdb.html (55 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Continuing means resuming program execution until your program completes normally. In contrast,
stepping means executing just one more "step” of your program, where "step” may mean either one line
of source code, or one machine instruction (depending on what particular command you use). Either
when continuing or when stepping, your program may stop even sooner, due to a breakpoint or asignal.
(If it stops due to asignal, you may want to use handl e, or use " si gnal 0' to resume execution.
See section Signals.)

continue [ignore-count]

c [1gnore-count]

fg [ignore-count]
Resume program execution, at the address where your program last stopped; any breakpoints set
at that address are bypassed. The optional argument ignore-count allows you to specify afurther
number of times to ignore a breakpoint at this location; its effect islike that of i gnor e (see
section Break conditions). The argument ignore-count is meaningful only when your program
stopped due to a breakpoint. At other times, the argument to cont i nue isignored. The
synonymsc and f g (for foreground, as the debugged program is deemed to be the foreground
program) are provided purely for convenience, and have exactly the same behavior as
conti nue.

To resume execution at adifferent place, you can user et ur n (see section Returning from a function)
to go back to the calling function; or j unp (see section Continuing at a different address) to go to an
arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see section Breakpoints, watchpoints, and
catchpoints) at the beginning of the function or the section of your program where a problem is believed

to lie, run your program until it stops at that breakpoint, and then step through the suspect area,
examining the variables that are interesting, until you see the problem happen.

step
Continue running your program until control reaches a different source line, then stop it and
return control to GDB. This command is abbreviated s.

Warning: If you usethe st ep command while control iswithin afunction that was
compiled without debugging information, execution proceeds until control reaches a
function that does have debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through functions without
debugging information, usethe st epi command, described below.

The st epcommand only stops at the first instruction of a source line. This prevents the multiple stops
that could otherwise occur in swi t chstatements, f or loops, etc. st epcontinues to stop if afunction
that has debugging information is called within the line. In other words, st epsteps insideany functions

file:///Cl/gdb.html (56 of 352)19. 1. 2004 20:32:03

Debugging with GDB

called within the line. Also, the st epcommand only enters afunction if there is line number
information for the function. Otherwise it acts like the next command. This avoids problems when
using cc - gl on MIPS machines. Previously, st epentered subroutinesif there was any debugging
information about the routine.
step count
Continue running asin st ep, but do so count times. If abreakpoint is reached, or asignal not
related to stepping occurs before count steps, stepping stops right away .
next [count]
Continue to the next source line in the current (innermost) stack frame. Thisis similar to st ep,
but function calls that appear within the line of code are executed without stopping. Execution
stops when control reaches a different line of code at the original stack level that was executing
when you gave the next command. This command is abbreviated n. An argument count isa
repeat count, asfor st ep. Thenext command only stops at the first instruction of a source line.
This prevents multiple stops that could otherwise occur in swi t ch statements, f or loops, etc.
set step-node
set step-npbde on
Theset step-nobde on command causesthe st ep command to stop at the first instruction
of afunction which contains no debug line information rather than stepping over it. Thisis useful
in cases where you may be interested in inspecting the machine instructions of a function which
has no symbolic info and do not want GDB to automatically skip over this function.
set step-node off
Causesthe st ep command to step over any functions which contains no debug information.
Thisisthe default.
finish
Continue running until just after function in the selected stack frame returns. Print the returned
value (if any). Contrast thiswith ther et ur n command (see section Returning from a function).

unti |

u
Continue running until a source line past the current line, in the current stack frame, is reached.
This command is used to avoid single stepping through aloop more than once. It islike the next
command, except that when unt i | encounters ajump, it automatically continues execution until
the program counter is greater than the address of the jump. This means that when you reach the
end of aloop after single stepping though it, unt i | makes your program continue execution
until it exits the loop. In contrast, anext command at the end of aloop ssimply steps back to the
beginning of the loop, which forces you to step through the next iteration. unt i | always stops
your program if it attemptsto exit the current stack frame. unt i I may produce somewhat
counterintuitive resultsif the order of machine code does not match the order of the source lines.
For example, in the following excerpt from a debugging session, thef (f r ane) command shows
that execution is stopped at line 206; yet whenwe useunt i | , wegetto line 195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at nd.c: 206
206 expand_i nput () ;

file:///Cl/gdb.html (57 of 352)19. 1. 2004 20:32:03

Debugging with GDB

(gdb) until
195 for (; argc > 0; NEXTARG {

This happened because, for execution efficiency, the compiler had generated code for the loop
closure test at the end, rather than the start, of the loop--even though thetestina C f or -loop is
written before the body of the loop. Theunt i | command appeared to step back to the beginning
of the loop when it advanced to this expression; however, it has not really gone to an earlier
statement--not in terms of the actual machine code. unt i | with no argument works by means of
single instruction stepping, and hence is lower thanunt i | with an argument.

until | ocation

u location
Continue running your program until either the specified location is reached, or the current stack
frame returns. location is any of the forms of argument acceptable to br eak (see section Setting

breakpoints). This form of the command uses breakpoints, and hence is quicker thanunt i |

without an argument.

st epi

stepi arg

Si
Execute one machine instruction, then stop and return to the debugger. It is often useful to do
“display/i $pc' when stepping by machine instructions. This makes GDB automatically
display the next instruction to be executed, each time your program stops. See section Automatic
display. An argument is arepeat count, asin st ep.

next i

nexti arg

ni
Execute one machine instruction, but if it isafunction call, proceed until the function returns. An
argument is arepeat count, asin next .

Signals

A signal is an asynchronous event that can happen in a program. The operating system defines the
possible kinds of signals, and gives each kind a name and a number. For example, in Unix SI G NT is
the signal a program gets when you type an interrupt character (often C- ¢); SI GSEGV isthe signal a
program gets from referencing a place in memory far away from all the areas in use; SI GALRMoccurs
when the alarm clock timer goes off (which happens only if your program has requested an alarm).

Some signals, including SI GALRM are anormal part of the functioning of your program. Others, such
as SI GSEGV, indicate errors; these signals are fatal (they kill your program immediately) if the program
has not specified in advance some other way to handle the signal. SI G NT does not indicate an error in
your program, but it is normally fatal so it can carry out the purpose of the interrupt: to kill the program.

file:///Cl/gdb.html (58 of 352)19. 1. 2004 20:32:03

Debugging with GDB

GDB has the ability to detect any occurrence of asignal in your program. You can tell GDB in advance
what to do for each kind of signal.

Normally, GDB is set up to let the non-erroneous signals like SI GALRMbe silently passed to your
program (so as not to interfere with their role in the program's functioning) but to stop your program
immediately whenever an error signal happens. Y ou can change these settings with the handl e
command.

i nfo signals

i nfo handl e
Print atable of all the kinds of signals and how GDB has been told to handle each one. Y ou can
use this to see the signal numbers of all the defined types of signals.i nf o handl e isan alias
fori nfo signals.

handl e si gnal keywords. ..
Change the way GDB handles signal signal. signal can be the number of asignal or its name
(with or without the ™ SI G at the beginning); alist of signal numbers of the form ™ | ow-
hi gh' ; ortheword " al | ' , meaning all the known signals. The keywords say what change to
make.

The keywords allowed by the handl e command can be abbreviated. Their full names are:

nost op
GDB should not stop your program when this signal happens. It may still print a message telling
you that the signal has comein.
st op
GDB should stop your program when this signal happens. Thisimpliesthe pr i nt keyword as
well.
print
GDB should print a message when this signal happens.
nopr i nt
GDB should not mention the occurrence of the signal at all. Thisimpliesthenost op keyword
aswell.
pass
noi gnor e
GDB should alow your program to see this signal; your program can handle the signal, or elseiit
may terminate if the signal isfatal and not handled. pass and noi gnor e are synonyms.
nopass
I gnore
GDB should not allow your program to see thissignal. nopass andi gnor e are synonyms.

When a signal stops your program, the signal is not visible to the program until you continue. Y our
program sees the signal then, if pass isin effect for the signal in question at that time. In other words,

file:///Cl/gdb.html (59 of 352)19. 1. 2004 20:32:03

Debugging with GDB

after GDB reportsasignal, you can use the handl e command with pass or nopass to control
whether your program sees that signal when you continue.

The default is set tonost op, nopri nt, pass for non-erroneous signals such as SI GALRM
SI GN NCHand SI GCHLD, andto st op, pri nt, pass for the erroneous signals.

You can aso usethesi gnal command to prevent your program from seeing asignal, or cause it to see
asignal it normally would not see, or to giveit any signal a any time. For example, if your program
stopped due to some sort of memory reference error, you might store correct values into the erroneous
variables and continue, hoping to see more execution; but your program would probably terminate
immediately asaresult of the fatal signal once it saw the signal. To prevent this, you can continue with
“signal 0'.Seesection Giving your program asignal.

Stopping and starting multi-thread programs

When your program has multiple threads (see section Debugging programs with multiple threads), you
can choose whether to set breakpoints on all threads, or on a particular thread.

break |inespec thread threadno

break |inespec thread threadno if
linespec specifies source lines; there are several ways of writing them, but the effect is alwaysto
specify some source line. Use the qualifier “ t hr ead t hr eadno’ with abreakpoint command
to specify that you only want GDB to stop the program when a particular thread reaches this
breakpoint. threadno is one of the numeric thread identifiers assigned by GDB, shown in the first
columnof the i nfo threads' display. If you do not specify "t hr ead t hr eadno' when
you set a breakpoint, the breakpoint appliesto all threads of your program. Y ou can use the
t hr ead qualifier on conditional breakpoints aswell; in this case, place " t hr ead
t hr eadno' before the breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > Iim
Whenever your program stops under GDB for any reason, all threads of execution stop, not just the
current thread. This allows you to examine the overall state of the program, including switching between

threads, without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start executing. Thisis true even when single-
stepping with commands like st ep or next .

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling is up to your
debugging target's operating system (not controlled by GDB), other threads may execute more than one
statement while the current thread completes a single step. Moreover, in genera other threads stop in the

file:///Cl/gdb.html (60 of 352)19. 1. 2004 20:32:03

Debugging with GDB

middle of a statement, rather than at a clean statement boundary, when the program stops.

Y ou might even find your program stopped in another thread after continuing or even single-stepping.
This happens whenever some other thread runs into a breakpoint, a signal, or an exception before the
first thread completes whatever you requested.

On some OSes, you can lock the OS scheduler and thus allow only a single thread to run.

set schedul er-1ocki ng node
Set the scheduler locking mode. If itisof f, then thereis no locking and any thread may run at
any time. If on, then only the current thread may run when the inferior isresumed. The st ep
mode optimizes for single-stepping. It stops other threads from "seizing the prompt” by
preempting the current thread while you are stepping. Other threads will only rarely (or never)
get a chance to run when you step. They are more likely to run whenyou " next ' over a
function call, and they are completely free to run when you use commandslike ™ cont i nue'
“until',or finish'.However, unlessanother thread hits a breakpoint during its timeslice,
they will never steal the GDB prompt away from the thread that you are debugging.

show schedul er -1 ocki ng
Display the current scheduler locking mode.

Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and how it got
there.

Each time your program performs afunction call, information about the call is generated. That
information includes the location of the call in your program, the arguments of the call, and the local
variables of the function being called. The information is saved in a block of data called a stack frame.
The stack frames are allocated in aregion of memory called the call stack.

When your program stops, the GDB commands for examining the stack allow you to see all of this
information.

One of the stack framesis selected by GDB and many GDB commands refer implicitly to the selected
frame. In particular, whenever you ask GDB for the value of avariable in your program, the valueis
found in the selected frame. There are special GDB commands to select whichever frame you are
interested in. See section Selecting aframe.

When your program stops, GDB automatically selects the currently executing frame and describes it
briefly, similar to the f r ame command (see section Information about aframe).

file:///Cl/gdb.html (61 of 352)19. 1. 2004 20:32:03

Debugging with GDB

. Frames: Stack frames

. Backtrace: Backtraces

. Selection: Selecting aframe

. FrameInfo: Information on aframe

Stack frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short; each frameis
the data associated with one call to one function. The frame contains the arguments given to the
function, the function's local variables, and the address at which the function is executing.

When your program is started, the stack has only one frame, that of the function mai n. Thisiscaled the
initial frame or the outermost frame. Each time afunction is called, a new frame is made. Each time a
function returns, the frame for that function invocation is eliminated. If afunction isrecursive, there can
be many frames for the same function. The frame for the function in which execution is actually
occurring is called the innermost frame. Thisis the most recently created of all the stack frames that till
exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists of many
bytes, each of which has its own address; each kind of computer has a convention for choosing one byte
whose address serves as the address of the frame. Usually this addressis kept in aregister called the
frame pointer register while execution is going on in that frame.

GDB assigns numbersto all existing stack frames, starting with zero for the innermost frame, one for the
frame that called it, and so on upward. These numbers do not really exist in your program; they are
assigned by GDB to give you away of designating stack framesin GDB commands.

Some compilers provide away to compile functions so that they operate without stack frames. (For
example, the gcc option

“-fomt-frame-pointer'

generates functions without aframe.) Thisis occasionally done with heavily used library functions to
save the frame setup time. GDB has limited facilities for dealing with these function invocations. If the
innermost function invocation has no stack frame, GDB nevertheless regards it as though it had a
separate frame, which is numbered zero as usual, allowing correct tracing of the function call chain.
However, GDB has no provision for frameless functions el sewhere in the stack.

frame args
Thef r ame command allows you to move from one stack frame to another, and to print the stack
frame you select. args may be either the address of the frame or the stack frame number. Without

file:///Cl/gdb.html (62 of 352)19. 1. 2004 20:32:03

Debugging with GDB

an argument, f r ane prints the current stack frame.

sel ect-frane
Thesel ect - f r ame command allows you to move from one stack frame to another without
printing the frame. Thisisthe silent version of f r ane.

Backtraces

A backtrace is asummary of how your program got whereit is. It shows one line per frame, for many
frames, starting with the currently executing frame (frame zero), followed by its caller (frame one), and
on up the stack.

backtrace
bt
Print a backtrace of the entire stack: one line per frame for all framesin the stack. Y ou can stop
the backtrace at any time by typing the system interrupt character, normally C- c.
backtrace n
bt n
Similar, but print only the innermost n frames.
backtrace -n
bt -n
Similar, but print only the outermost n frames.

Thenameswher e andi nf o st ack (abbreviatedi nf o s) are additional aliasesfor backt r ace.

Each line in the backtrace shows the frame number and the function name. The program counter valueis
also shown--unlessyou useset print address of f. Thebacktrace also shows the sourcefile
name and line number, as well as the arguments to the function. The program counter value is omitted if
it is at the beginning of the code for that line number.

Here is an example of a backtrace. It was made with the command ~ bt 3" , so it shows the innermost
three frames.

#0 nmd_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993

#1 0x6e38 in expand nmacro (synm=0x2b600) at nacro.c: 242

#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
at macro.c: 71

(More stack franmes follow. ..)

The display for frame zero does not begin with a program counter value, indicating that your program
has stopped at the beginning of the code for line993 of bui I ti n. c.

file:///Cl/gdb.html (63 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Selecting a frame

Most commands for examining the stack and other datain your program work on whichever stack frame
Is selected at the moment. Here are the commands for selecting a stack frame; all of them finish by
printing abrief description of the stack frame just selected.

frame n

f n
Select frame number n. Recall that frame zero is the innermost (currently executing) frame, frame
one isthe frame that called the innermost one, and so on. The highest-numbered frame is the one
for mai n.

frame addr

f addr
Select the frame at address addr. Thisisuseful mainly if the chaining of stack frames has been
damaged by a bug, making it impossible for GDB to assign numbers properly to all frames. In
addition, this can be useful when your program has multiple stacks and switches between them.
On the SPARC architecture, f r ane needs two addresses to select an arbitrary frame: aframe
pointer and a stack pointer. On the MIPS and Alpha architecture, it needs two addresses: a stack
pointer and a program counter. On the 29k architecture, it needs three addresses: a register stack
pointer, a program counter, and a memory stack pointer.

up n
Move n frames up the stack. For positive numbers n, this advances toward the outermost frame,
to higher frame numbers, to frames that have existed longer. n defaults to one.

down n
Move n frames down the stack. For positive numbers n, this advances toward the innermost
frame, to lower frame numbers, to frames that were created more recently. n defaultsto one. You
may abbreviate down asdo.

All of these commands end by printing two lines of output describing the frame. The first line shows the
frame number, the function name, the arguments, and the source file and line number of execution in
that frame. The second line shows the text of that source line.

For example:

(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c: 10

10 read_input file (argv[i]);

After such aprintout, thel i st command with no arguments prints ten lines centered on the point of
execution in the frame. See section Printing source lines.

file:///C|/gdb.html (64 of 352)19. 1. 2004 20:32:03

Debugging with GDB

up-silently n

down-

silently n

These two commands are variants of up and down, respectively; they differ in that they do their
work silently, without causing display of the new frame. They are intended primarily for use in
GDB command scripts, where the output might be unnecessary and distracting.

Information about a frame

There are several other commands to print information about the selected stack frame.

frane

f

i nfo
i nfo

i nfo
I nfo

i nfo

i nfo

I nfo

When used without any argument, this command does not change which frame is selected, but
prints abrief description of the currently selected stack frame. It can be abbreviated f . With an
argument, this command is used to select a stack frame. See section Selecting aframe.
frame
f
This command prints a verbose description of the selected stack frame, including:
the address of the frame
the address of the next frame down (called by this frame)
the address of the next frame up (caller of thisframe)
the language in which the source code corresponding to this frame is written
the address of the frame's arguments
the address of the frame'slocal variables
the program counter saved in it (the address of execution in the caller frame)

o which registers were saved in the frame
The verbose description is useful when something has gone wrong that has made the stack format
fail to fit the usual conventions.
frame addr
f addr
Print a verbose description of the frame at address addr, without selecting that frame. The
selected frame remains unchanged by this command. This requires the same kind of address
(more than one for some architectures) that you specify in thef r ame command. See section
Selecting aframe.
ar gs
Print the arguments of the selected frame, each on a separate line.
| ocal s
Print the local variables of the selected frame, each on a separate line. These are al variables
(declared either static or automatic) accessible at the point of execution of the selected frame.
catch
Print alist of all the exception handlers that are active in the current stack frame at the current
point of execution. To see other exception handlers, visit the associated frame (using the up,

O O O O O O O

file:///Cl/gdb.html (65 of 352)19. 1. 2004 20:32:03

Debugging with GDB

down, or f r ame commands); thentypei nf o cat ch. See section Setting catchpoints.

Examining Source Files

GDB can print parts of your program's source, since the debugging information recorded in the program
tells GDB what source files were used to build it. When your program stops, GDB spontaneously prints
the line where it stopped. Likewise, when you select a stack frame (see section Selecting aframe), GDB
prints the line where execution in that frame has stopped. Y ou can print other portions of source files by
explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs facilities to view
source; see section Using GDB under GNU Emacs.

. List: Printing source lines

. Search: Searching source files

« Source Path: Specifying source directories
. Machine Code: Source and machine code

Printing source lines

To print lines from asourcefile, usethel i st command (abbreviated |). By default, ten lines are
printed. There are several ways to specify what part of the file you want to print.

Here aretheformsof thel i st command most commonly used:

l'ist |inenum
Print lines centered around line number linenum in the current source file.

| ist function
Print lines centered around the beginning of function function.

| i st
Print more lines. If the last lines printed were printed withal i st command, this prints lines
following the last lines printed; however, if the last line printed was a solitary line printed as part
of displaying a stack frame (see section Examining the Stack), this prints lines centered around

that line.
list -
Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of thel i st command. Y ou can change
thisusingset |i stsize:

file:///Cl/gdb.html (66 of 352)19. 1. 2004 20:32:03

Debugging with GDB

set listsize count
Makethel i st command display count sourcelines (unlessthel i st argument explicitly
specifies some other number).

show | i stsize
Display the number of linesthat | i st prints.

Repeating al i st command with RET discards the argument, so it is equivalent to typing just | i st .
Thisis more useful than listing the same lines again. An exception is made for an argument of ~ - ' ; that
argument is preserved in repetition so that each repetition moves up in the sourcefile.

In general, thel i st command expects you to supply zero, one or two linespecs. Linespecs specify
source lines; there are several ways of writing them, but the effect is always to specify some source line.
Here is a complete description of the possible argumentsfor | i st :

| ist |inespec
Print lines centered around the line specified by linespec.
list first,|ast
Print lines from first to last. Both arguments are linespecs.
list ,Iast
Print lines ending with last.
list first,
Print lines starting with first.
list +
Print lines just after the lines last printed.
list -
Print lines just before the lines last printed.
| i st
As described in the preceding table.

Here are the ways of specifying a single source line--all the kinds of linespec.

nunber
Specifies line number of the current source file. When al i st command has two linespecs, this
refersto the same source file as the first linespec.
+of f set
Specifies the line offset lines after the last line printed. When used as the second linespec in a
| i st command that has two, this specifies the line offset lines down from the first linespec.
- of f set
Specifies the line offset lines before the last line printed.
fil enanme: nunber
Specifies line number in the source file filename.
function

file:///Cl/gdb.html (67 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Specifies the line that begins the body of the function function. For example: in C, thisistheline
with the open brace.

filenane: function
Specifies the line of the open-brace that begins the body of the function function in the file
filename. Y ou only need the file name with afunction name to avoid ambiguity when there are
identically named functionsin different sourcefiles.

*addr ess
Specifies the line containing the program address address. address may be any expression.

Searching source files

There are two commands for searching through the current source file for aregular expression.

forward-search regexp

search regexp
Thecommand " f or war d- sear ch regexp' checkseach line, starting with the one
following the last line listed, for a match for regexp. It liststhe line that is found. Y ou can use the
synonym " sear ch regexp' or abbreviate the command name asf o.

rever se-search regexp
Thecommand " r ever se- search regexp' checkseach line, starting with the one before
the last line listed and going backward, for a match for regexp. It lists the line that is found. Y ou
can abbreviate thiscommand asr ev.

Specifying source directories

Executable programs sometimes do not record the directories of the source files from which they were
compiled, just the names. Even when they do, the directories could be moved between the compilation
and your debugging session. GDB has alist of directories to search for sourcefiles; thisis caled the
source path. Each time GDB wants a sourcefile, it tries al the directoriesin the list, in the order they
are present in thelist, until it finds a file with the desired name. Note that the executable search path is
not used for this purpose. Neither is the current working directory, unless it happens to be in the source
path.

If GDB cannot find a source file in the source path, and the object program records a directory, GDB
tries that directory too. If the source path is empty, and there is no record of the compilation directory,
GDB looksin the current directory as alast resort.

Whenever you reset or rearrange the source path, GDB clears out any information it has cached about
where source files are found and where each lineisin thefile.

When you start GDB, its source path includesonly “ cdi r' and ™ cwd' , inthat order. To add other

file:///Cl/gdb.html (68 of 352)19. 1. 2004 20:32:03

Debugging with GDB

directories, usethedi r ect or y command.

directory dirnane ...

dir dirname ...
Add directory dirname to the front of the source path. Several directory names may be givento
thiscommand, separated by " : ' (" ;' on MS-DOS and MS-Windows, where ™ : ' usually
appears as part of absolute file names) or whitespace. Y ou may specify adirectory that is already
in the source path; thismoves it forward, so GDB searches it sooner. Y ou can use the string
$cdi r' torefer to the compilation directory (if oneisrecorded), and * $cwd' to refer to the
current working directory. ~ $cwd' isnot thesameas ™ . ' ---the former tracks the current
working directory as it changes during your GDB session, while the latter isimmediately
expanded to the current directory at the time you add an entry to the source path.

directory
Reset the source path to empty again. This requires confirmation.

show directories
Print the source path: show which directoriesit contains.

If your source path is cluttered with directories that are no longer of interest, GDB may sometimes cause
confusion by finding the wrong versions of source. Y ou can correct the situation as follows:

1. Usedi r ect or y with no argument to reset the source path to empty.
2. Usedi r ect or y with suitable arguments to reinstall the directories you want in the source path.
Y ou can add all the directories in one command.

Source and machine code

Y ou can usethecommand i nf o | i ne to map source lines to program addresses (and vice versa), and
the command di sassenbl e to display arange of addresses as machine instructions. When run under
GNU Emacs mode, thei nf o | i ne command causes the arrow to point to the line specified. Also,

I nfo |ine printsaddressesin symbolic form aswell as hex.

info line |inespec
Print the starting and ending addresses of the compiled code for source line linespec. Y ou can
specify source linesin any of the ways understood by thel i st command (see section Printing

source lines).

For example, we canusei nf o | i ne to discover the location of the object code for the first line of
functionm4_changequot e:

(gdb) info line ml_changequot e
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

file:///Cl/gdb.html (69 of 352)19. 1. 2004 20:32:03

Debugging with GDB
We can aso inquire (using * addr asthe form for linespec) what source line covers a particular address:

(gdb) info line *Ox63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

Afteri nf o | i ne, the default address for the x command is changed to the starting address of the line,
sothat “ x/i "' issufficient to begin examining the machine code (see section Examining memory).

Also, this addressis saved as the value of the convenience variable $ (see section Convenience
variables).

di sassenbl e
This specialized command dumps arange of memory as machine instructions. The default
memory range is the function surrounding the program counter of the selected frame. A single
argument to this command is a program counter value; GDB dumps the function surrounding this
value. Two arguments specify arange of addresses (first inclusive, second exclusive) to dump.

The following example shows the disassembly of arange of addresses of HP PA-RISC 2.0 code:

(gdb) disas 0x32c4 0x32e4
Dunp of assenbler code from 0x32c4 to 0x32e4:

0x32c4 <mai n+204>: addil 0, dp

0x32c8 <mai n+208>: | dw 0x22c(sr0,rl1),r26
0x32cc <mai n+212>: | di | 0x3000, r31
0x32d0 <mai n+216>: bl e Ox3f8(sr4,r31)
0x32d4 <mai n+220>: | do O(r31),rp

0x32d8 <mai n+224>: addi | -0x800, dp
0x32dc <mai n+228>: | do 0x588(r1),r26
0x32e0 <mai n+232>: | di | 0x3000, r31

End of assenbl er dunp.

Some architectures have more than one commonly-used set of instruction mnemonics or other syntax.

set di sassenbly-flavor instruction-set
Select the instruction set to use when disassembling the program viathe di sassenbl e or x/ i
commands. Currently this command is only defined for the Intel x86 family. Y ou can set
instruction-set to either i nt el oratt. Thedefaultisatt,the AT&T flavor used by default by
Unix assemblers for x86-based targets.

Examining Data

file:///Cl/gdb.html (70 of 352)19. 1. 2004 20:32:03

Debugging with GDB

The usual way to examine data in your program iswith the pr i nt command (abbreviated p), or its
synonymi nspect . It evaluates and prints the value of an expression of the language your programis
written in (see section Using GDB with Different L anguages).

print expr

print /f expr
expr is an expression (in the source language). By default the value of expr is printed in aformat
appropriate to its data type; you can choose a different format by specifying "/ f' , wherefisa
letter specifying the format; see section Output formats.

print

print /f
If you omit expr, GDB displays the last value again (from the value history; see section Value
history). This allows you to conveniently inspect the same value in an alternative format.

A more low-level way of examining data iswith the x command. It examines datain memory at a
specified address and printsit in a specified format. See section Examining memory.

If you are interested in information about types, or about how the fields of a struct or aclass are
declared, use the pt ype exp command rather than pri nt . See section Examining the Symbol Table.

. Expressions. Expressions

. Variables: Program variables

. Arrays: Artificia arrays

« Output Formats: Output formats

. Memory: Examining memory

. Auto Display: Automatic display

. Print Settings: Print settings

. VaueHistory: Value history

. Convenience Vars. Convenience variables

. Registers: Registers

. Floating Point Hardware: Floating point hardware
. Memory Region Attributes. Memory region attributes

Expressions

pri nt and many other GDB commands accept an expression and compute its value. Any kind of
constant, variable or operator defined by the programming language you are using isvalid in an
expression in GDB. Thisincludes conditional expressions, function calls, casts and string constants. It
unfortunately does not include symbols defined by preprocessor #def i ne commands.

file:///Cl/gdb.html (71 of 352)19. 1. 2004 20:32:03

Debugging with GDB

GDB supports array constants in expressions input by the user. The syntax is { element, element...}. For
example, you can usethecommand print {1, 2, 3} tobuildupanarray in memory that is
mal | oced in the target program.

Because C is so widespread, most of the expressions shown in examplesin this manual arein C. See
section Using GDB with Different L anguages, for information on how to use expressions in other

languages.

In this section, we discuss operators that you can use in GDB expressions regardless of your
programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a number into a pointer
In order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

@

" @ isabinary operator for treating parts of memory as arrays. See section Artificial arrays, for
more information.

"' dlowsyou to specify avariable in terms of the file or function where it is defined. See
section Program variables.

{type} addr
Refersto an object of type type stored at address addr in memory. addr may be any expression
whose value is an integer or pointer (but parentheses are required around binary operators, just as
in acast). Thisconstruct is alowed regardless of what kind of datais normally supposed to reside
at addr.

Program variables

The most common kind of expression to use is the name of avariable in your program.

Variablesin expressions are understood in the selected stack frame (see section Selecting aframe); they
must be either:

. global (or file-static)
or

. Vvisible according to the scope rules of the programming language from the point of execution in
that frame

file:///Cl/gdb.html (72 of 352)19. 1. 2004 20:32:03

Debugging with GDB

This means that in the function

foo (a)
i nt a;
{

bar (a);
{
int b =test ();
bar (b);
}
}

you can examine and use the variable a whenever your program is executing within the function f 0o,
but you can only use or examine the variable b while your program is executing inside the block where
b is declared.

There is an exception: you can refer to a variable or function whose scopeis asingle source file even if
the current execution point is not in thisfile. But it is possible to have more than one such variable or
function with the same name (in different source files). If that happens, referring to that name has
unpredictable effects. If you wish, you can specify a static variable in a particular function or file, using
the colon-colon notation:

file::variable
function::vari abl e

Herefile or function is the name of the context for the static variable. In the case of file names, you can
use quotes to make sure GDB parses the file name as a single word--for example, to print aglobal value
of X definedin " f 2. c':

(gdb) p "f2.¢c'::x

Thisuseof " ::' isvery rarely in conflict with the very similar use of the same notation in C++. GDB
also supports use of the C++ scope resolution operator in GDB expressions.

Warning: Occasionally, alocal variable may appear to have the wrong value at certain
pointsin afunction--just after entry to a new scope, and just before exit.

Y ou may see this problem when you are stepping by machine instructions. Thisis because, on most
machines, it takes more than one instruction to set up a stack frame (including local variable definitions);
If you are stepping by machine instructions, variables may appear to have the wrong values until the
stack frame is completely built. On exit, it usually also takes more than one machine instruction to

file:///Cl/gdb.html (73 of 352)19. 1. 2004 20:32:03

Debugging with GDB

destroy a stack frame; after you begin stepping through that group of instructions, local variable
definitions may be gone.

Thismay also happen when the compiler does significant optimizations. To be sure of always seeing
accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of existence, or
assign variables to registers (as opposed to memory addresses). Depending on the support for such cases
offered by the debug info format used by the compiler, GDB might not be able to display values for such
local variables. If that happens, GDB will print a message like this:

No synmbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug info format, if
the compiler supports several such formats. For example, GCC, the GNU C/C++ compiler usually
supportsthe ™ - gst abs' option. ™ - gst abs' produces debug info in aformat that is superior to
formats such as COFF. Y ou may be ableto use DWARF2 (" - gdwar f - 2'), which is also an effective
form for debug info. See section "Options for Debugging Y our Program or GNU CC'in Using GNU CC,
for more information.

Artificial arrays

It is often useful to print out several successive objects of the same type in memory; a section of an
array, or an array of dynamically determined size for which only a pointer exists in the program.

Y ou can do this by referring to a contiguous span of memory as an artificial array, using the binary
operator - @ . The left operand of ~ @ should be the first element of the desired array and be an
individual object. The right operand should be the desired length of the array. Theresult isan array
value whose elements are all of the type of the left argument. The first element is actually the left
argument; the second element comes from bytes of memory immediately following those that hold the
first element, and so on. Here is an example. If aprogram says

int *array = (int *) malloc (len * sizeof (int));
you can print the contents of ar r ay with

p *array@ en

The left operand of * @ must reside in memory. Array values made with ™ @ in thisway behave just
like other arraysin terms of subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions viathe value history (see section Value history), after

file:///Cl/gdb.html (74 of 352)19. 1. 2004 20:32:03

Debugging with GDB

printing one out.

Another way to create an artificial array isto use acast. Thisre-interprets avaue asif it were an array.
The value need not be in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

Asaconvenience, if you leave the array length out (asin ™ (t ype[]) val ue') GDB calculates the
sizetofill thevalue (as ™ si zeof (val ue) / si zeof (type) ' :

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex data structures,
the elements of interest may not actually be adjacent--for example, if you are interested in the values of
pointersin an array. One useful work-around in this situation is to use a convenience variable (see
section Convenience variables) as a counter in an expression that prints the first interesting value, and
then repeat that expression via RET. For instance, suppose you have an array dt ab of pointersto
structures, and you are interested in the values of afield f v in each structure. Here is an example of
what you might type:

set $i = 0

p dtab[$i ++] ->fv
RET

RET

Output formats

By default, GDB prints a value according to its data type. Sometimes thisis not what you want. For
example, you might want to print a number in hex, or apointer in decimal. Or you might want to view
datain memory at a certain address as a character string or as an instruction. To do these things, specify
an output format when you print avalue.

The simplest use of output formatsisto say how to print avalue already computed. Thisis done by
starting the arguments of the pr i nt command with a slash and aformat letter. The format letters
supported are:

X
Regard the bits of the value as an integer, and print the integer in hexadecimal.

file:///Cl/gdb.html (75 of 352)19. 1. 2004 20:32:03

Debugging with GDB

d
Print as integer in signed decimal.
u
Print as integer in unsigned decimal.
0
Print asinteger in octal.
t
Print asinteger in binary. Theletter "t ' standsfor "two". (2)
a
Print as an address, both absolute in hexadecimal and as an offset from the nearest preceding
symbol. Y ou can use this format used to discover where (in what function) an unknown address
Is located:
(gdb) p/a 0x54320
$3 = 0x54320 < initialize vx+396>
Thecommandi nfo synbol 0x54320 yields similar results. See section Examining the
Symbol Table.
c

Regard as an integer and print it as a character constant.

Regard the bits of the value as a floating point number and print using typical floating point
syntax.

For example, to print the program counter in hex (see section Registers), type
p/ x $pc

Note that no space is required before the slash; thisis because command namesin GDB cannot contain a
slash.

To reprint the last value in the value history with a different format, you can use the pri nt command
with just aformat and no expression. For example, " p/ X' reprintsthe last value in hex.

Examining memory

Y ou can use the command x (for "examine") to examine memory in any of several formats,
independently of your program's data types.

x/ nfu addr
X addr

file:///Cl/gdb.html (76 of 352)19. 1. 2004 20:32:03

Debugging with GDB

X
Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how to format it;
addr is an expression giving the address where you want to start displaying memory. If you use defaults
for nfu, you need not typethe slash " / ' . Several commands set convenient defaults for addr.

n, the repeat count
The repeat count is adecimal integer; the default is 1. It specifies how much memory (counting
by units u) to display.

f, the display format
The display format is one of the formatsused by pri nt, " s' (null-terminated string), or
"1 " (machineinstruction). The default is ™ x' (hexadecimal) initially. The default changes each
time you use either x or pri nt .

u, the unit size
The unit sizeis any of

b
Bytes.
h
Halfwords (two bytes).
w
Words (four bytes). Thisisthe initial default.
g

Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the next time you use
X.(Forthe s' and i ' formats, the unit sizeisignored and isnormally not written.)

addr, starting display address
addr isthe address where you want GDB to begin displaying memory. The expression need not
have a pointer value (though it may); it is aways interpreted as an integer address of a byte of
memory. See section Expressions, for more information on expressions. The default for addr is
usually just after the last address examined--but several other commands also set the default
address: i nf o br eakpoi nt s (to the address of the last breakpoint listed), i nfo | i ne (to
the starting address of aline), and pr i nt (if you useit to display a value from memory).

For example, " x/ 3uh 0x54320" isarequest to display three halfwords (h) of memory, formatted as
unsigned decimal integers (" u'), starting at address 0x54320. * x/ 4xw $sp' printsthe four words
(" w) of memory above the stack pointer (here, * $sp’ ; see section Registers) in hexadecimal (" x').

Since the lettersindicating unit sizes are all distinct from the letters specifying output formats, you do
not have to remember whether unit size or format comes first; either order works. The output
specifications ™ 4xw and ~ 4wx' mean exactly the same thing. (However, the count n must come first;
“wx4' doesnot work.)

file:///Cl/gdb.html (77 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Even though the unit size uisignored for theformats * s' and " i ' , you might still want to use a count
n; for example, * 3i ' specifiesthat you want to see three machine instructions, including any operands.
The command di sassenbl e gives an aternative way of inspecting machine instructions; see section
Source and machine code.

All the defaults for the arguments to x are designed to make it easy to continue scanning memory with
minimal specifications each time you use x. For example, after you have inspected three machine
instructionswith ~ x/ 3i addr ' , you can inspect the next seven with just * x/ 7' . If you use RET to
repeat the x command, the repeat count n is used again; the other arguments default as for successive
uses of X.

The addresses and contents printed by the x command are not saved in the value history because there is
often too much of them and they would get in the way. Instead, GDB makes these values available for
subsequent use in expressions as values of the convenience variables$ and $. After an x command,
the last address examined is available for use in expressions in the convenience variable $_. The
contents of that address, as examined, are available in the convenience variable $.

If the x command has a repeat count, the address and contents saved are from the last memory unit
printed; thisis not the same as the last address printed if several units were printed on the last line of
output.

Automatic display

If you find that you want to print the value of an expression frequently (to see how it changes), you
might want to add it to the automatic display list so that GDB printsits value each time your program
stops. Each expression added to the list is given a number to identify it; to remove an expression from
the list, you specify that number. The automatic display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values. As with displays you request
manually using x or pri nt , you can specify the output format you prefer; in fact, di spl ay decides
whether to use pr i nt or x depending on how elaborate your format specification is--it uses x if you
specify a unit size, or one of thetwo formats (" i * and " s') that are only supported by x; otherwise it
usespri nt.

di spl ay expr
Add the expression expr to the list of expressions to display each time your program stops. See
section Expressions. di spl ay does not repeat if you press RET again after using it.

di spl ay/fnt expr

file:///Cl/gdb.html (78 of 352)19. 1. 2004 20:32:03

Debugging with GDB

For fmt specifying only a display format and not a size or count, add the expression expr to the
auto-display list but arrange to display it each time in the specified format fmt. See section Output

formats.
di spl ay/fnt addr
Forfmt "1' or " s',orincluding aunit-size or anumber of units, add the expression addr as a

memory address to be examined each time your program stops. Examining meansin effect doing
“x/fmt addr' . Seesection Examining memory.

For example, " di spl ay/i $pc' can be helpful, to see the machine instruction about to be executed
each time execution stops (" $pc' isacommon name for the program counter; see section Registers).

undi spl ay dnuns. ..

del ete di splay dnuns. ..
Remove item numbers dnums from the list of expressionsto display. undi spl ay does not
repeat if you press RET after using it. (Otherwise you would just get the error “ No di spl ay
nunber ..."'))

di sabl e di splay dnuns...
Disable the display of item numbers dnums. A disabled display item is not printed automatically,
but is not forgotten. It may be enabled again later.

enabl e di splay dnuns. ..
Enable display of item numbers dnums. It becomes effective once again in auto display of its
expression, until you specify otherwise.

di spl ay
Display the current values of the expressions on thelist, just as is done when your program stops.
I nfo di spl ay

Print the list of expressions previously set up to display automatically, each one with itsitem
number, but without showing the values. This includes disabled expressions, which are marked as
such. It also includes expressions which would not be displayed right now because they refer to
automatic variables not currently available.

If adisplay expression refersto local variables, then it does not make sense outside the lexical context
for which it was set up. Such an expression is disabled when execution enters a context where one of its
variablesis not defined. For example, if you give the command di spl ay | ast _char whileinsidea
function with an argument | ast _char , GDB displays this argument while your program continues to
stop inside that function. When it stops el sewhere--where thereisno variable| ast _char ---the display
Is disabled automatically. The next time your program stops wherel ast _char ismeaningful, you can
enable the display expression once again.

Print settings

GDB provides the following ways to control how arrays, structures, and symbols are printed.

file:///Cl/gdb.html (79 of 352)19. 1. 2004 20:32:03

Debugging with GDB

These settings are useful for debugging programs in any language:

set print address

set print address on
GDB prints memory addresses showing the location of stack traces, structure values, pointer
values, breakpoints, and so forth, even when it also displays the contents of those addresses. The
default ison. For example, thisis what a stack frame display looks likewithset pri nt
addr ess on:

(gdb) f

#0 set _quotes (|1 g=0x34c78 "<<", rqg=0x34c88 ">>")
at i nput.c:530

530 If (lquote != def | quote)

set print address off
Do not print addresses when displaying their contents. For example, thisis the same stack frame
displayed withset print address off:

(gdb) set print addr off

(gdb) f
#0 set_quotes (lg="<<", rqg=">>") at input.c:530
530 If (lquote != def | quote)

Youcanuse set print address off' toeliminate al machine dependent displaysfrom
the GDB interface. For example, with pri nt addr ess of f, you should get the same text for
backtraces on all machines--whether or not they involve pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus an offset. If that
symbol does not uniquely identify the address (for example, it is a name whose scope is a single source
file), you may need to clarify. One way to do thisiswithi nfo |i ne,forexample info |ine
*0x4537"' . Alternately, you can set GDB to print the source file and line number when it prints a
symbolic address:

set print synbol-filenanme on
Tell GDB to print the source file name and line number of a symbol in the symbolic form of an
address.
set print synbol-filenane off
Do not print source file name and line number of asymbol. Thisis the default.
show print synbol -fil enane
Show whether or not GDB will print the source file name and line number of a symbol in the

file:///Cl/gdb.html (80 of 352)19. 1. 2004 20:32:03

Debugging with GDB

symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is when disassembling
code; GDB shows you the line number and source file that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is reasonably close to the
closest earlier symbol:

set print max-synbolic-of fset max-offset
Tell GDB to only display the symbolic form of an address if the offset between the closest earlier
symbol and the address is | ess than max-offset. The default is O, which tells GDB to always print
the symbolic form of an address if any symbol precedes it.

show print max-synbolic-offset
Ask how large the maximum offset is that GDB printsin a symbolic address.

If you have a pointer and you are not sure where it points, try “ set print synbol -fil enane
on' . Then you can determine the name and source file location of the variable where it points, using

" p/ a pointer' . Thisinterprets the addressin symbolic form. For example, here GDB shows that a
variable pt t points at another variablet , definedin ™ hi 2. c' :

(gdb) set print synbol-filenane on

(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointersthat point to alocal variable, " p/ a' does not show the symbol
name and filename of the referent, even with the appropriate set pri nt optionsturned
on.

Other settings control how different kinds of objects are printed:

set print array

set print array on
Pretty print arrays. Thisformat is more convenient to read, but uses more space. The default is
off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

set print elenents nunber-of-elenents
Set alimit on how many elements of an array GDB will print. If GDB is printing alarge array, it
stops printing after it has printed the number of elements set by theset print el enments
command. This limit also appliesto the display of strings. When GDB starts, thislimit is set to

file:///Cl/gdb.html (81 of 352)19. 1. 2004 20:32:03

Debugging with GDB

200. Setting number-of-elements to zero means that the printing is unlimited.

show print el enents
Display the number of elements of alarge array that GDB will print. If the number is O, then the
printing is unlimited.

set print null-stop
Cause GDB to stop printing the characters of an array when the first NULL is encountered. This
isuseful when large arrays actually contain only short strings. The default is off.

set print pretty on
Cause GDB to print structures in an indented format with one member per line, like this:

$1 = {
next = 0xO,
flags =
sweet = 1,
sour =1
}
meat = 0x54 " Pork"
}

set print pretty off
Cause GDB to print structures in acompact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
nmeat = 0x54 "Pork"}

Thisisthe default format.
show print pretty
Show which format GDB is using to print structures.
set print sevenbit-strings on
Print using only seven-bit characters; if thisoption is set, GDB displays any eight-bit characters
(in strings or character values) using the notation \ nnn. This setting is best if you are working in
English (ASCII) and you use the high-order bit of characters as a marker or "meta" bit.
set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international character sets, and is the
default.
show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.
set print union on
Tell GDB to print unions which are contained in structures. Thisis the default setting.
set print union off
Tell GDB not to print unions which are contained in structures.
show print union
Ask GDB whether or not it will print unions which are contained in structures. For example,

file:///Cl/gdb.html (82 of 352)19. 1. 2004 20:32:03

Debugging with GDB

given the declarations

t ypedef enum {Tree, Bug} Speci es;
typedef enum {Big tree, Acorn, Seedling} Tree forns;
typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_f or is;

struct thing {
Species it;
uni on {
Tree forns tree;
Bug_forns bug;
} form
}

struct thing foo = {Tree, {Acorn}};
withset print union onineffect p foo' would print
$1 = {it = Tree, form= {tree = Acorn, bug = Cocoon}}
andwithset print union off ineffectitwould print
$1 = {it = Tree, form={...}}
These settings are of interest when debugging C++ programs:

set print demangl e
set print demangl e on
Print C++ namesin their source form rather than in the encoded ("mangled") form passed to the
assembler and linker for type-safe linkage. The default is on.
show print demangl e
Show whether C++ names are printed in mangled or demangled form.
set print asm denmangl e
set print asmdenmangl e on
Print C++ names in their source form rather than their mangled form, even in assembler code
printouts such as instruction disassemblies. The default is off.
show print asm demangl e
Show whether C++ names in assembly listings are printed in mangled or demangled form.
set demangl e-style style
Choose among several encoding schemes used by different compilersto represent C++ names.
The choices for style are currently:

file:///Cl/gdb.html (83 of 352)19. 1. 2004 20:32:03

Debugging with GDB

aut o
Allow GDB to choose a decoding style by inspecting your program.
gnu
Decode based on the GNU C++ compiler (g++) encoding algorithm. Thisis the default.
hp
Decode based on the HP ANSI C++ (aCC) encoding algorithm.
l uci d
Decode based on the Lucid C++ compiler (I cc) encoding agorithm.
arm
Decode using the algorithm in the C++ Annotated Reference Manual. War ning: this
setting alone is not sufficient to allow debugging cf r ont -generated executables. GDB
would require further enhancement to permit that.
If you omit style, you will see alist of possible formats.
show denmangl e-styl e
Display the encoding style currently in use for decoding C++ symbols.
set print object
set print object on
When displaying a pointer to an object, identify the actual (derived) type of the object rather than
the declared type, using the virtual function table.
set print object off
Display only the declared type of objects, without reference to the virtual function table. Thisis
the default setting.
show print object
Show whether actual, or declared, object types are displayed.
set print static-nenbers
set print static-nenbers on
Print static members when displaying a C++ object. The default is on.
set print static-nenbers off
Do not print static members when displaying a C++ object.
show print static-nenbers
Show whether C++ static members are printed, or not.
set print vtbl
set print vtbl on
Pretty print C++ virtual function tables. The default is off. (The vt bl commands do not work on
programs compiled with the HP ANSI C++ compiler (aCC).)
set print vtbl off
Do not pretty print C++ virtual function tables.
show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.

Value history

file:///C|/gdb.html (84 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Values printed by the pr i nt command are saved in the GDB value history. This allows you to refer to
them in other expressions. Vaues are kept until the symbol table isre-read or discarded (for example
withthefi | e or synbol - fi | e commands). When the symbol table changes, the value history is
discarded, since the values may contain pointers back to the types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These are successive
integers starting with one. pr i nt shows you the history number assigned to avalue by printing
$num = ' before the value; here num is the history number.

To refer to any previousvalue, use ™ $' followed by the value's history number. Theway pri nt labels
its output is designed to remind you of this. Just $ refers to the most recent value in the history, and $$
refers to the value before that. $$n refersto the nth value from the end; $$2 isthe valuejust prior to $
$, $$1 isequivaent to $$, and $$0 isequivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see the contents of the
structure. It sufficesto type

p *$

If you have a chain of structures where the component next points to the next one, you can print the
contents of the next one with this:

p *$. next

Y ou can print successive links in the chain by repeating this command--which you can do by just typing
RET.

Note that the history records values, not expressions. If the value of x is4 and you type these
commands:

print x
set x=5

then the value recorded in the value history by the pri nt command remains 4 even though the value of
X has changed.

show val ues
Print the last ten values in the value history, with their item numbers. Thisislike p $$9'
repeated ten times, except that show val ues does not change the history.

show val ues n
Print ten history values centered on history item number n.

show val ues +

file:///Cl/gdb.html (85 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Print ten history values just after the values last printed. If no more values are available, show
val ues + produces no display.

Pressing RET to repeat show val ues n hasexactly the same effect as” show val ues +'.

Convenience variables

GDB provides convenience variables that you can use within GDB to hold on to avalue and refer to it
later. These variables exist entirely within GDB; they are not part of your program, and setting a
convenience variable has no direct effect on further execution of your program. That iswhy you can use
them freely.

Convenience variables are prefixed with * $' . Any name preceded by * $' can be used for a
convenience variable, unlessit is one of the predefined machine-specific register names (see section
Reqgisters). (Value history references, in contrast, are numbers preceded by ~ $' . See section Value

history.)

Y ou can save avalue in a convenience variable with an assignment expression, just as you would set a
variable in your program. For example:

set $foo = *object ptr
would savein $f oo the value contained in the object pointed to by obj ect _ptr.

Using a convenience variable for the first time creates it, but its valueisvoi d until you assign a new
value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. Y ou can assign a convenience variable any type of value,
including structures and arrays, even if that variable already has a value of adifferent type. The
convenience variable, when used as an expression, has the type of its current value.

show conveni ence
Print alist of convenience variables used so far, and their values. Abbreviated show conv.

One of the ways to use a convenience variable is as a counter to be incremented or a pointer to be
advanced. For example, to print afield from successive elements of an array of structures:

set $i =0
print bar[$i ++] - >contents

Repeat that command by typing RET.

file:///Cl/gdb.html (86 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Some convenience variables are created automatically by GDB and given values likely to be useful.

$_
Thevariable $__ isautomatically set by the x command to the last address examined (see section
Examining memory). Other commands which provide a default address for x to examine also set
$_ to that address; these commandsincludei nfo |i ne andi nfo breakpoi nt. Thetype
of $ isvoi d * except when set by the x command, in which caseit is a pointer to the type of
$__

$

Thevariable$ isautomatically set by the x command to the value found in the last address

examined. Itstype is chosen to match the format in which the data was printed.
$_exitcode

Thevariable$_exi t code isautomatically set to the exit code when the program being

debugged terminates.

On HP-UX systems, if you refer to afunction or variable name that begins with adollar sign, GDB
searches for auser or system name first, before it searches for a convenience variable.

Registers

Y ou can refer to machine register contents, in expressions, as variables with names starting with * $' .
The names of registers are different for each machine; usei nf o r egi st er s to see the names used
on your machine.

I nfo registers
Print the names and values of all registers except floating-point registers (in the selected stack
frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

i nfo registers regnane ...
Print the relativized value of each specified register regname. As discussed in detail below,
register values are normally relative to the selected stack frame. regname may be any register
name valid on the machine you are using, with or without the initial * $' .

GDB has four "standard" register names that are available (in expressions) on most machines--whenever
they do not conflict with an architecture's canonical mnemonics for registers. The register names $pc
and $sp are used for the program counter register and the stack pointer. $f p isused for aregister that
contains a pointer to the current stack frame, and $ps is used for aregister that contains the processor
status. For example, you could print the program counter in hex with

file:///Cl/gdb.html (87 of 352)19. 1. 2004 20:32:03

Debugging with GDB

p/ x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer(3) with

set $sp += 4

Whenever possible, these four standard register names are available on your machine even though the
machine has different canonical mnemonics, so long asthereis no conflict. Thei nfo regi sters
command shows the canonical names. For example, on the SPARC, i nf o regi st er s displaysthe
processor status register as $psr but you can also refer to it as $ps; and on x86-based machines $ps is
an alias for the EFLAGS register.

GDB aways considers the contents of an ordinary register as an integer when the register is examined in
this way. Some machines have special registers which can hold nothing but floating point; these
registers are considered to have floating point values. There is no way to refer to the contents of an
ordinary register as floating point value (although you can print it as afloating point value with
“print/f $regnane').

Some registers have distinct "raw" and "virtual" data formats. This means that the data format in which
the register contents are saved by the operating system is not the same one that your program normally
sees. For example, the registers of the 68881 floating point coprocessor are always saved in

"extended" (raw) format, but all C programs expect to work with "double" (virtual) format. In such
cases, GDB normally works with the virtual format only (the format that makes sense for your program),
but thei nf o regi st er s command prints the datain both formats.

Normally, register values are relative to the selected stack frame (see section Selecting aframe). This
means that you get the value that the register would contain if all stack frames farther in were exited and
their saved registers restored. In order to see the true contents of hardware registers, you must select the
innermost frame (with " f rame 0').

However, GDB must deduce where registers are saved, from the machine code generated by your
compiler. If some registers are not saved, or if GDB is unable to locate the saved registers, the selected
stack frame makes no difference.

Floating point hardware

Depending on the configuration, GDB may be able to give you more information about the status of the

file:///Cl/gdb.html (88 of 352)19. 1. 2004 20:32:03

Debugging with GDB
floating point hardware.
I nfo fl oat
Display hardware-dependent information about the floating point unit. The exact contents and

layout vary depending on the floating point chip. Currently, " i nfo fl oat"' issupported on the
ARM and x86 machines.

Memory Region Attributes

Memory region attributes allow you to describe special handling required by regions of your target's
memory. GDB uses attributes to determine whether to allow certain types of memory accesses; whether
to use specific width accesses; and whether to cache target memory.

Defined memory regions can be individually enabled and disabled. When a memory region is disabled,
GDB uses the default attributes when accessing memory in that region. Similarly, if no memory regions
have been defined, GDB uses the default attributes when accessing all memory.

When amemory region is defined, it is given a number to identify it; to enable, disable, or remove a
memory region, you specify that number.

mem addressl addressl attributes...
Define memory region bounded by addressl and address2 with attributes attributes....
del et e nem nuns. ..
Remove memory region numbers nums.
di sabl e mem nuns. ..
Disable memory region numbers nums. A disabled memory region is not forgotten. It may be
enabled again later.
enabl e nem nuns. ..
Enable memory region numbers nums,
I nfo nmem
Print atable of all defined memory regions, with the following columns for each region.
Memory Region Number
Enabled or Disabled.
Enabled memory regions are marked with " y' . Disabled memory regions are marked
with™ n' .
Lo Address
The address defining the inclusive lower bound of the memory region.
Hi Address
The address defining the exclusive upper bound of the memory region.
Attributes
Thelist of attributes set for this memory region.

file:///Cl/gdb.html (89 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Attributes

Memory Access Mode

The access mode attributes set whether GDB may make read or write accesses to a memory region.

While these attributes prevent GDB from performing invalid memory accesses, they do nothing to
prevent the target system, 1/O DMA, etc. from accessing memory.

ro

Memory isread only.
WO

Memory iswrite only.
rw

Memory is read/write (default).

Memory Access Size

The acccess size attributes tells GDB to use specific sized accesses in the memory region. Often memory
mapped device registers require specific sized accesses. If no access size attribute is specified, GDB may
use accesses of any size.

8

Use 8 bit memory accesses.
16

Use 16 bit memory accesses.
32

Use 32 bit memory accesses.
64

Use 64 bit memory accesses.
Data Cache

The data cache attributes set whether GDB will cache target memory. While this generally improves
performance by reducing debug protocol overhead, it can lead to incorrect results because GDB does not
know about volatile variables or memory mapped device registers.

cache

Enable GDB to cache target memory.
nocache (default)

Disable GDB from caching target memory.

file///Cl/gdb.html (90 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Tracepoints

In some applications, it is not feasible for the debugger to interrupt the program's execution long enough
for the developer to learn anything helpful about its behavior. If the program's correctness depends on its
real-time behavior, delays introduced by a debugger might cause the program to change its behavior
drastically, or perhaps fail, even when the code itself is correct. It is useful to be able to observe the
program's behavior without interrupting it.

Using GDB'st race and col | ect commands, you can specify locations in the program, called
tracepoints, and arbitrary expressions to evaluate when those tracepoints are reached. Later, using the
t f i nd command, you can examine the values those expressions had when the program hit the
tracepoints. The expressions may also denote objects in memory--structures or arrays, for example--
whose values GDB should record; while visiting a particular tracepoint, you may inspect those objects
asif they werein memory at that moment. However, because GDB records these values without
interacting with you, it can do so quickly and unobtrusively, hopefully not disturbing the program's
behavior.

The tracepoint facility is currently available only for remote targets. See section Specifying a Debugging

Target. In addition, your remote target must know how to collect trace data. This functionality is

implemented in the remote stub; however, none of the stubs distributed with GDB support tracepoints as
of thiswriting.

This chapter describes the tracepoint commands and features.

. Set Tracepoints
. Anayze Collected Data
. Tracepoint Variables

Commands to Set Tracepoints

Before running such atrace experiment, an arbitrary number of tracepoints can be set. Like a breakpoint
(see section Setting breakpoints), a tracepoint has a number assigned to it by GDB. Like with
breakpoints, tracepoint numbers are successive integers starting from one. Many of the commands
associated with tracepoints take the tracepoint number as their argument, to identify which tracepoint to
work on.

For each tracepoint, you can specify, in advance, some arbitrary set of datathat you want the target to
collect in the trace buffer when it hits that tracepoint. The collected data can include registers, local
variables, or global data. Later, you can use GDB commands to examine the values these data had at the

file:///Cl/gdb.html (91 of 352)19. 1. 2004 20:32:03

Debugging with GDB

time the tracepoint was hit.
This section describes commands to set tracepoints and associated conditions and actions.

. Create and Delete Tracepoints

. Enable and Disable Tracepoints

. Tracepoint Passcounts

. Tracepoint Actions

. Listing Tracepoints

. Starting and Stopping Trace Experiment

Create and Delete Tracepoints

trace
Thet r ace command isvery similar to the br eak command. Its argument can be a source line,
afunction name, or an address in the target program. See section Setting breakpoints. The

t r ace command defines a tracepoint, which is a point in the target program where the debugger
will briefly stop, collect some data, and then allow the program to continue. Setting a tracepoint
or changing its commands doesn't take effect until the nextt st art command; thus, you cannot
change the tracepoint attributes once a trace experiment is running. Here are some exampl es of
using thet r ace command:

(gdb) trace foo.c:121 /'l a source file and |ine nunber
(gdb) trace +2 [l 2 lines forward

(gdb) trace ny_function // first source line of function
(gdb) trace *ny_function // EXACT start address of function

(gdb) trace *0x2117c4 /1l an address

You can abbreviatet r ace ast r . The convenience variable $t pnumrecords the tracepoint
number of the most recently set tracepoint.

del ete tracepoi nt [nuni
Permanently delete one or more tracepoints. With no argument, the default is to delete all
tracepoints. Examples:

(gdb) delete trace 1 2 3 // renove three tracepoints

(gdb) delete trace /[l renove all tracepoints

file:///Cl/gdb.html (92 of 352)19. 1. 2004 20:32:03

Debugging with GDB
Y ou can abbreviate thiscommand asdel tr.

Enable and Disable Tracepoints

di sabl e tracepoi nt [nunj
Disable tracepoint num, or all tracepointsif no argument numis given. A disabled tracepoint will
have no effect during the next trace experiment, but it is not forgotten. You can re-enable a
disabled tracepoint using theenabl e tracepoi nt command.

enabl e tracepoi nt [nuni
Enable tracepoint num, or all tracepoints. The enabled tracepoints will become effective the next
time atrace experiment is run.

Tracepoint Passcounts

passcount [n [nun]
Set the passcount of atracepoint. The passcount isaway to automatically stop atrace
experiment. If atracepoint's passcount is n, then the trace experiment will be automatically
stopped on the n'th time that tracepoint is hit. If the tracepoint number numis not specified, the
passcount command sets the passcount of the most recently defined tracepoint. If no
passcount is given, the trace experiment will run until stopped explicitly by the user. Examples:

(gdb) passcount 5 2 // Stop on the 5th execution of
[l tracepoint 2

(gdb) passcount 12 // Stop on the 12th execution of the
/'l nost recently defined
t racepoi nt.
(gdb) trace foo
(gdb) pass 3
(gdb) trace bar
(gdb) pass 2
(gdb) trace baz
(gdb) pass 1 /1l Stop tracing when foo has been
/| executed 3 tinmes OR when
bar has
/'l been executed 2 tines
/'l OR when baz has been
executed 1 tine.

Tracepoint Action Lists

file///Cl/gdb.html (93 of 352)19. 1. 2004 20:32:03

Debugging with GDB

actions [nuni
This command will prompt for alist of actions to be taken when the tracepoint is hit. If the
tracepoint number num is not specified, this command sets the actions for the one that was most
recently defined (so that you can define atracepoint and then say act i ons without bothering
about its number). Y ou specify the actions themselves on the following lines, one action at a
time, and terminate the actionslist with aline containing just end. So far, the only defined
actionsarecol | ect andwhi | e- st eppi ng. Toremove all actions from atracepoint, type
“actions num andfollow it immediately with ~ end’ .

(gdb) collect data // collect sone data
(gdb) while-stepping 5 // single-step 5 tines, collect data

(gdb) end /'l signals the end of actions.

In the following example, the action list beginswith col | ect commands indicating the things
to be collected when the tracepoint is hit. Then, in order to single-step and collect additional data
following the tracepoint, awhi | e- st eppi ng command is used, followed by the list of things
to be collected while stepping. Thewhi | e- st eppi ng command is terminated by its own
separate end command. Lastly, the action list is terminated by an end command.

(gdb) trace foo
(gdb) actions
Enter actions for tracepoint 1, one per line:
> col | ect bar, baz
> col |l ect $regs
> whi |l e-stepping 12
> collect $fp, $sp
> end
end

coll ect exprl, expr?2,
Collect values of the given expressions when the tracepoint is hit. This command accepts a
comma-separated list of any valid expressions. In addition to global, static, or local variables, the
following special arguments are supported:
$regs
collect al registers
$ar gs
collect all function arguments
$l ocal s
collect al local variables.
Y ou can give severa consecutive col | ect commands, each one with a single argument, or one

file:///C|/gdb.html (94 of 352)19. 1. 2004 20:32:03

Debugging with GDB

col I ect command with several arguments separated by commas: the effect isthe same. The
commandi nf o scope (see section Examining the Symbol Table) is particularly useful for
figuring out what data to collect.

whi | e- st eppi ng n
Perform n single-step traces after the tracepoint, collecting new data at each step. Thewhi | e-
st eppi ng command is followed by the list of what to collect while stepping (followed by its
own end command):

> whi | e-stepping 12
> col |l ect $regs, nygl obal
> end

>

Y ou may abbreviate whi | e- st eppi ng asws or st eppi ng.

Listing Tracepoints

i nfo tracepoi nts [nuni
Display information about the tracepoint num. If you don't specify a tracepoint number, displays
information about all the tracepoints defined so far. For each tracepoint, the following
information is shown:

o its number

o Whether it is enabled or disabled

o itsaddress

o Its passcount as given by the passcount n command

o itsstep count as given by thewhi | e- st eppi hg n command
o wherein the source filesis the tracepoint set

o itsaction list asgiven by theact i ons command

(gdb) info trace
Num Enb Address PassC St epC What

1 y 0x002117c4 O 0 <gdb_asnvp

2 y 0x0020dc64 O 0 in g test at g test.c: 1375
3 y 0x0020b1f4 O 0 in get data at ../foo.c:41
(gdb)

This command can be abbreviated i nf o t p.

Starting and Stopping Trace Experiment

tstart

file///Cl/gdb.html (95 of 352)19. 1. 2004 20:32:03

Debugging with GDB

This command takes no arguments. It starts the trace experiment, and begins collecting data. This
has the side effect of discarding al the data collected in the trace buffer during the previous trace
experiment.

tstop
This command takes no arguments. It ends the trace experiment, and stops collecting data. Note:
atrace experiment and data collection may stop automatically if any tracepoint's passcount is
reached (see section Tracepoint Passcounts), or if the trace buffer becomes full.

t st at us
This command displays the status of the current trace data collection.

Here is an example of the commands we described so far:

(gdb) trace gdb _c_test
(gdb) actions
Enter actions for tracepoint #1, one per |ine.
> col | ect $regs, 3l ocal s, $args
> whil e-stepping 11

> col | ect $regs

> end
> end
(gdb) tstart

[time passes ...]

(gdb) tstop

Using the collected data

After the tracepoint experiment ends, you use GDB commands for examining the trace data. The basic
ideais that each tracepoint collects a trace snapshot every time it is hit and another snapshot every time
it single-steps. All these snapshots are consecutively numbered from zero and go into a buffer, and you
can examine them later. The way you examine them is to focus on a specific trace snapshot. When the
remote stub is focused on a trace snapshot, it will respond to all GDB requests for memory and registers
by reading from the buffer which belongs to that snapshot, rather than from real memory or registers of
the program being debugged. This meansthat all GDB commands (pri nt,i nfo regi sters,
backt r ace, etc.) will behave asif we were currently debugging the program state as it was when the
tracepoint occurred. Any requests for data that are not in the buffer will fail.

. tfind: How to select a trace snapshot
« tdump: How to display all data for a snapshot
. Save-tracepoints: How to save tracepoints for a future run

tfind n

file:///Cl/gdb.html (96 of 352)19. 1. 2004 20:32:03

Debugging with GDB

The basic command for selecting a trace snapshot from the buffer ist f i nd n, which findstrace
snapshot number n, counting from zero. If no argument n is given, the next snapshot is selected.

Here are the various forms of using thet f i nd command.

tfi

tfi

tfi

tfi

tfi

tfi

tfi

tfi

tfi

tfi

nd start
Find the first snapshot in the buffer. Thisisasynonymfort fi nd O (sinceO isthe number of
the first snapshot).

nd none
Stop debugging trace snapshots, resume live debugging.

nd end
Sameas tfind none'.

nd
No argument means find the next trace snapshot.

nd -
Find the previous trace snapshot before the current one. This permits retracing earlier steps.

nd tracepoi nt num
Find the next snapshot associated with tracepoint num. Search proceeds forward from the last
examined trace snapshot. If no argument numis given, it means find the next snapshot collected
for the same tracepoint as the current snapshot.

nd pc addr
Find the next snapshot associated with the value addr of the program counter. Search proceeds
forward from the last examined trace snapshot. If no argument addr is given, it means find the
next snapshot with the same value of PC as the current snapshot.

nd outside addrl, addr2
Find the next snapshot whose PC is outside the given range of addresses.

nd range addrl1, addr2
Find the next snapshot whose PC is between addr1 and addr2.

nd line [file:]n
Find the next snapshot associated with the source line n. If the optional argument fileis given,
refer to line nin that source file. Search proceeds forward from the last examined trace snapshot.
If no argument nisgiven, it means find the next line other than the one currently being
examined; thussayingt fi nd | i ne repeatedly can appear to have the same effect as stepping
from lineto linein alive debugging session.

The default arguments for thet f i nd commands are specifically designed to make it easy to scan
through the trace buffer. For instance, t f i nd with no argument sel ects the next trace snapshot, and

tfi

nd - with no argument selects the previous trace snapshot. So, by giving onet f i nd command,

and then ssimply hitting RET repeatedly you can examine all the trace snapshotsin order. Or, by saying

tfi

nd - andthen hitting RET repeatedly you can examine the snapshotsin reverse order. Thet f i nd

| i ne command with no argument selects the snapshot for the next source line executed. Thet f i nd
pc command with no argument selects the next snapshot with the same program counter (PC) asthe

file:///Cl/gdb.html (97 of 352)19. 1. 2004 20:32:03

Debugging with GDB

current frame. Thet fi nd tracepoi nt command with no argument selects the next trace snapshot
collected by the same tracepoint as the current one.

In addition to letting you scan through the trace buffer manually, these commands make it easy to
construct GDB scripts that scan through the trace buffer and print out whatever collected data you are
interested in. Thus, if we want to examine the PC, FP, and SP registers from each trace frame in the
buffer, we can say this:

(gdb) tfind start

(gdb) while ($trace frane = -1)

> printf "Frane %, PC = %98X, SP = %8X, FP = %©8X\n", \
$trace_frane, $pc, $sp, $fp

> tfind

> end

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
Franme 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14

Or, if wewant to examine the variable X at each source line in the buffer:

(gdb) tfind start

(gdb) while ($trace franme !'= -1)

> printf "Frame %, X == %l\n", S$trace franme, X
> tfind line

> end

Frame O, 1
Frame 7, 2
Frane 13, X = 255

X =
X =

t dunp

This command takes no arguments. It prints al the data collected at the current trace snapshot.

file:///Cl/gdb.html (98 of 352)19. 1. 2004 20:32:03

Debugging with GDB

(gdb) trace 444

(gdb) actions

Enter actions for tracepoint #2, one per line:
> col l ect $regs, $locals, $args, gdb | ong_ test
> end

(gdb) tstart
(gdb) tfind |ine 444

#0 gdb _test (pl=0x11l, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
at gdb test.c: 444

444 printp("%: argunents = Ox%X Ox%X Ox%X Ox%X Ox%X Ox%X
\n",)

(gdb) tdunp

Data collected at tracepoint 2, trace franme 1:
do Oxc4aa0085 - 995491707
dl 0x18 24

d2 0x80 128

d3 0x33 51

d4 Ox7laea3d 119204413
d5 0x22 34

d6 OxeO0 224

d7 0x380035 3670069

a0 0x19e24a 1696330

al 0x3000668 50333288
a2 0x100 256

a3 0x322000 3284992

a4 0x3000698 50333336
ab Oxlad3cc 1758156

fp 0x30bf 3c 0x30bf 3c

sSp 0x30bf 34 0x30bf 34

ps 0x0 0

pc 0x20b2c8 0x20b2c8

f pcontr ol 0x0 0

f pst at us 0x0 0

f pi addr 0x0 0

p = 0x20e5b4 "gdb-test"

pl = (void *) Ox11
p2 = (void *) 0x22
p3 = (void *) 0x33
p4 = (void *) Ox44

file:///Cl/gdb.html (99 of 352)19. 1. 2004 20:32:03

Debugging with GDB
p5 (void *) 0x55

p6 (void *) 0x66
gdb long test = 17 '\ 021

(gdb)

save-tracepoi nts fil enane

This command saves all current tracepoint definitions together with their actions and passcounts, into a
file ' fil enane' suitablefor usein alater debugging session. To read the saved tracepoint definitions,
use the sour ce command (see section Command files).

Convenience Variables for Tracepoints

(int) $trace_frame
The current trace snapshot (a.k.a. frame) number, or -1 if no snapshot is selected.
(int) S$tracepoint
The tracepoint for the current trace snapshot.
(int) $trace_line
The line number for the current trace snapshot.
(char []) $trace_file
The source file for the current trace snapshot.
(char []) $trace_func
The name of the function containing $t r acepoi nt .

Note: $t race_fi | e isnot suitablefor useinpri nt f , useout put instead.

Here's a simple example of using these convenience variables for stepping through all the trace
snapshots and printing some of their data.

(gdb) tfind start

(gdb) while $trace frame !'= -1

> output $trace file

> printf ", line % (tracepoint #%)\n", $trace |ine, $tracepoint
> tfind

> end

Using GDB with Different Languages

file:///C|/gdb.html (100 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Although programming languages generally have common aspects, they are rarely expressed in the same
manner. For instance, in ANSI C, dereferencing a pointer p is accomplished by * p, but in Modula-2, it
Is accomplished by p”. Values can also be represented (and displayed) differently. Hex numbersin C
appear as” Oxlae' , whilein Modula-2 they appear as” 1AEH .

L anguage-specific information is built into GDB for some languages, allowing you to express operations
like the above in your program's native language, and allowing GDB to output values in a manner
consistent with the syntax of your program's native language. The language you use to build expressions
is called the working language.

« Setting: Switching between source languages
. Show: Displaying the language

. Checks: Type and range checks

. Support: Supported languages

Switching between source languages

There are two ways to control the working language--either have GDB set it automatically, or select it
manually yourself. You can usetheset | anguage command for either purpose. On startup, GDB
defaults to setting the language automatically. The working language is used to determine how
expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source file that GDB knows about has its own working
language. For some object file formats, the compiler might indicate which language a particular source
fileisin. However, most of the time GDB infers the language from the name of the file. The language of
asource file controls whether C++ names are demangled--thisway backt r ace can show each frame
appropriately for its own language. There is no way to set the language of a source file from within
GDB, but you can set the language associated with afilename extension. See section Displaying the

language.

Thisis most commonly a problem when you use a program, such ascf r ont or f 2c, that generates C
but is written in another language. In that case, make the program use #1 i ne directivesin its C output;
that way GDB will know the correct language of the source code of the original program, and will
display that source code, not the generated C code.

. Filenames: Filename extensions and languages.
. Manually: Setting the working language manually
. Automatically: Having GDB infer the source language

List of filename extensions and languages

file:///C|/gdb.html (101 of 352)19. 1. 2004 20:32:03

Debugging with GDB

If asource file name endsin one of the following extensions, then GDB infersthat its language is the
one indicated.

. C
C sourcefile
. C
".ccC
T.cp'
- cpp’
. CXXx'
. C++'
C++ sourcefile

.
. F
Fortran sourcefile
T.ch’
©. 186
. 286
CHILL sourcefile
. mod'
Modula-2 sourcefile
T, s’
Y
Assembler source file. This actually behaves amost like C, but GDB does not skip over function
prologues when stepping.

In addition, you may set the language associated with a filename extension. See section Displaying the
|language.

Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the same way in your
debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command " set | anguage
| ang' , where lang isthe name of alanguage, such asc or nodul a- 2. For alist of the supported
languages, type " set | anguage' .

Setting the language manually prevents GDB from updating the working language automatically. This
can lead to confusion if you try to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both languages--but means different things. For

file:///C|/gdb.html (102 of 352)19. 1. 2004 20:32:03

Debugging with GDB

instance, if the current source file were written in C, and GDB was parsing Modula-2, a command such
as.

print a=Db + c

might not have the effect you intended. In C, thismeansto add b and ¢ and placetheresultina. The
result printed would be the value of a. In Modula-2, this means to compare a to the result of b+c,
yielding a BOOLEAN value.

Having GDB infer the source language

To have GDB set the working language automatically, use " set | anguage | ocal ' or set

| anguage aut o' . GDB then infers the working language. That is, when your program stopsin a
frame (usually by encountering a breakpoint), GDB sets the working language to the language recorded
for the function in that frame. If the language for aframe is unknown (that is, if the function or block
corresponding to the frame was defined in a source file that does not have arecognized extension), the
current working language is not changed, and GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source language.
However, program modules and libraries written in one source language can be used by a main program
written in a different source language. Using * set | anguage aut o' inthis case freesyou from
having to set the working language manually.

Displaying the language

The following commands help you find out which language is the working language, and also what
language source files were written in.

show | anguage
Display the current working language. Thisis the language you can use with commands such as
pri nt to build and compute expressions that may involve variablesin your program.

info frame
Display the source language for this frame. This language becomes the working language if you
use an identifier from this frame. See section Information about a frame, to identify the other

information listed here.
i nfo source
Display the source language of this source file. See section Examining the Symbol Table, to

identify the other information listed here.

In unusual circumstances, you may have source files with extensions not in the standard list. Y ou can
then set the extension associated with a language explicitly:

file:///C|/gdb.html (103 of 352)19. 1. 2004 20:32:03

Debugging with GDB

set extension-|anguage .ext |anguage

Set source files with extension .ext to be assumed to be in the source language language.
i nf o extensions

List al the filename extensions and the associated |anguages.

Type and range checking

Warning: Inthisrelease, the GDB commands for type and range checking are included,
but they do not yet have any effect. This section documents the intended facilities.

Some languages are designed to guard you against making seemingly common errors through a series of
compile- and run-time checks. These include checking the type of arguments to functions and operators,
and making sure mathematical overflows are caught at run time. Checks such as these help to ensure a
program'’s correctness once it has been compiled by eliminating type mismatches, and providing active
checks for range errors when your program is running.

GDB can check for conditions like the above if you wish. Although GDB does not check the statements
In your program, it can check expressions entered directly into GDB for evaluation viathe pr i nt
command, for example. As with the working language, GDB can also decide whether or not to check
automatically based on your program's source language. See section Supported languages, for the default

settings of supported languages.

. Type Checking: An overview of type checking
. Range Checking: An overview of range checking

An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that the arguments to operators and
functions have to be of the correct type, otherwise an error occurs. These checks prevent type mismatch
errors from ever causing any run-time problems. For example,

1 +2=>3

but
error-->1 + 2.3

The second exampl e fails because the CARDI NAL 1 is not type-compatible with the REAL 2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to skip checking; to
treat any mismatches as errors and abandon the expression; or to only issue warnings when type
mismatches occur, but evaluate the expression anyway. When you choose the last of these, GDB

file:///C|/gdb.html (104 of 352)19. 1. 2004 20:32:03

Debugging with GDB

evaluates expressions like the second example above, but also issues awarning.

Even if you turn type checking off, there may be other reasons related to type that prevent GDB from
evaluating an expression. For instance, GDB does not know how toadd ani nt andastruct f oo.
These particular type errors have nothing to do with the language in use, and usually arise from
expressions, such as the one described above, which make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both Modula-2 and C require
the arguments to arithmetical operators to be numbers. In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathematical operators. See section
Supported languages, for further details on specific languages.

GDB provides some additional commands for controlling the type checker:

set check type auto
Set type checking on or off based on the current working language. See section Supported
languages, for the default settings for each language.

set check type on

set check type off
Set type checking on or off, overriding the default setting for the current working language. |ssue
awarning if the setting does not match the language default. If any type mismatches occur in
evaluating an expression while type checking is on, GDB prints a message and aborts evaluation
of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the expression.
Evaluating the expression may still be impossible for other reasons. For example, GDB cannot
add numbers and structures.

show type
Show the current setting of the type checker, and whether or not GDB is setting it automatically.

An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the bounds of atype; thisis enforced with
run-time checks. Such range checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do not exceed the bounds of the

array.

For expressions you use in GDB commands, you can tell GDB to treat range errorsin one of three ways:
ignore them, always treat them as errors and abandon the expression, or issue warnings but evaluate the
expression anyway.

file:///C|/gdb.html (105 of 352)19. 1. 2004 20:32:03

Debugging with GDB

A range error can result from numerical overflow, from exceeding an array index bound, or when you
type a constant that is not a member of any type. Some languages, however, do not treat overflows as an
error. In many implementations of C, mathematical overflow causes the result to "wrap around" to lower
values--for example, if misthelargest integer value, and sisthe smallest, then

m+ 1 =>s

This, too, is specific to individual languages, and in some cases specific to individual compilers or
machines. See section Supported languages, for further details on specific languages.

GDB provides some additional commands for controlling the range checker:

set check range auto
Set range checking on or off based on the current working language. See section Supported
languages, for the default settings for each language.

set check range on

set check range off
Set range checking on or off, overriding the default setting for the current working language. A
warning isissued if the setting does not match the language default. If arange error occurs and
range checking is on, then amessage is printed and evaluation of the expression is aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but attempt to evaluate the
expression anyway. Evaluating the expression may still be impossible for other reasons, such as
accessing memory that the process does not own (atypical example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being set automatically by
GDB.

Supported languages

GDB supports C, C++, Fortran, Java, Chill, assembly, and Modula-2. Some GDB features may be used
in expressions regardless of the language you use: the GDB @and : : operators, andthe ™ {t ype}
addr' construct (see section Expressions) can be used with the constructs of any supported language.

The following sections detail to what degree each source language is supported by GDB. These sections
are not meant to be language tutorials or references, but serve only as a reference guide to what the GDB
expression parser accepts, and what input and output formats should look like for different |languages.
There are many good books written on each of these languages; please ook to these for a language
reference or tutorial.

. C.Cand C++

file:///C|/gdb.html (106 of 352)19. 1. 2004 20:32:03

Debugging with GDB

. Modula-2: Modula-2
. Chill: Chill

C and C++

Since C and C++ are so closely related, many features of GDB apply to both languages. Whenever this
is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the C++ compiler and GDB. Therefore, to
debug your C++ code effectively, you must compile your C++ programs with a supported C++
compiler, such as GNU g++, or the HP ANSI C++ compiler (aCC).

For best results when using GNU C++, use the stabs debugging format. Y ou can select that format
explicitly with the g++ command-line options ™ - gst abs' or " - gst abs+' . See section "Options for
Debugging Y our Program or GNU CC' in Using GNU CC, for more information.

« C Operators: C and C++ operators

« C Constants: C and C++ constants

« Cplus plus expressions. C++ expressions

. C Defaults: Default settings for C and C++

« C Checks: C and C++ type and range checks

. Debugging C: GDB and C

. Debugaing C plus plus: GDB features for C++

C and C++ operators

Operators must be defined on values of specific types. For instance, + is defined on numbers, but not on
structures. Operators are often defined on groups of types.

For the purposes of C and C++, the following definitions hold:

. Integral typesincludei nt with any of its storage-class specifiers, char ; enuny and, for C++,
bool .

« Floating-point typesincludef | oat , doubl e, and| ong doubl e (if supported by the target
platform).

. Pointer typesinclude all typesdefinedas(t ype *).

. Scalar typesinclude all of the above.

The following operators are supported. They are listed here in order of increasing precedence:

file:///C|/gdb.html (107 of 352)19. 1. 2004 20:32:03

Debugging with GDB

The comma or sequencing operator. Expressions in a comma-separated list are evaluated from
left to right, with the result of the entire expression being the last expression eval uated.

Assignment. The value of an assignment expression is the value assigned. Defined on scalar
types.

op=
Used in an expression of theforma op= b, andtrandatedtoa = a op b.op=and=have
the same precedence. op is any one of the operators| ,*, & <<,>>,+,-,*,/, %

Theternary operator.a ? b : ¢ canbethought of as: if a then b else c. a should be of an
integral type.

Logical OR. Defined on integral types.
Logical AND. Defined on integral types.
Bitwise OR. Defined on integral types.

Bitwise exclusive-OR. Defined on integral types.
&
Bitwise AND. Defined on integral types.
== |=
Equality and inequality. Defined on scalar types. The value of these expressionsis O for false and
non-zero for true.
<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal. Defined on scalar types. The
value of these expressionsis 0 for false and non-zero for true.
<< >>

left shift, and right shift. Defined on integral types.

@
The GDB "artificial array" operator (see section Expressions).
+ -

Addition and subtraction. Defined on integral types, floating-point types and pointer types.

* !, %
Multiplication, division, and modulus. Multiplication and division are defined on integral and
floating-point types. Modulus is defined on integral types.

++, --
Increment and decrement. When appearing before a variable, the operation is performed before
the variable is used in an expression; when appearing after it, the variable's value is used before
the operation takes place.

Pointer dereferencing. Defined on pointer types. Same precedence as ++.

file:///C|/gdb.html (108 of 352)19. 1. 2004 20:32:03

Debugging with GDB

&
Address operator. Defined on variables. Same precedence as ++. For debugging C++, GDB
implementsause of ~ & beyond what is alowed in the C++ language itself: you can use ™ &
(& ef)" (or,if you prefer, smply ~ &&r ef ') to examine the address where a C++ reference
variable (declared with ~ &r ef ') is stored.

Negative. Defined on integral and floating-point types. Same precedence as ++.
Logical negation. Defined on integral types. Same precedence as ++.

Bitwise complement operator. Defined on integral types. Same precedence as ++.

o, =
Structure member, and pointer-to-structure member. For convenience, GDB regards the two as
equivalent, choosing whether to dereference a pointer based on the stored type information.
Defined onst ruct and uni on data

. * , _ >*
Dereferences of pointersto members.

[]
0

Array indexing. a[i] isdefined as* (a+i) . Same precedence as - >.
Function parameter list. Same precedence as - >.
C++ scope resolution operator. Defined on st r uct , uni on, and cl ass types.

Doubled colons a'so represent the GDB scope operator (see section Expressions). Same
precedenceas: : , above.

If an operator isredefined in the user code, GDB usually attempts to invoke the redefined version
instead of using the operator's predefined meaning.

. C Constants

C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways:

. Integer constants are a sequence of digits. Octal constants are specified by aleading " 0' (i.e.
zero), and hexadecimal constants by aleading ™ Ox' or * 0X' . Constants may also end with a
letter “ | ', specifying that the constant should be treated asal ong value.

. Floating point constants are a sequence of digits, followed by a decimal point, followed by a
sequence of digits, and optionally followed by an exponent. An exponent is of the form: ™ e
[[+]]|-]nnn", wherennnisanother sequence of digits. The ™ +' isoptional for positive

file:///C|/gdb.html (109 of 352)19. 1. 2004 20:32:03

Debugging with GDB

exponents. A floating-point constant may also end withaletter “ f' or ° F' , specifying that the
constant should be treated as being of thef | oat (as opposed to the default doubl e) type; or
withaletter " | ' or " L', which specifiesal ong doubl e constant.

. Enumerated constants consist of enumerated identifiers, or their integral equivalents.

. Character constants are a single character surrounded by single quotes (*), or anumber--the
ordinal value of the corresponding character (usually its ASCII value). Within quotes, the single
character may be represented by aletter or by escape sequences, which are of theform “\ nnn' ,
where nnn is the octal representation of the character's ordinal value; or of theform ~\ x' , where
" X" isapredefined special character--for example, “\ n' for newline.

. String constants are a sequence of character constants surrounded by double quotes ("). Any
valid character constant (as described above) may appear. Double quotes within the string must
be preceded by abackslash, so forinstance ™ "a\ " b' ¢""' isastring of five characters.

. Pointer constants are an integral value. Y ou can also write pointers to constants using the C
operator ~ &' .

« Array constants are comma-separated lists surrounded by braces™ {' and "} ' ; for example, -
{1, 2, 3}' isathree-element array of integers, {{1, 2}, {3,4}, {5, 6}}' isathree-by-
twoarray,and " {&"hi ", &'there", & fred"}' isathree-element array of pointers.

. Cplusplus expressions
. C Defaults

. C Checks

. Debugging C

C++ expressions

GDB expression handling can interpret most C++ expressions.

Warning: GDB can only debug C++ code if you use the proper compiler. Typicaly, C++
debugging depends on the use of additional debugging information in the symbol table,
and thus requires special support. In particular, if your compiler generates a.out, MIPS
ECOFF, RS/6000 X COFF, or ELF with stabs extensions to the symbol table, these
facilitiesare al available. (With GNU CC, you can usethe ™ - gst abs' option to request
stabs debugging extensions explicitly.) Where the object code format is standard COFF or
DWAREF in ELF, on the other hand, most of the C++ support in GDB does not work.

1. Member function calls are allowed; you can use expressions like
count = am ->GetOriginal (x, vy)

2. While amember function is active (in the selected stack frame), your expressions have the same
namespace available as the member function; that is, GDB allows implicit referencesto the class
instance pointer t hi s following the same rules as C++.

file:///C|/gdb.html (110 of 352)19. 1. 2004 20:32:03

Debugging with GDB

3. You can call overloaded functions; GDB resolves the function call to the right definition, with
some restrictions. GDB does not perform overload resolution involving user-defined type
conversions, calls to constructors, or instantiations of templates that do not exist in the program.
It also cannot handle ellipsis argument lists or default arguments. It does perform integral
conversions and promotions, floating-point promotions, arithmetic conversions, pointer
conversions, conversions of class objects to base classes, and standard conversions such as those
of functions or arraysto pointers; it requires an exact match on the number of function
arguments. Overload resolution is always performed, unless you have specified set
over| oad-resol uti on of f.Seesection GDB features for C++. You must specify set

over| oad-resol uti on of f inorder to use an explicit function signature to call an
overloaded function, asin

p 'foo(char,int)'('x", 13)

The GDB command-completion facility can simplify this; see section Command completion.

4. GDB understands variables declared as C++ references; you can use them in expressions just as
you do in C++ source--they are automatically dereferenced. In the parameter list shown when
GDB displays aframe, the values of reference variables are not displayed (unlike other
variables); this avoids clutter, since references are often used for large structures. The address of
areference variable is always shown, unless you have specified " set pri nt address
of f'.

5. GDB supports the C++ name resolution operator : : ---your expressions can use it just as
expressions in your program do. Since one scope may be defined in another, you can use: :
repeatedly if necessary, for examplein an expression like ™ scopel: : scope?2: : nane' . GDB
also alows resolving name scope by reference to source files, in both C and C++ debugging (see
section Program variables).

In addition, when used with HP's C++ compiler, GDB supports calling virtual functions correctly,
printing out virtual bases of objects, calling functions in a base subobject, casting objects, and invoking
user-defined operators.

C and C++ defaults

If you allow GDB to set type and range checking automatically, they both default to of f whenever the
working language changesto C or C++. This happens regardless of whether you or GDB selects the
working language.

If you allow GDB to set the language automatically, it recognizes source files whose names end with ™ .
c', .C,or .cc',etc, and when GDB enters code compiled from one of thesefiles, it setsthe
working language to C or C++. See section Having GDB infer the source language, for further details.

file:///C|/gdb.html (111 of 352)19. 1. 2004 20:32:03

Debugging with GDB

C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking is not used. However, if you turn
type checking on, GDB considers two variables type equivalent if:

. Thetwo variables are structured and have the same structure, union, or enumerated tag.
. Thetwo variables have the same type name, or types that have been declared equivalent through
t ypedef .

Range checking, if turned on, is done on mathematical operations. Array indices are not checked, since
they are often used to index a pointer that is not itself an array.

GDB and C

Theset print unionandshow print uni on commandsapply to the uni on type. When set
to on' ,any uni onthatisinsideastruct orcl ass isaso printed. Otherwise, it appearsas

(...},

The @operator aids in the debugging of dynamic arrays, formed with pointers and a memory allocation
function. See section Expressions.

. Debugging C plus plus

GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed specifically for use with
C++. Hereisasummary:

br eakpoi nt nenus
When you want a breakpoint in a function whose name is overloaded, GDB breakpoint menus
help you specify which function definition you want. See section Breakpoint menus.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints on overloaded
functions that are not members of any special classes. See section Setting breakpoints.
catch throw
catch catch
Debug C++ exception handling using these commands. See section Setting catchpoints.
pt ype typenane
Print inheritance relationships as well as other information for type typename. See section
Examining the Symbol Table.

set print demangl e

file:///C|/gdb.html (112 of 352)19. 1. 2004 20:32:03

Debugging with GDB

show print demangl e

set print asmdenangl e

show print asm demangl e
Control whether C++ symbols display in their source form, both when displaying code as C++
source and when displaying disassemblies. See section Print settings.

set print object
show print object
Choose whether to print derived (actual) or declared types of objects. See section Print settings.

set print vtbl
show print vtbl
Control the format for printing virtual function tables. See section Print settings. (The vt bl

commands do not work on programs compiled with the HP ANSI C++ compiler (aCC).)

set overl oad-resol ution on
Enable overload resolution for C++ expression evaluation. The default is on. For overloaded
functions, GDB evaluates the arguments and searches for a function whose signature matches the
argument types, using the standard C++ conversion rules (see section C++ expressions, for

details). If it cannot find a match, it emits a message.

set overl oad-resol ution off
Disable overload resolution for C++ expression evaluation. For overloaded functions that are not
class member functions, GDB chooses the first function of the specified name that it findsin the
symbol table, whether or not its arguments are of the correct type. For overloaded functions that
are class member functions, GDB searches for a function whose signature exactly matches the
argument types.

Overl oaded synbol nanes
Y ou can specify a particular definition of an overloaded symbol, using the same notation that is
used to declare such symbolsin C++: typesynbol (t ypes) rather than just symbol. Y ou can
also use the GDB command-line word completion facilities to list the available choices, or to
finish the type list for you. See section Command completion, for details on how to do this.

Modula-2

The extensions made to GDB to support Modula-2 only support output from the GNU Modula-2
compiler (which is currently being developed). Other Modula-2 compilers are not currently supported,
and attempting to debug executables produced by them is most likely to give an error as GDB reads in
the executable's symbol table.

« M2 Operators: Built-in operators

« Built-In Func/Proc: Built-in functions and procedures
. M2 Constants: Modula-2 constants

. M2 Defaults: Default settings for Modula-2

. Deviations: Deviations from standard Modula-2

file:///C|/gdb.html (113 of 352)19. 1. 2004 20:32:03

Debugging with GDB

« M2 Checks: Modula-2 type and range checks
. M2 Scope: The scope operators: : and .
. GDB/M2: GDB and Modula-2

Operators

Operators must be defined on values of specific types. For instance, + is defined on numbers, but not on
structures. Operators are often defined on groups of types. For the purposes of Modula-2, the following
definitions hold:

. Integral types consist of | NTEGER, CARDI NAL, and their subranges.
. Character types consist of CHAR and its subranges.

. Floating-point types consist of REAL.

. Pointer types consist of anything declared as PO NTER TO t ype.
. Scalar types consist of all of the above.

. Settypesconsist of SET and Bl TSET types.

. Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing precedence:

Function argument or array index separator.

Assignment. The value of var : = valueis value.
< >

Less than, greater than on integral, floating-point, or enumerated types.

<:’ >=
Less than or equal to, greater than or equal to on integral, floating-point and enumerated types, or
set inclusion on set types. Same precedence as <.

= <> #
Equality and two ways of expressing inequality, valid on scalar types. Same precedence as<. In
GDB scripts, only <> isavailable for inequality, since # conflicts with the script comment

character.
Set membership. Defined on set types and the types of their members. Same precedence as <.
Boolean digunction. Defined on boolean types.

AND, &
Boolean conjunction. Defined on boolean types.

@
The GDB "artificial array" operator (see section Expressions).
+ -

file:///C|/gdb.html (114 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Addition and subtraction on integral and floating-point types, or union and difference on set
types.

Multiplication on integral and floating-point types, or set intersection on set types.

Division on floating-point types, or symmetric set difference on set types. Same precedence as* .
DV, MXD

Integer division and remainder. Defined on integral types. Same precedence as * .

Negative. Defined on | NTEGER and REAL data.

Pointer dereferencing. Defined on pointer types.

NOT
Boolean negation. Defined on boolean types. Same precedence as”.
RECORD field selector. Defined on RECORD data. Same precedence as”.
[]
Array indexing. Defined on ARRAY data. Same precedence as”.
()

Procedure argument list. Defined on PROCEDURE objects. Same precedence as”.

GDB and Modula-2 scope operators.

Warning: Setsand their operations are not yet supported, so GDB treats the use of the
operator | N, or the use of operators+, -, *,/ , =, , <>, #, <=, and >= on sets as an error.

Built-in functions and procedures

Modula-2 also makes available several built-in procedures and functions. In describing these, the
following metavariables are used:

) represents an ARRAY variable.

'C represents a CHAR constant or variable.

| represents a variable or constant of integral type.

" represents an identifier that belongs to a set. Generally used in the same function with the
metavariable s. The type of sshould be SET OF nt ype (where mtype is the type of m).

n

represents a variable or constant of integral or floating-point type.

file:///C/gdb.html (115 of 352)19. 1. 2004 20:32:03

Debugging with GDB

represents a variable or constant of floating-point type.
represents a type.
represents avariable.

represents a variable or constant of one of many types. See the explanation of the function for
details.

All Modula-2 built-in procedures also return aresult, described below.

ABS(n)

Returns the absolute value of n.
CAP(c)

If cisalower case letter, it returnsits upper case equivalent, otherwise it returns its argument.
CHR(1)

Returns the character whose ordinal valueisi.
DEC(v)

Decrements the value in the variable v by one. Returns the new value.
DEC(v, i)

Decrements the value in the variable v by i. Returns the new value.
EXCL(m s)

Removes the element m from the set s. Returns the new set.
FLOAT(i)

Returns the floating point equivalent of the integer i.
H GH(a)

Returns the index of the last member of a.
| NC(v)

Increments the value in the variable v by one. Returns the new value.
| NC(v, i)

Increments the value in the variable v by i. Returns the new value.
| NCL(m s)

Adds the element mto the set sif it isnot already there. Returns the new set.
MAX(t)
Returns the maximum value of the typet.

M N(t)

Returns the minimum value of the typet.
OoDIO(i)

Returns boolean TRUE if i isan odd number.
ORID(x)

Returns the ordinal value of its argument. For example, the ordinal value of a character isits
ASCII value (on machines supporting the ASCII character set). x must be of an ordered type,

file:///C|/gdb.html (116 of 352)19. 1. 2004 20:32:03

Debugging with GDB

which include integral, character and enumerated types.
SI ZE(x)

Returns the size of its argument. x can be avariable or atype.
TRUNC()

Returns the integral part of r.
VAL(t,i)

Returns the member of the typet whose ordinal valueisi.

Warning: Sets and their operations are not yet supported, so GDB treats the use of
procedures | NCL and EXCL as an error.

Constants

GDB alows you to express the constants of Modula-2 in the following ways:

. Integer constants are simply a sequence of digits. When used in an expression, a constant is
interpreted to be type-compatible with the rest of the expression. Hexadecimal integers are
specified by atrailing ™ H , and octal integers by atrailing ™ B' .

. Floating point constants appear as a sequence of digits, followed by a decimal point and another
sequence of digits. An optional exponent can then be specified, intheform ™ E[+| -] nnn'
where " [+| -] nnn' isthe desired exponent. All of the digits of the floating point constant must
be valid decimal (base 10) digits.

. Character constants consist of a single character enclosed by a pair of like quotes, either single
(') or double ("). They may also be expressed by their ordinal value (their ASCII value, usually)
followedbya™ C .

. String constants consist of a sequence of characters enclosed by a pair of like quotes, either single
(') or double (). Escape sequencesin the style of C are also alowed. See section C and C++_

constants, for a brief explanation of escape sequences.

. Enumerated constants consist of an enumerated identifier.

. Boolean constants consist of the identifiers TRUE and FALSE.
. Pointer constants consist of integral values only.

. Set constants are not yet supported.

Modula-2 defaults

If type and range checking are set automatically by GDB, they both default to on whenever the working
language changes to Modula-2. This happens regardless of whether you or GDB selected the working
language.

If you alow GDB to set the language automatically, then entering code compiled from afile whose
name endswith " . nod' sets the working language to Modula-2. See section Having GDB infer the

file:///C|/gdb.html (117 of 352)19. 1. 2004 20:32:03

Debugging with GDB

source language, for further details.

Deviations from standard Modula-2

A few changes have been made to make Modula-2 programs easier to debug. Thisis done primarily via
loosening its type strictness:

« Unlike in standard Modula-2, pointer constants can be formed by integers. This alows you to
modify pointer variables during debugging. (In standard Modula-2, the actual address contained
in a pointer variable is hidden from you; it can only be modified through direct assignment to
another pointer variable or expression that returned a pointer.)

. C escape sequences can be used in strings and characters to represent non-printable characters.
GDB prints out strings with these escape sequences embedded. Single non-printable characters
are printed using the " CHR(nnn) ' format.

. Theassignment operator (: =) returnsthe value of its right-hand argument.

« All built-in procedures both modify and return their argument.

Modula-2 type and range checks

Warning: in thisrelease, GDB does not yet perform type or range checking.
GDB considers two Modula-2 variables type equivalent if:

. They are of typesthat have been declared equivalent viaaTYPE t1 = t 2 statement
. They have been declared on the same line. (Note: Thisistrue of the GNU Modula-2 compiler,
but it may not be true of other compilers.)

Aslong as type checking is enabled, any attempt to combine variables whose types are not equivalent is
an error.

Range checking is done on all mathematical operations, assignment, array index bounds, and al built-in
functions and procedures.

The scope operators ;. ;. and .

There are afew subtle differences between the Modula-2 scope operator (.) and the GDB scope
operator (: :). Thetwo have similar syntax:

nodule . id
scope :: id

file:///C|/gdb.html (118 of 352)19. 1. 2004 20:32:03

Debugging with GDB
where scope is the name of a module or a procedure, modul e the name of amodule, and id is any
declared identifier within your program, except another module.

Using the: : operator makes GDB search the scope specified by scope for the identifier id. If it is not
found in the specified scope, then GDB searches all scopes enclosing the one specified by scope.

Using the. operator makes GDB search the current scope for the identifier specified by id that was
imported from the definition module specified by module. With this operator, it isan error if the
identifier id was not imported from definition module module, or if id is not an identifier in module.

GDB and Modula-2

Some GDB commands have little use when debugging Modula-2 programs. Five subcommands of set
print andshow print apply specificallytoCand C++: "vtbl', demangl e', asm
demangl e' , obj ect' ,and uni on' . Thefirst four apply to C++, and the last to the C uni on
type, which has no direct analogue in Modula-2.

The @operator (see section Expressions), while available with any language, is not useful with Modula-

2. Itsintent isto aid the debugging of dynamic arrays, which cannot be created in Modula-2 as they can
in C or C++. However, because an address can be specified by an integral constant, the construct
{type}adrexp' isstill useful.

In GDB scripts, the Modula-2 inequality operator # is interpreted as the beginning of a comment. Use
<> instead.

Chill

The extensions made to GDB to support Chill only support output from the GNU Chill compiler. Other
Chill compilers are not currently supported, and attempting to debug executables produced by them is
most likely to give an error as GDB reads in the executable's symbol table.

This section covers the Chill related topics and the features of GDB which support these topics.

. How modes are displayed: How modes are displayed

. Locations: Locations and their accesses

. Values and their Operations: Vaues and their Operations
. Chill type and range checks

. Chill defaults

How modes are displayed

file:///C|/gdb.html (119 of 352)19. 1. 2004 20:32:03

Debugging with GDB

The Chill Datatype- (Mode) support of GDB is directly related with the functionality of the GNU Chill
compiler, and therefore deviates slightly from the standard specification of the Chill language. The
provided modes are:

Di screte nodes:
o Integer Modes which are predefined by BYTE, UBYTE, | NT, U NT, LONG,
ULONG,
o Boolean Mode which is predefined by BOCL,
o Character Mode which is predefined by CHAR,
o Set Mode which is displayed by the keyword SET.

(gdb) ptype X
type = SET (karli = 10, susi = 20, fritzi = 100)

If the type is an unnumbered set the set element values are omitted.
o Range Mode which is displayed by

type = <basenode>(<l ower bound> : <upper bound>)

where<| ower bound>, <upper bound> can be of any discrete literal expression
(e.g. set element names).
Power set Mode:
A Powerset Mode is displayed by the keyword PONERSET followed by the member mode of the
powerset. The member mode can be any discrete mode.

(gdb) ptype x
type = PONERSET SET (egon, hugo, otto)

Ref erence Mbdes:
o Bound Reference Mode which is displayed by the keyword REF followed by the mode
name to which the reference is bound.
o Free Reference Mode which is displayed by the keyword PTR.
Procedure node
The procedure modeisdisplayed by t ype = PROC(<paraneter |ist>) <return
node> EXCEPTI ONS (<exception list>).The<paraneter |ist>isalistof the
parameter modes. <r et ur n node> indicates the mode of the result of the procedure if any.
The exceptionlist lists all possible exceptions which can be raised by the procedure.
Synchroni zati on Mdes:
o Event Mode which is displayed by

EVENT (<event | ength>)

file:///C|/gdb.html (120 of 352)19. 1. 2004 20:32:03

Debugging with GDB

where (<event | engt h>) isoptional.
o Buffer Mode which is displayed by

BUFFER (<buffer |ength>)<buffer elenent node>

where (<buf f er | engt h>) isoptional.

Ti m ng Modes:

o Duration Mode which is predefined by DURATI ON

o Absolute Time Mode which is predefined by TI ME
Real Mbdes:

Real Modes are predefined with REAL and LONG_REAL.

String Modes:

o Character Sring Mode which is displayed by

CHARS(<string | engt h>)

followed by the keyword VARYI NGif the String Mode is a varying mode
o Bit Sring Mode which is displayed by

BOOLS(<string
| engt h>)

Array Mbde:
The Array Mode is displayed by the keyword ARRAY(<r ange>) followed by the element
mode (which may in turn be an array mode).

(gdb) ptype x
type = ARRAY (1:42)
ARRAY (1:20)
SET (karli = 10, susi = 20, fritzi = 100)

Structure Mde
The Structure mode is displayed by the keyword STRUCT(<field list>).The<field
| i st > consists of names and modes of fields of the structure. Variant structures have the
keyword CASE <fi el d> OF <variant fiel ds> ESACintheir fieldlist. Since the
current version of the GNU Chill compiler doesn't implement tag processing (no runtime checks
of variant fields, and therefore no debugging info), the output always displays al variant fields.

(gdb) ptype str
type = STRUCT (
as X,
bs x,

file:///C|/gdb.html (121 of 352)19. 1. 2004 20:32:03

Debugging with GDB

CASE bs OF
(karli):
cs a
(ott):
ds x
ESAC

)

Locations and their accesses

A location in Chill is an object which can contain values.

A value of alocation is generally accessed by the (declared) name of the location. The output conforms
to the specification of valuesin Chill programs. How values are specified is the topic of the next section,
section Values and their Operations.

The pseudo-location RESULT (or r esul t) can be used to display or change the result of a currently-
active procedure:

set result := EXPR
This does the same as the Chill action RESULT EXPR (whichisnot available in GDB).

Values of reference mode locations are printed by PTR(<hex val ue>) in case of afree reference
mode, and by (REF <r ef erence node>) (<hex-val ue>) incaseof abound reference. <hex
val ue> represents the address where the reference points to. To access the value of the location
referenced by the pointer, use the dereference operator ™ - >' .

Values of procedure mode locations are displayed by

{ PROC
(<argunent nodes>) <return node> } <address> <nane of procedure
| ocati on>

<ar gunment nodes> isalist of modes according to the parameter specification of the procedure and
<addr ess> shows the address of the entry point.

Substructures of string mode-, array mode- or structure mode-values (e.g. array slices, fields of structure
locations) are accessed using certain operations which are described in the next section, section Values
and their Operations.

file:///C|/gdb.html (122 of 352)19. 1. 2004 20:32:03

Debugging with GDB

A location value may be interpreted as having a different mode using the location conversion. This mode
conversion iswritten as<node nanme>(<l ocati on>). The user hasto consider that the sizes of the
modes have to be equal otherwise an error occurs. Furthermore, no range checking of the location
against the destination mode is performed, and therefore the result can be quite confusing.

(gdb) print int (s(3 up 4)) XXX TO be filled in !'l XXX

Values and their Operations

Values are used to alter locations, to investigate complex structuresin more detail or to filter relevant
information out of alarge amount of data. There are several (mode dependent) operations defined which
enable such investigations. These operations are not only applicable to constant values but also to
locations, which can become quite useful when debugging complex structures. During parsing the
command line (e.g. evaluating an expression) GDB treats |ocation names as the values behind these
locations.

This section describes how values have to be specified and which operations are legal to be used with
such values.

Literal Val ues
Literal values are specified in the same manner asin GNU Chill programs. For detailed
specification refer to the GNU Chill implementation Manual chapter 1.5.
Tupl e Val ues
A tupleis specified by <nbde nanme>[<t upl e>] , where<nbde nane> can be omitted if
the mode of the tuple is unambiguous. This unambiguity is derived from the context of a
evaluated expression. <t upl e> can be one of the following:
o Powerset Tuple
o Array Tuple
o Sructure Tuple Powerset tuples, array tuples and structure tuples are specified in the same
manner asin Chill programs refer to z200/88 chpt 5.2.5.
String El enent Val ue
A string element value is specified by

<string val ue>(<i ndex>)

where <i ndex> isainteger expression. It delivers a character value which is equivalent to the
character indexed by <i ndex> in the string.

String Slice Val ue
A string slice value is specified by <stri ng val ue>(<slice spec>),where<slice
spec> can be either arange of integer expressions or specified by <st art expr> up
<si ze>. <si ze> denotes the number of elements which the slice contains. The delivered value
iIsastring value, which is part of the specified string.

file:///C|/gdb.html (123 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Array El enent Val ues
An array element value is specified by <ar r ay val ue>(<expr>) and deliversaarray
element value of the mode of the specified array.
Array Slice Val ues
An array dliceis specified by <array val ue>(<slice spec>),where<slice spec>
can be either arange specified by expressionsor by <st art expr> up <si ze>.<si ze>
denotes the number of arrayelements the slice contains. The delivered valueis an array value
which is part of the specified array.
Structure Field Val ues
A structure field value isderived by <st ruct ure val ue>. <fi el d nanme>, where
<fi el d name> indicatesthe name of afield specified in the mode definition of the structure.
The mode of the delivered value corresponds to this mode definition in the structure definition.
Procedure Call Val ue
The procedure call value is derived from the return value of the procedure(4). Vaues of duration

mode locations are represented by ULONG literals. Vaues of time mode locations appear as
Tl ME(<secs>: <nsecs>)

Zer o- adi ¢ Operat or Val ue
The zero-adic operator value is derived from the instance value for the current active process.
Expressi on Val ues
The value delivered by an expression is the result of the evaluation of the specified expression. If
there are error conditions (mode incompatibility, etc.) the evaluation of expressionsis aborted
with a corresponding error message. Expressions may be parenthesised which causes the
evaluation of this expression before any other expression which uses the result of the
parenthesised expression. The following operators are supported by GDB:
OR, ORIF, XOR
AND, ANDI F
NOT
Logical operators defined over operands of boolean mode.
= /=
Equality and inequality operators defined over all modes.
> >=
< <=
Relational operators defined over predefined modes.
+ -
* [, MOD, REM
Arithmetic operators defined over predefined modes.

Change sign operator.
Il
String concatenation operator.

0

file:///C|/gdb.html (124 of 352)19. 1. 2004 20:32:03

Debugging with GDB

String repetition operator.

Referenced location operator which can be used either to take the address of alocation (-
>| oc), or to dereference areference location (I oc- >).

OR, XOR

AND

NOT

Powerset and bitstring operators.
> >=
<, <=

Powerset inclusion operators.
| N

M embership operator.

Chill type and range checks

GDB considers two Chill variables mode equivalent if the sizes of the two modes are equal. Thisrule
applies recursively to more complex datatypes which means that complex modes are treated equivalent
if all element modes (which also can be complex modes like structures, arrays, etc.) have the same size.

Range checking is done on all mathematical operations, assignment, array index bounds and all built in
procedures.

Strong type checks are forced using the GDB command set check str ong. Thisenforces strong
type and range checks on all operations where Chill constructs are used (expressions, built in functions,
etc.) in respect to the semantics as defined in the z.200 language specification.

All checks can be disabled by the GDB command set check off.

Chill defaults

If type and range checking are set automatically by GDB, they both default to on whenever the working
language changes to Chill. This happens regardless of whether you or GDB selected the working
language.

If you alow GDB to set the language automatically, then entering code compiled from afile whose
name endswith " . ch' setsthe working language to Chill. See section Having GDB infer the source

language, for further details.

Examining the Symbol Table

file:///C|/gdb.html (125 of 352)19. 1. 2004 20:32:03

Debugging with GDB

The commands described in this chapter allow you to inquire about the symbols (names of variables,
functions and types) defined in your program. This information is inherent in the text of your program
and does not change as your program executes. GDB finds it in your program's symbol table, in the file
indicated when you started GDB (see section Choosing files), or by one of the file-management

commands (see section Commands to specify files).

Occasionally, you may need to refer to symbols that contain unusual characters, which GDB ordinarily
treats as word delimiters. The most frequent caseisin referring to static variablesin other source files
(see section Program variables). File names are recorded in object files as debugging symbols, but GDB

would ordinarily parse atypical file name, like " f 0o. ¢' , asthethreewords foo' ~."' "¢'.To
allow GDB torecognize " f 0o. ¢' asasingle symbol, encloseit in single quotes; for example,

p 'foo.c'::x
looks up the value of x in the scope of thefile™ f 0o. c' .

I nfo address synbol
Describe where the data for symbol is stored. For aregister variable, this says which register it is
kept in. For anon-register local variable, this prints the stack-frame offset at which the variableis
always stored. Note the contrast with * pri nt &synbol ' , which does not work at all for a
register variable, and for a stack local variable prints the exact address of the current instantiation
of the variable.

i nfo synbol addr
Print the name of a symbol which is stored at the address addr. If no symbol is stored exactly at
addr, GDB prints the nearest symbol and an offset from it:

(gdb) info synbol 0x54320
_initialize vx + 396 in section .text

Thisisthe opposite of thei nf o addr ess command. Y ou can use it to find out the name of a
variable or afunction given its address.

whatis expr
Print the data type of expression expr. expr is not actually evaluated, and any side-effecting
operations (such as assignments or function calls) inside it do not take place. See section
Expressions.

whati s
Print the data type of $, the last value in the value history.

ptype typenane
Print a description of data type typename. typename may be the name of atype, or for C code it
may havetheform " cl ass cl ass-nane', struct struct-tag', union union-
tag' or enumenumtag'.

ptype expr

file:///C|/gdb.html (126 of 352)19. 1. 2004 20:32:03

Debugging with GDB

ptype

I nfo
i nfo

I nfo

Print a description of the type of expression expr. pt ype differsfromwhat i s by printing a
detailed description, instead of just the name of the type. For example, for this variable
declaration:

struct conpl ex {double real; double img;} v;
the two commands give this output:

(gdb) whatis v
type = struct conpl ex
(gdb) ptype v
type = struct conplex {
doubl e real;
doubl e 1 mag;

}

Aswithwhat i s, using pt ype without an argument refers to the type of $, the last value in the
value history.

types regexp

t ypes

Print a brief description of al types whose names match regexp (or all typesin your program, if
you supply no argument). Each complete typename is matched as though it were a complete line;
thus, "I type val ue' givesinformation on all typesin your program whose names include
thestringval ue,but i type “val ue$' givesinformation only on typeswhose complete
nameisval ue. Thiscommand differs from pt ype intwo ways. first, likewhat i s, it does not
print a detailed description; second, it lists al source fileswhere atypeis defined.

scope addr

List al the variables local to a particular scope. This command accepts a location--a function
name, a source line, or an address preceded by a™ *' , and prints all the variableslocal to the
scope defined by that location. For example:

(gdb) info scope command_| i ne_handl er

Scope for command _|ine_handl er:

Synmbol rl is an argunent at stack/frane offset 8, |length 4.
Synbol linebuffer is in static storage at address 0x150a1l8,

| ength 4.

Synbol linelength is in static storage at address 0x150alc,
| ength 4.

Synmbol p is a local variable in register $esi, |length 4.

Synbol pl is a local variable in register $ebx, length 4.
Synbol nline is a local variable in register $edx, |length 4.

file:///C|/gdb.html (127 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Synbol repeat is a |local variable at frane offset -8, length 4.

This command is especially useful for determining what data to collect during atrace
experiment, see section Tracepoint Action Lists.

i nfo source
Show the name of the current source file--that is, the source file for the function containing the
current point of execution--and the language it was written in.
I nfo sources
Print the names of all source filesin your program for which there is debugging information,
organized into two lists: files whose symbols have already been read, and files whose symbols
will be read when needed.
info functions
Print the names and data types of all defined functions.
I nfo functions regexp
Print the names and data types of all defined functions whose names contain a match for regular
expression regexp. Thus, i nfo fun step' findsall functions whose namesinclude st ep;
“info fun ~step' findsthose whose nhames start with st ep.
i nfo vari abl es
Print the names and data types of all variables that are declared outside of functions (i.e.,
excluding local variables).
I nfo vari abl es regexp
Print the names and data types of all variables (except for local variables) whose names contain a
match for regular expression regexp. Some systems allow individual object files that make up
your program to be replaced without stopping and restarting your program. For example, in
VxWorks you can simply recompile a defective object file and keep on running. If you are
running on one of these systems, you can allow GDB to reload the symbols for automatically
relinked modules:
set synbol -rel oadi ng on
Replace symbol definitions for the corresponding source file when an object file with a
particular name is seen again.
set synbol -rel oadi ng of f
Do not replace symbol definitions when encountering object files of the same name more
than once. Thisisthe default state; if you are not running on a system that permits
automatic relinking of modules, you should leave synbol - r el oadi ng off, since
otherwise GDB may discard symbols when linking large programs, that may contain
several modules (from different directories or libraries) with the same name.
show synbol - r el oadi ng
Show the current on or of f setting.
set opaque-type-resol ution on
Tell GDB to resolve opague types. An opague type is atype declared as apointer toast r uct ,
cl ass, or uni on---for example, st ruct MyType *---that isused in one sourcefile
although the full declaration of st r uct MyType isin another sourcefile. The default ison. A
change in the setting of this subcommand will not take effect until the next time symbolsfor a

file:///C|/gdb.html (128 of 352)19. 1. 2004 20:32:03

Debugging with GDB

file are loaded.
set opaque-type-resolution off
Tell GDB not to resolve opague types. In this case, the typeis printed as follows:

{<no data fields>}

show opaque-type-resol ution
Show whether opague types are resolved or not.

mai nt print synbols filenane

mai nt print psynbols fil enane

mai nt print nsynbols fil enane
Write a dump of debugging symbol datainto the file filename. These commands are used to
debug the GDB symbol-reading code. Only symbols with debugging data are included. If you use
“mai nt print synbol s', GDB includes all the symbols for which it has already collected
full details: that is, filename reflects symbols for only those files whose symbols GDB has read.
Y ou can use the command i nf 0 sour ces to find out which files these are. If you use
“mai nt print psynbol s' instead, the dump shows information about symbolsthat GDB
only knows partially--that is, symbols defined in files that GDB has skimmed, but not yet read
completely. Finaly, mai nt print nsynbol s’ dumpsjust the minima symbol
information required for each object file from which GDB has read some symbols. See section
Commands to specify files, for a discussion of how GDB reads symbols (in the description of
synbol -file).

Altering Execution

Once you think you have found an error in your program, you might want to find out for certain whether
correcting the apparent error would lead to correct results in the rest of the run. Y ou can find the answer
by experiment, using the GDB features for altering execution of the program.

For example, you can store new values into variables or memory locations, give your program asignal,
restart it at a different address, or even return prematurely from afunction.

« Assignment: Assignment to variables

« Jumping: Continuing at a different address
. Signaling: Giving your program a signal

« Returning: Returning from a function

. Cdling: Calling your program's functions
. Patching: Patching your program

Assignment to variables

file:///C|/gdb.html (129 of 352)19. 1. 2004 20:32:03

Debugging with GDB

To alter the value of a variable, evaluate an assignment expression. See section Expressions. For
example,

print x=4
stores the value 4 into the variable x, and then prints the value of the assignment expression (whichis 4).

See section Using GDB with Different Languages, for more information on operators in supported
languages.

If you are not interested in seeing the value of the assignment, use the set command instead of the
pri nt command. set isreally thesameaspri nt except that the expression's value is not printed and
Is not put in the value history (see section Value history). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appearsidentical to aset subcommand,
usetheset vari abl e command instead of just set . Thiscommand isidentical to set except for its
lack of subcommands. For example, if your program has avariablew dt h, you get an error if you try to
set anew valuewithjust " set w dt h=13" , because GDB has the command set wi dt h:

(gdb) whatis width

type = double

(gdb) p width

$4 = 13

(gdb) set w dt h=47

Invalid syntax in expression.

Theinvalid expression, of course, is™ =47' . In order to actually set the program's variablew dt h, use
(gdb) set var w dth=47

Because the set command has many subcommands that can conflict with the names of program
variables, itisagood ideato usetheset vari abl e command instead of just set . For example, if
your program has avariable g, you run into problems if you try to set a new value with just * set
g=4', because GDB hasthe command set gnut ar get , abbreviatedset g:

(gdb) whatis g
type = doubl e
(gdb) p g

$1 =1

(gdb) set g=4
(gdb) p g

$2 = 1

file:///C|/gdb.html (130 of 352)19. 1. 2004 20:32:03

Debugging with GDB

(gdb) r

The program bei ng debugged has been started al ready.

Start it fromthe beginning? (y or n) y

Starting program /home/smth/cc_progs/a. out

"/ honme/smth/cc_progs/a.out”: can't open to read synbol s:
Invalid bfd target.

(gdb) show g

The current BFD target is "=4".

The program variable g did not change, and you silently set the gnut ar get to aninvalid vaue. In
order to set the variable g, use

(gdb) set var g=4

GDB alows more implicit conversions in assignments than C; you can freely store an integer value into
apointer variable or vice versa, and you can convert any structure to any other structure that is the same
length or shorter.

To store values into arbitrary placesin memory, usethe " {...}' construct to generate avalue of
specified type at a specified address (see section Expressions). For example, { i nt } 0x83040 refersto
memory location 0x83040 as an integer (which implies a certain size and representation in memory),
and

set {int}0x83040 = 4

stores the value 4 into that memory location.

Continuing at a different address

Ordinarily, when you continue your program, you do so at the place where it stopped, with the
cont i nue command. Y ou can instead continue at an address of your own choosing, with the following
commands:

junmp |inespec
Resume execution at line linespec. Execution stops again immediately if there is a breakpoint
there. See section Printing source lines, for a description of the different forms of linespec. It is
common practice to usethet br eak command in conjunction with j unp. See section Setting
breakpoints. Thej unp command does not change the current stack frame, or the stack pointer,
or the contents of any memory location or any register other than the program counter. If line
linespec isin adifferent function from the one currently executing, the results may be bizarre if
the two functions expect different patterns of arguments or of local variables. For this reason, the

file:///C|/gdb.html (131 of 352)19. 1. 2004 20:32:03

Debugging with GDB

j unp command requests confirmation if the specified line is not in the function currently
executing. However, even bizarre results are predictable if you are well acquainted with the
machine-language code of your program.

junp *address
Resume execution at the instruction at address address.

On many systems, you can get much the same effect asthe j unp command by storing a new value into
the register $pc. The differenceisthat this does not start your program running; it only changes the
address of where it will run when you continue. For example,

set $pc = 0x485

makes the next cont i nue command or stepping command execute at address 0x485, rather than at
the address where your program stopped. See section Continuing and stepping.

The most common occasion to use thej unp command isto back up--perhaps with more breakpoints
set--over a portion of aprogram that has already executed, in order to examine its execution in more
detail.

Giving your program a signal

si gnal signal
Resume execution where your program stopped, but immediately give it the signal signal. signal
can be the name or the number of asignal. For example, on many systemssi gnal 2 and
si gnal S| G NT are both ways of sending an interrupt signal. Alternatively, if signal is zero,
continue execution without giving asignal. Thisis useful when your program stopped on account
of asignal and would ordinary see the signal when resumed with the cont i nue command,;
“signal 0' causesittoresumewithout asignal. si gnal doesnot repeat when you press
RET a second time after executing the command.

Invoking thesi gnal command is not the same asinvoking theki | | utility from the shell. Sending a
signal with ki | | causes GDB to decide what to do with the signal depending on the signal handling
tables (see section Signals). Thesi gnal command passes the signal directly to your program.

Returning from a function

return

return expression
Y ou can cancel execution of afunction call with ther et ur n command. If you give an
expression argument, its value is used as the function's return value.

file:///C/gdb.html (132 of 352)19. 1. 2004 20:32:03

Debugging with GDB

When you user et ur n, GDB discards the selected stack frame (and all frames within it). Y ou can think
of this as making the discarded frame return prematurely. If you wish to specify avalue to be returned,
give that value asthe argument tor et ur n.

This pops the selected stack frame (see section Selecting aframe), and any other framesinside of it,

leaving its caller as the innermost remaining frame. That frame becomes selected. The specified valueis
stored in the registers used for returning values of functions.

Ther et ur n command does not resume execution; it leaves the program stopped in the state that would
exist if the function had just returned. In contrast, thef i ni sh command (see section Continuing and

stepping) resumes execution until the selected stack frame returns naturally.

Calling program functions

call expr
Evaluate the expression expr without displaying voi d returned values.

Y ou can use this variant of the pr i nt command if you want to execute a function from your program,
but without cluttering the output with voi d returned values. If the result is not void, it is printed and
saved in the value history.

For the A29K, a user-controlled variablecal | _scr at ch_addr ess, specifiesthe location of a
scratch area to be used when GDB calls afunction in the target. Thisis necessary because the usual
method of putting the scratch area on the stack does not work in systems that have separate instruction
and data spaces.

Patching programs

By default, GDB opens the file containing your program'’s executable code (or the corefile) read-only.
This prevents accidental alterations to machine code; but it also prevents you from intentionally patching
your program's binary.

If you'd like to be able to patch the binary, you can specify that explicitly withtheset write
command. For example, you might want to turn on internal debugging flags, or even to make emergency
repairs.

set wite on

set wite off
If you specify " set write on', GDB opens executable and core files for both reading and
writing; if you specify " set write of f' (thedefault), GDB opensthem read-only. If you

file:///C)/gdb.html (133 of 352)19. 1. 2004 20:32:03

Debugging with GDB

have already loaded afile, you must load it again (using theexec-fil eorcore-fil e
command) after changingset wr it e, for your new setting to take effect.

show wite
Display whether executable files and core files are opened for writing as well as reading.

GDB Files

GDB needs to know the file name of the program to be debugged, both in order to read its symbol table
and in order to start your program. To debug a core dump of a previous run, you must also tell GDB the
name of the core dump file.

. Files: Commandsto specify files
. Symbol Errors: Errors reading symbol files

Commands to specify files

Y ou may want to specify executable and core dump file names. The usual way to do thisis at start-up
time, using the arguments to GDB's start-up commands (see section Getting In and Out of GDB).

Occasionally it is necessary to change to a different file during a GDB session. Or you may run GDB
and forget to specify afile you want to use. In these situations the GDB commands to specify new files
are useful.

file fil enane
Use filename as the program to be debugged. It is read for its symbols and for the contents of
pure memory. It is aso the program executed when you use ther un command. If you do not
specify adirectory and the file is not found in the GDB working directory, GDB usesthe
environment variable PATH as alist of directoriesto search, just as the shell does when looking
for a program to run. Y ou can change the value of this variable, for both GDB and your program,
using the pat h command. On systems with memory-mapped files, an auxiliary file named
“filenane. syns' may hold symbol table information for filename. If so, GDB mapsin the
symbol tablefrom " fi | enane. syns' , starting up more quickly. See the descriptions of the
fileoptions " - mapped' and " - r eadnow (available on the command line, and with the
commandsfi | e,synbol -fil e, oradd-synbol -fil e, described below), for more
information.

file
fi | e with no argument makes GDB discard any information it has on both executable file and
the symbol table.

exec-file [filenanme |
Specify that the program to be run (but not the symbol table) isfound in filename. GDB searches

file:///C|/gdb.html (134 of 352)19. 1. 2004 20:32:03

Debugging with GDB

the environment variable PATH if necessary to locate your program. Omitting filename means to
discard information on the executable file.

synbol -file [filenane]
Read symbol table information from file filename. PATH is searched when necessary. Use the
fi | e command to get both symbol table and program to run from the samefile. synbol -fil e
with no argument clears out GDB information on your program's symbol table. The synbol -
fi | e command causes GDB to forget the contents of its convenience variables, the value
history, and all breakpoints and auto-display expressions. Thisis because they may contain
pointersto the internal data recording symbols and data types, which are part of the old symbol
table data being discarded inside GDB. synbol - fi | e doesnot repesat if you press RET again
after executing it once. When GDB is configured for a particular environment, it understands
debugging information in whatever format is the standard generated for that environment; you
may use either a GNU compiler, or other compilers that adhere to the local conventions. Best
results are usually obtained from GNU compilers; for example, using gcc you can generate
debugging information for optimized code. For most kinds of object files, with the exception of
old SVR3 systems using COFF, thesynbol - f i | e command does not normally read the
symbol tablein full right away. Instead, it scans the symbol table quickly to find which source
files and which symbols are present. The details are read later, one source file at atime, as they
are needed. The purpose of this two-stage reading strategy isto make GDB start up faster. For the
most part, it isinvisible except for occasiona pauses while the symbol table details for a
particular sourcefile are being read. (Theset ver bose command can turn these pauses into
messages if desired. See section Optional warnings and messages.) We have not implemented the
two-stage strategy for COFF yet. When the symbol tableis stored in COFF format, synbol -
fi | e readsthe symbol table datain full right away. Note that "stabs-in-COFF" still does the two-
stage strategy, since the debug info is actually in stabs format.

synbol -file filenane [-readnow | [-nmapped]

file filenane [-readnow] [-mapped]
Y ou can override the GDB two-stage strategy for reading symbol tables by using the ™ -
readnow option with any of the commands that load symbol table information, if you want to
be sure GDB has the entire symbol table available. If memory-mapped files are available on your
system through the mmap system call, you can use another option, * - mapped' , to cause GDB
to write the symbols for your program into areusable file. Future GDB debugging sessions map
in symbol information from this auxiliary symbol file (if the program has not changed), rather
than spending time reading the symbol table from the executable program. Using the ™ -
mapped’ option has the same effect as starting GDB with the " - mapped’ command-line
option. Y ou can use both options together, to make sure the auxiliary symbol file has al the
symbol information for your program. The auxiliary symbol file for a program called myprog is
caled nmypr og. syns' . Oncethisfile exists (so long asit is newer than the corresponding
executable), GDB always attempts to use it when you debug myprog; no special options or
commands are needed. The " . syns' fileis specific to the host machine where you run GDB. It
holds an exact image of the internal GDB symbol table. It cannot be shared across multiple host
platforms.

core-file [filenanme]

file:///C|/gdb.html (135 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Specify the whereabouts of a core dump file to be used as the "contents of memory".
Traditionally, core files contain only some parts of the address space of the process that generated
them; GDB can access the executable file itself for other parts. cor e- f i | e with no argument
specifies that no core fileisto be used. Note that the core file isignored when your program is
actually running under GDB. So, if you have been running your program and you wish to debug
acorefileinstead, you must kill the subprocess in which the program is running. To do this, use
theki | I command (see section Killing the child process).

add-synbol -file fil enane address
add-synbol -file filenane address [-readnow | [-nmapped]
add- synbol -file fil enanme -ssection address

Theadd- synbol - fi | e command reads additional symbol table information from the file
filename. Y ou would use this command when filename has been dynamically loaded (by some
other means) into the program that is running. address should be the memory address at which
the file has been loaded; GDB cannot figure this out for itself. Y ou can additionally specify an
arbitrary number of * - ssect i on addr ess' pairs, to give an explicit section name and base
address for that section. Y ou can specify any address as an expression. The symbol table of the
file filename is added to the symbol table originaly read with thesynbol - f i | e command.
You can usetheadd- synbol - fi | e command any number of times; the new symbol data thus
read keeps adding to the old. To discard all old symbol data instead, usethesynbol -fil e
command without any arguments. add- synbol - fi | e does not repeat if you press RET after
using it. You can usethe " - napped' and " - r eadnow optionsjust aswith thesynbol -

fi | e command, to change how GDB manages the symbol table information for filename.

add- shar ed-synbol -file

Theadd- shar ed- synbol - fi | e command can be used only under Harris CXUX operating
system for the Motorola 88k. GDB automatically looks for shared libraries, however if GDB does
not find yours, you can run add- shar ed- synbol - fi | e. It takes no arguments.

secti on

i nfo
i nfo

Thesect i on command changes the base address of section SECTION of the exec fileto
ADDR. This can be used if the exec file does not contain section addresses, (such as in the a.out
format), or when the addresses specified in the file itself are wrong. Each section must be
changed separately. Thei nf o fi | es command, described below, lists al the sections and
their addresses.

files

t ar get

info filesandinfo target aresynonymous; both print the current target (see section
Specifying a Debugging Target), including the names of the executable and core dump files
currently in use by GDB, and the files from which symbols were loaded. The command hel p
t ar get listsall possible targets rather than current ones.

All file-specifying commands allow both absolute and relative file names as arguments. GDB aways
converts the file name to an absol ute file name and remembersiit that way.

GDB supports HP-UX, SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries.

file:///C|/gdb.html (136 of 352)19. 1. 2004 20:32:03

Debugging with GDB

GDB automatically loads symbol definitions from shared libraries when you use the r un command, or
when you examine a core file. (Before you issue ther un command, GDB does not understand
referencesto afunction in ashared library, however--unless you are debugging a corefile).

On HP-UX, if the program loads a library explicitly, GDB automatically loads the symbols at the time of
theshl | oad call.

i nfo share

I nfo sharedlibrary
Print the names of the shared libraries which are currently loaded.

sharedli brary regex

share regex
L oad shared object library symbols for files matching a Unix regular expression. Aswith files
loaded automatically, it only loads shared libraries required by your program for a core file or
after typing r un. If regex is omitted all shared libraries required by your program are loaded.

On HP-UX systems, GDB detects the loading of a shared library and automatically reads in symbols
from the newly loaded library, up to athreshold that isinitially set but that you can modify if you wish.

Beyond that threshold, symbols from shared libraries must be explicitly loaded. To load these symbols,
usethecommand shar edl i brary fil enane. The base address of the shared library is determined
automatically by GDB and need not be specified.

To display or set the threshold, use the commands:

set auto-solib-add threshold
Set the autoloading size threshold, in megabytes. If threshold is nonzero, symbols from all shared
object libraries will be loaded automatically when the inferior begins execution or when the
dynamic linker informs GDB that a new library has been loaded, until the symbol table of the
program and libraries exceeds this threshold. Otherwise, symbols must be loaded manually, using
theshar edl i br ar y command. The default threshold is 100 megabytes.

show aut o- sol i b- add
Display the current autoloading size threshold, in megabytes.

Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems, such as symbol types it does not
recognize, or known bugsin compiler output. By default, GDB does not notify you of such problems,
since they are relatively common and primarily of interest to people debugging compilers. If you are
interested in seeing information about ill-constructed symbol tables, you can either ask GDB to print

file:///C|/gdb.html (137 of 352)19. 1. 2004 20:32:03

Debugging with GDB

only one message about each such type of problem, no matter how many times the problem occurs; or
you can ask GDB to print more messages, to see how many times the problems occur, with the set
conpl ai nt s command (see section Optiona warnings and messages).

The messages currently printed, and their meanings, include:

I nner bl ock not inside outer block in synbol
The symbol information shows where symbol scopes begin and end (such as at the start of a
function or a block of statements). This error indicates that an inner scope block is not fully
contained in its outer scope blocks. GDB circumvents the problem by treating the inner block as
if it had the same scope as the outer block. In the error message, symbol may be shown as
“(don't know) " if the outer block is not afunction.

bl ock at address out of order
The symbol information for symbol scope blocks should occur in order of increasing addresses.
This error indicates that it does not do so. GDB does not circumvent this problem, and has
trouble locating symbols in the source file whose symbolsit is reading. (Y ou can often determine
what sourcefile is affected by specifyingset ver bose on. See section Optional warnings
and messages.)

bad bl ock start address patched
The symbol information for a symbol scope block has a start address smaller than the address of
the preceding source line. Thisis known to occur in the SUnOS 4.1.1 (and earlier) C compiler.
GDB circumvents the problem by treating the symbol scope block as starting on the previous
source line.

bad string table offset in synbol n
Symbol number n contains a pointer into the string table which is larger than the size of the string
table. GDB circumvents the problem by considering the symbol to have the name f oo, which
may cause other problems if many symbols end up with this name.

unknown synbol type 0xnn
The symbol information contains new data types that GDB does not yet know how to read. Oxnn
Is the symbol type of the uncomprehended information, in hexadecimal. GDB circumvents the
error by ignoring this symbol information. This usually allows you to debug your program,
though certain symbols are not accessible. If you encounter such a problem and fedl like
debugging it, you can debug gdb with itself, breakpoint on conpl ai n, then go up to the
functionr ead_dbx_synt ab and examine * buf p to see the symbol.

stub type has NULL nane
GDB could not find the full definition for a struct or class.

const/volatile indicator mssing (ok if using g++ v1.x), got...
The symbol information for a C++ member function is missing some information that recent
versions of the compiler should have output for it.

i nfo m smatch between conpil er and debugger
GDB could not parse atype specification output by the compiler.

file:///C|/gdb.html (138 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Specifying a Debugging Target

A target is the execution environment occupied by your program.

Often, GDB runs in the same host environment as your program,; in that case, the debugging target is
specified as a side effect when you usethef i | e or cor e commands. When you need more flexibility--
for example, running GDB on a physically separate host, or controlling a standalone system over a serial
port or arealtime system over a TCP/IP connection--you can use thet ar get command to specify one
of the target types configured for GDB (see section Commands for managing targets).

. Active Targets: Active targets

. Target Commands. Commands for managing targets
. Byte Order: Choosing target byte order

. Remote: Remote debugging

. KOD: Kernel Object Display

Active targets

There are three classes of targets. processes, core files, and executable files. GDB can work concurrently
on up to three active targets, one in each class. This alows you to (for example) start a process and
inspect its activity without abandoning your work on a corefile.

For example, if you execute " gdb a. out ', then the executablefilea. out isthe only active target. If
you designate a core file as well--presumably from a prior run that crashed and coredumped--then GDB
has two active targets and uses them in tandem, looking first in the corefile target, then in the executable
file, to satisfy requests for memory addresses. (Typically, these two classes of target are complementary,
since core files contain only a program's read-write memory--variables and so on--plus machine status,
while executable files contain only the program text and initialized data.)

When you typer un, your executable file becomes an active process target as well. When a process
target is active, all GDB commands requesting memory addresses refer to that target; addressesin an
active core file or executable file target are obscured while the process target is active.

Usethecore-fil e andexec-fi | e commandsto select anew corefile or executable target (see
section Commands to specify files). To specify as atarget a process that is aready running, use the

at t ach command (see section Debugging an already-running process).

Commands for managing targets

file:///C|/gdb.html (139 of 352)19. 1. 2004 20:32:03

Debugging with GDB

target type paraneters
Connects the GDB host environment to a target machine or process. A target istypicaly a
protocol for talking to debugging facilities. Y ou use the argument type to specify the type or
protocol of the target machine. Further parameters are interpreted by the target protocol, but
typically include things like device names or host names to connect with, process numbers, and
baud rates. Thet ar get command does not repeat if you press RET again after executing the
command.

hel p target
Displays the names of all targets available. To display targets currently selected, use either
info target ori nfo fil es (seesection Commands to specify files).

hel p target nane
Describe a particular target, including any parameters necessary to select it.

set gnutarget args
GDB usesits own library BFD to read your files. GDB knows whether it isreading an
executable, acore, or a .o file; however, you can specify the file format with the set
gnut ar get command. Unlikemost t ar get commands, with gnut ar get thet ar get
refers to a program, not a machine.

Warning: To specify afileformat withset gnut ar get , you must know the actual
BFD name.

See section Commands to specify files.

show gnut ar get
Usetheshow gnut ar get command to display what file format gnut ar get isset toread. If
you have not set gnut ar get , GDB will determine the file format for each file automatically,
and show gnut ar get displays' The current BDF target is "auto"'.

Here are some common targets (available, or not, depending on the GDB configuration):

t arget exec program
An executablefile. "t ar get exec program isthesameas exec-file prograni.
target core filenane
A coredumpfile. "target core fil enane' isthesameas core-file fil enane'.
target renote dev
Remote serial target in GDB-specific protocol. The argument dev specifies what serial deviceto
use for the connection (e.g. / dev/ttya'). Seesection Remote debugging. t ar get
r enot e supportsthel oad command. Thisisonly useful if you have some other way of getting
the stub to the target system, and you can put it somewhere in memory where it won't get
clobbered by the download.
target sim
Builtin CPU simulator. GDB includes simulators for most architectures. In general,

file:///C|/gdb.html (140 of 352)19. 1. 2004 20:32:03

Debugging with GDB

target sim
| oad
run

works; however, you cannot assume that a specific memory map, device drivers, or even basic I/
O isavailable, athough some simulators do provide these. For info about any processor-specific
simulator details, see the appropriate section in section Embedded Processors.

Some configurations may include these targets as well:

target nrom dev
NetROM ROM emulator. This target only supports downloading.

Different targets are available on different configurations of GDB; your configuration may have more or
fewer targets.

Many remote targets require you to download the executable's code once you've successfully established
a connection.

| oad fil enane
Depending on what remote debugging facilities are configured into GDB, the| oad command

may be available. Where it exists, it is meant to make filename (an executable) available for
debugging on the remote system--by downloading, or dynamic linking, for example. | oad also
records the filename symbol table in GDB, likethe add- synbol - fi | e command. If your
GDB does not haveal oad command, attempting to execute it gets the error message "You
can't do that when your target is ..." Thefileisloaded at whatever addressis
specified in the executable. For some object file formats, you can specify the load address when
you link the program; for other formats, like a.out, the object file format specifies afixed address.
| oad does not repeat if you press RET again after using it.

Choosing target byte order

Some types of processors, such asthe MIPS, PowerPC, and Hitachi SH, offer the ability to run either
big-endian or little-endian byte orders. Usually the executable or symbol will include a bit to designate
the endian-ness, and you will not need to worry about which to use. However, you may still find it
useful to adjust GDB's idea of processor endian-ness manually.

set endian big

Instruct GDB to assume the target is big-endian.
set endian little

Instruct GDB to assume the target is little-endian.

file:///C|/gdb.html (141 of 352)19. 1. 2004 20:32:03

Debugging with GDB

set endian auto

Instruct GDB to use the byte order associated with the executable.
show endi an

Display GDB's current idea of the target byte order.

Note that these commands merely adjust interpretation of symbolic data on the host, and that they have
absolutely no effect on the target system.

Remote debugging

If you are trying to debug a program running on a machine that cannot run GDB in the usual way, it is
often useful to use remote debugging. For example, you might use remote debugging on an operating
system kernel, or on asmall system which does not have a general purpose operating system powerful
enough to run afull-featured debugger.

Some configurations of GDB have specia seria or TCP/IP interfaces to make this work with particular
debugging targets. In addition, GDB comes with a generic serial protocol (specific to GDB, but not
specific to any particular target system) which you can use if you write the remote stubs--the code that
runs on the remote system to communicate with GDB.

Other remote targets may be available in your configuration of GDB; use hel p t ar get tolist them.

. Remote Seria: GDB remote serial protocol

The GDB remote serial protocol

To debug a program running on another machine (the debugging target machine), you must first arrange
for all the usual prerequisites for the program to run by itself. For example, for a C program, you need:

1. A startup routine to set up the C runtime environment; these usually have anamelike crt 0' .
The startup routine may be supplied by your hardware supplier, or you may have to write your
own.

2. A C subroutine library to support your program'’s subroutine calls, notably managing input and
output.

3. A way of getting your program to the other machine--for example, a download program. These
are often supplied by the hardware manufacturer, but you may have to write your own from
hardware documentation.

The next step isto arrange for your program to use a serial port to communicate with the machine where
GDB is running (the host machine). In general terms, the scheme looks like this:

file:///C|/gdb.html (142 of 352)19. 1. 2004 20:32:03

Debugging with GDB

On the host,
GDB aready understands how to use this protocol; when everything else is set up, you can
simply usethe "t ar get renpte' command (see section Specifying a Debugging Target).
On the target,
you must link with your program afew special-purpose subroutines that implement the GDB
remote serial protocol. The file containing these subroutinesis called a debugging stub. On
certain remote targets, you can use an auxiliary program gdbser ver instead of linking a stub
into your program. See section Using the gdbser ver program, for details.

The debugging stub is specific to the architecture of the remote machine; for example, use ™ spar c-
st ub. ¢’ to debug programs on SPARC boards.

These working remote stubs are distributed with GDB:

| 386-stub. c

For Intel 386 and compatible architectures.
n68k- st ub. ¢

For Motorola 680x0 architectures.
sh-stub.c

For Hitachi SH architectures.
sparc-stub.c

For SPARC architectures.
sparcl -stub. c

For Fujitsu SPARCLITE architectures.

The” READVE' filein the GDB distribution may list other recently added stubs.

« Stub Contents: What the stub can do for you

. Bootstrapping: What you must do for the stub

. Debug Session: Putting it all together

. Protocol: Definition of the communication protocol
« Server: Using the "gdbserver' program

. NetWare: Using the "gdbserve.nim' program

What the stub can do for you

The debugging stub for your architecture supplies these three subroutines:

set debug traps
Thisroutine arranges for handl e_except i on to run when your program stops. Y ou must call
this subroutine explicitly near the beginning of your program.

file:///C|/gdb.html (143 of 352)19. 1. 2004 20:32:03

Debugging with GDB

handl e_excepti on
Thisisthe central workhorse, but your program never callsit explicitly--the setup code arranges
for handl e_excepti on torunwhen atrapistriggered. handl e_except i on takes control
when your program stops during execution (for example, on a breakpoint), and mediates
communications with GDB on the host machine. This is where the communications protocol is
implemented; handl e_except i on acts as the GDB representative on the target machine. It
begins by sending summary information on the state of your program, then continues to execute,
retrieving and transmitting any information GDB needs, until you execute a GDB command that
makes your program resume; at that point, handl e_except i on returns control to your own
code on the target machine.

br eakpoi nt
Use this auxiliary subroutine to make your program contain a breakpoint. Depending on the
particular situation, this may be the only way for GDB to get control. For instance, if your target
machine has some sort of interrupt button, you won't need to call this; pressing the interrupt
button transfers control to handl e_except i on---in effect, to GDB. On some machines,
simply receiving characters on the serial port may also trigger atrap; again, in that situation, you
don't need to call br eakpoi nt from your own program--simply running "t ar get r enot e’
from the host GDB session gets control. Call br eakpoi nt if none of these istrue, or if you
simply want to make certain your program stops at a predetermined point for the start of your
debugging session.

What you must do for the stub

The debugging stubs that come with GDB are set up for a particular chip architecture, but they have no
information about the rest of your debugging target machine.

First of al you need to tell the stub how to communicate with the serial port.

I nt get DebugChar ()
Write this subroutine to read a single character from the serial port. It may be identical to
get char for your target system; adifferent name is used to allow you to distinguish the two if
you wish.

voi d put DebugChar (i nt)
Write this subroutine to write a single character to the serial port. It may be identical to
put char for your target system; adifferent name is used to allow you to distinguish the two if
you wish.

If you want GDB to be able to stop your program while it is running, you need to use an interrupt-driven
seria driver, and arrange for it to stop when it receivesa”C (" \ 003" , the control-C character). That is
the character which GDB uses to tell the remote system to stop.

Getting the debugging target to return the proper status to GDB probably requires changes to the

file:///C|/gdb.html (144 of 352)19. 1. 2004 20:32:03

Debugging with GDB

standard stub; one quick and dirty way isto just execute a breakpoint instruction (the "dirty" part is that
GDB reportsa Sl GTRAP instead of aSI G NT).

Other routines you need to supply are:

voi d exceptionHandl er (int exception_nunber, void *exception_address)
Write this function to install exception_address in the exception handling tables. Y ou need to do
this because the stub does not have any way of knowing what the exception handling tables on
your target system are like (for example, the processor's table might be in ROM, containing
entries which point to atable in RAM). exception _number is the exception number which should
be changed; its meaning is architecture-dependent (for example, different numbers might
represent divide by zero, misaligned access, etc). When this exception occurs, control should be
transferred directly to exception _address, and the processor state (stack, registers, and so on)
should be just asit is when a processor exception occurs. So if you want to use ajump instruction
to reach exception_address, it should be a simple jump, not ajump to subroutine. For the 386,
exception_address should be installed as an interrupt gate so that interrupts are masked while the
handler runs. The gate should be at privilege level 0 (the most privileged level). The SPARC and
68k stubs are able to mask interrupts themselves without help from except i onHandl er.

void flush_i _cache()
On SPARC and SPARCLITE only, write this subroutine to flush the instruction cache, if any, on
your target machine. If thereis no instruction cache, this subroutine may be a no-op. On target
machines that have instruction caches, GDB requires this function to make certain that the state
of your program is stable.

Y ou must also make sure this library routine is available:

void *nmenset(void *, int, int)
Thisisthe standard library function nenset that sets an area of memory to a known value. If
you have one of thefreeversionsof | i bc. a, nenset can be found there; otherwise, you must
either obtain it from your hardware manufacturer, or write your own.

If you do not use the GNU C compiler, you may need other standard library subroutines as well; this
varies from one stub to another, but in general the stubs are likely to use any of the common library
subroutines which gcc generates asinline code.

Putting it all together

In summary, when your program is ready to debug, you must follow these steps.

1. Make sure you have defined the supporting low-level routines (see section What you must do for
the stub):

file:///C|/gdb.html (145 of 352)19. 1. 2004 20:32:03

Debugging with GDB

get DebugChar, put DebugChar,
flush_i cache, nmenset, exceptionHandl er.

2. Insert these lines near the top of your program:

set _debug _traps();
br eakpoi nt () ;

3. For the 680x0 stub only, you need to provide avariable called except i onHook. Normally you
just use:

voi d (*exceptionHook) () = O;

but if before callingset _debug_t raps, you set it to point to afunction in your program, that
function is called when GDB continues after stopping on atrap (for example, bus error). The
function indicated by except i onHook iscalled with one parameter: ani nt whichisthe
exception number.

4. Compile and link together: your program, the GDB debugging stub for your target architecture,
and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the GDB host, and
identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means the
manufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and specify as an executable file the
program that is running in the remote machine. Thistells GDB how to find your program's
symbols and the contents of its pure text.

8. Establish communication using thet ar get r enbt e command. Its argument specifies how to
communicate with the target machine--either via a devicename attached to a direct seria line, or
a TCP port (usualy to aterminal server which in turn has a serial line to the target). For example,
to use aseria line connected to the device named * / dev/ttyb' :

target renote /dev/ttyb

To use a TCP connection, use an argument of the form host : por t . For example, to connect to
port 2828 on aterminal server named manyf ar ns:

target renote manyfarns: 2828

Now you can use al the usual commands to examine and change data and to step and continue the
remote program.

To resume the remote program and stop debugging it, use the det ach command.

file:///C|/gdb.html (146 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Whenever GDB iswaiting for the remote program, if you type the interrupt character (often C- C), GDB
attempts to stop the program. This may or may not succeed, depending in part on the hardware and the
seria drivers the remote system uses. If you type the interrupt character once again, GDB displays this
prompt:

Interrupted while waiting for the program
G ve up (and stop debugging it)? (y or n)

If you typey, GDB abandons the remote debugging session. (If you decide you want to try again later,
youcanuse target renote' agantoconnect once more.) If you typen, GDB goes back to
waiting.

Communication protocol

The stub files provided with GDB implement the target side of the communication protocol, and the
GDB side isimplemented in the GDB sourcefile " r enot e. ¢' . Normally, you can simply allow these
subroutines to communicate, and ignore the details. (If you're implementing your own stub file, you can
still ignore the details: start with one of the existing stub files. * spar c- st ub. ¢’ isthe best
organized, and therefore the easiest to read.)

However, there may be occasions when you need to know something about the protocol--for example, if
there is only one serial port to your target machine, you might want your program to do something
special if it recognizes a packet meant for GDB.

In the examples below, " <-' and " - >' are used to indicate transmitted and received data respectfully.

All GDB commands and responses (other than acknowledgments) are sent as a packet. A packet is
introduced with the character * $' , the actual packet-data, and the terminating character *~ #' followed
by atwo-digit checksum:

$packet - dat a#checksum

The two-digit checksum is computed as the modulo 256 sum of all characters between the leading ™ $'
and thetrailing " #' (an eight bit unsigned checksum).

Implementors should note that prior to GDB 5.0 the protocol specification also included an optional two-
digit sequence-id:

$sequence-i d: packet - dat a#*checksum

file:///C|/gdb.html (147 of 352)19. 1. 2004 20:32:03

Debugging with GDB

That sequence-id was appended to the acknowledgment. GDB has never output sequence-ids. Stubs that
handl e packets added since GDB 5.0 must not accept sequence-id.

When either the host or the target machine receives a packet, the first response expected is an
acknowledgment: either * +' (to indicate the package was received correctly) or * - ' (to request
retransmission):

<- $packet - dat a#checksum
-> +

The host (GDB) sends commands, and the target (the debugging stub incorporated in your program)
sends aresponse. In the case of step and continue commands, the response is only sent when the
operation has completed (the target has again stopped).

packet-data consists of a sequence of characters with the exceptionof “ #' and "~ $' (see” X' packet for
additional exceptions).

Fields within the packet should be separated using *, ' ;' or " : ' . Except where otherwise noted all
numbers are represented in HEX with leading zeros suppressed.

Implementors should note that prior to GDB 5.0, the character * : ' could not appear as the third
character in a packet (asit would potentially conflict with the sequence-id).

Response data can be run-length encoded to save space. A * *' means that the next character is an
ASCII encoding giving arepeat count which stands for that many repetitions of the character preceding
the” *' . Theencoding isn+29, yielding a printable character wheren >=3 (whichiswhererle starts
to win). The printable characters ™ $' , " #', +' and -' or with anumeric value greater than 126
should not be used.

Some remote systems have used a different run-length encoding mechanism loosely refered to as the
cisco encoding. Following the ™ ** character are two hex digits that indicate the size of the packet.

So:
11] O* 11]
means the same as "0000".

The error response returned for some packets includes a two character error number. That number is not
well defined.

file:///C|/gdb.html (148 of 352)19. 1. 2004 20:32:03

Debugging with GDB

For any command not supported by the stub, an empty response (" $#00") should be returned. That way
it is possible to extend the protocol. A newer GDB can tell if a packet is supported based on that

response.

A stubisrequired to supportthe ' g', G, m, M, c¢',and s’ commands. All other commands

are optional.

Below isacomplete list of all currently defined commands and their corresponding response data:

set program arguments
(reserved)

Aarglen, argnum,
arg, . . .

Packet Request Description
Enable extended mode. In extended mode, the
extended mode ! remote server is made persistent. The” R packet
Is used to restart the program being debugged.
N The remote target both supports and has enabled
reply - K extended mode.
last signal 5 Indicate the reason the target_halted. Thereply is
the same as for step and continue.
reply see below
reserved a Reserved for future use

Initialized " ar gv[] ' array passed into program.
arglen specifies the number of bytesin the hex
encoded byte stream arg. See " gdbser ver' for
more details.

file:///C|/gdb.html (149 of 352)19. 1. 2004 20:32:03

reply OK

reply ENN
Change the serial line speed to baud. JTC: When
does the transport layer state change? When it's
received, or after the ACK istransmitted. In either
case, there are problemsif the command or the
acknowledgment packet is dropped. Stan: If

set baud (deprecated) bbaud people really wanted to add something like this,

and get it working for the first time, they ought to
modify ser-unix.c to send some kind of out-of-band
message to a specially-setup stub and have the
switch happen "in between" packets, so that from
remote protocol's point of view, nothing actually
happened.

Debugging with GDB

Set (modeis™ S') or clear (modeis™ C) a

set breakpoint (deprecated) |Baddr,mode breakpoint at addr. This has been replaced by the
"Z' and” z' packets.
continue caddr addr is addressto resume. If addr is omitted,
resume at current address.
reply see below

Continue with signal sig (hex signal number). If ;

continue with signal Csig; adar addr isomitted, resume at same address.
reply see below
toggle debug (deprecated) |d toggle debug flag.
detach D Detach GDB from the remote system. Sent to the
remote target before GDB disconnects.
renlV 110 response GDB does not check for any response after
Py =P sending this packet.
reserved e Reserved for future use
reserved E Reserved for future use
reserved f Reserved for future use
reserved F Reserved for future use
read registers g Read general registers.
Each byte of register data is described by two hex
digits. The bytes with the register are transmitted
in target byte order. The size of each register and
renly XX their position withinthe ™ g' packet are
eIy AR determined by the GDB internal macros
REGISTER RAW_SZE and REGISTER_NAME
macros. The specification of several standard g
packets is specified below.
ENN for an error.
|Write regs GXX... See g' for adescription of the XX... data.
reply OK for success
reply ENN for an error
reserved h Reserved for future use

file:///C|/gdb.html (150 of 352)19. 1. 2004 20:32:03

Debugging with GDB

set thread

Hct...

Set thread for subsequent operations (" ni , M,
"g', G ,etd.).c="c' forthread usedin step
and continue; t... can be-1 for al threads.c=" g’
for thread used in other operations. If zero, pick a
thread, any thread.

reply OK

for success

reply ENN

for an error

cycle step (draft)

| addr, nnn

Step the remote target by asingle clock cycle. If ,
nnn is present, cycle step nnn cycles. If addr is
present, cycle step starting at that address.

signal then cycle step

(reserved)

See’ i’ and” S for likely syntax and semantics.

reserved

Reserved for future use

reserved

Reserved for future use

kill request

FIXME: Thereis no description of how operate
when a specific thread context has been selected
(ie. does 'k kill only that thread?).

reserved

Reserved for future use

reserved

Reserved for future use

read memory

maddr, length

Read length bytes of memory starting at address
addr. Neither GDB nor the stub assume that sized
memory transfers are assumed using word alligned
accesses. FIXME: A word aligned memory
transfer mechanism is needed.

reply XX...

XX... iIsmem contents. Can be fewer bytes than
requested if ableto read only part of the data.
Neither GDB nor the stub assume that sized
memory transfers are assumed using word alligned
accesses. FIXME: A word aligned memory
transfer mechanism is needed.

reply ENN

NN iserrno

write mem

Maddr,length: XX...

Write length bytes of memory starting at address
addr. XX... isthe data.

reply OK

for success

reply ENN

for an error (this includes the case where only part
of the data was written).

reserved

n

file:///C|/gdb.html (151 of 352)19. 1. 2004 20:32:03

Reserved for future use

Debugging with GDB

reserved N Reserved for future use
reserved 0 Reserved for future use
reserved @) Reserved for future use
read reg (reserved) pn... See write register.
The hex encoded value of the register in target
returnr....
byte order.
Write register n... with valuer..., which contains
write reg Pn..=r... two hex digits for each byte in the register (target
byte order).
reply OK for success
reply ENN for an error
Request info about query. In general GDB queries
have aleading upper case letter. Custom vendor
eneral quer uer gueries should use a company prefix (in lower
g query qauery case) ex: qf sf. var' . query may optionaly be
followedbya™,"' or ;' separated list. Stubs
must ensure that they match the full query name.
reply XX. . . Hex encoded data from query. The reply can not
be empty.
reply ENN error reply
reply ™' Indicating an unrecognized query.
general set Qvar=val Set val ue of var to_val. See ' for adiscussing
of naming conventions.
reset (deprecated) r Reset the entire system.
Restart the program being debugged. XX, while
remote restart RXX needed, isignored. This packet isonly available in
extended mode.
no reply The R packet has no reply.
g saddr addr is addressto resume. If addr is omitted,
P resume at same address.
reply see below
step with signal Ssig; addr Like™ C but step not continue.
reply see below

file:///C|/gdb.html (152 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Search backwards starting at address addr for a

search t addr: PP, MM match with pattern PP and mask MM. PP and MM
are 4 bytes. addr must be at least 3 digits.
thread alive TXX Find out if thethread XX isalive.
reply OK thread is still alive
reply ENN thread is dead
reserved u Reserved for future use
reserved U Reserved for future use
reserved Y Reserved for future use
reserved Vv Reserved for future use
reserved w Reserved for future use
reserved W Reserved for future use
reserved X Reserved for future use

write mem (binary)

Xaddr, length: XX...

addr is address, length is number of bytes, XX...is
binary data. The characters $, #, and 0x7d are
escaped using Ox 7d.

reply OK for success

reply ENN for an error
reserved y Reserved for future use
reserved Y Reserved for future use

remove break or
watchpoint (dr aft)

zt, addr, length

See Z'.

insert break or watchpoint
(draft)

Zt, addr, length

tistype: " 0' - software breakpoint, " 1' -
hardware breakpoint, * 2' - write watchpoint,

~ 3" -read watchpoint, " 4' - access watchpoint;
addr is address; length isin bytes. For a software
breakpoint, length specifies the size of the
instruction to be patched. For hardware
breakpoints and watchpoints length specifies the
memory region to be monitored. To avoid
potential problems with duplicate packets, the
operations should be implemented in an
idempotent way.

reply ENN

for an error

reply OK

file:///C|/gdb.html (153 of 352)19. 1. 2004 20:32:03

for success

Debugging with GDB

N

If not supported.

reserved <other> Reserved for future use

The ' C, c¢', S, s' and ?' packetscanreceive any of the below asareply. In the case of the
"C, c', S and s' packets, that reply isonly returned when the target halts. In the below the
exact meaning of ~ si gnal nunber' ispoorly defined. In general one of the UNIX signal numbering
conventionsis used.

SAA AA isthe signal number

AA = two hex digit signal number; n... = register number (hex), r... =
target byte ordered register contents, size defined by
TAAN....r...;n....r..;n.... |REA STER RAW SI ZE; n...= "t hread' ,r... = thread process ID,
r.. thisis ahex integer; n... = other string not starting with valid hex digit.
GDB should ignore thisn..., r... pair and go on to the next. This way we
can extend the protocol.

The process exited, and AA isthe exit status. Thisis only applicable for
certains sorts of targets.

XAA The process terminated with signal AA.

AA = signal number; t... = address of symbol "_start"; d... = base of data
section; b... = base of bss section. Note: only used by Cisco Systems
NAA; t...; d...; b... (obsolete) |targets. The difference between this reply and the "qOffsets' query is
that the 'N' packet may arrive spontaneously whereas the 'qOffsets isa
guery initiated by the host debugger.

XX... ishex encoding of ASCII data. This can happen at any time while
OXX... the program is running and the debugger should continue to wait for 'W',
T', etc.

The following set and query packets have already been defined.

f#rrer:gt gC Return the current thread id.
reply QCpid Where pid isaHEX encoded 16 bit process id.
reply * Any other reply implies the old pid.

all thread ids |qf Thr eadI nf o

file:///C|/gdb.html (154 of 352)19. 1. 2004 20:32:03

Debugging with GDB

gsThreadl nfo

Obtain alist of active thread ids from the target
(OS). Since there may be too many active threads
to fit into one reply packet, this query works
iteratively: it may require more than one query/
reply sequence to obtain the entire list of threads.
Thefirst query of the sequence will be the

gf Thr eadl nf o query; subsequent queriesin the
sequence will bethe qsThr eadl nf o query.

NOTE: replaces the gL query (see below).

reply nxid> A single thread id
reply nxid>,<id>... acomma-separated list of thread ids
reply | (lower case 'el") denotes end of list.

In response to each query, the target will reply with
alist of one or more thread ids, in big-endian hex,
separated by commas. GDB will respond to each
reply with arequest for more thread ids (using the
gs form of the query), until the target responds
with| (lower-caseel, for' | ast').

Where <id> isathread-id in big-endian hex.
Obtain a printable string description of athread's
attributes from the target OS. This string may
contain anything that the target OS thinksis
interesting for GDB to tell the user about the
thread. The string isdisplayed in GDB's " i nf o
t hr eads' display. Some examples of possible
thread extrainfo strings are "Runnable", or
"Blocked on Mutex".

ie;tgathread |thr eadExtral nf o, id
reply XX...
query LIST
'?hrreadLIST gL startflagthreadcountnextthread
(deprecated)

file:///C|/gdb.html (155 of 352)19. 1. 2004 20:32:03

Where XX... isahex encoding of ASCII data,
comprising the printable string containing the extra
information about the thread's attributes.

Debugging with GDB

Obtain thread information from RTOS. Where:
startflag (one hex digit) is one to indicate the first
guery and zero to indicate a subsequent query;
threadcount (two hex digits) is the maximum
number of threads the response packet can contain;
and nextthread (eight hex digits), for subsequent
gueries (startflag is zero), isreturned in the
response as argthread.

reply
gMcountdonear gthreadthread...

NOTE: this query isreplaced by the
gf Thr eadl nf o query (see above).

Where: count (two hex digits) is the number of
threads being returned; done (one hex digit) is zero
to indicate more threads and one indicates no
further threads; argthreadid (eight hex digits) is
nextthread from the request packet; thread... isa
sequence of thread |Ds from the target. threadid
(eight hex digits). Seer enot e. c:
parse_threadlist_response().

compute
CRC of gCRC: addr, length
memory
block
reply ENN An error (such as memory fault)
reply CCRC32 A 32 hit cyc_llc redundancy check of the specified
memory region.
Get section offsets that the target used when re-
Lerv sect locating the downloaded image. Note: whilea Bss
gffsy gOf fsets offset isincluded in the response, GDB ignores this
and instead appliesthe Dat a offset to the Bss
section.
reply Text =xxx; Dat a=yyy;,
Bss=zzz
thread info :
request gPmodethreadid

file:///C|/gdb.html (156 of 352)19. 1. 2004 20:32:03

Returns information on threadid. Where: modeis a
hex encoded 32 bit mode; threadid is a hex
encoded 64 bit thread ID.

Debugging with GDB

reply *

remote
command

gRcmd, COMMAND

Seerenot e. c:
renot e_unpack _thread i nfo_response

OF

COMMAND (hex encoded) is passed to the local
interpreter for execution. Invalid commands should
be reported using the output string. Before the final
result packet, the target may also respond with a
number of intermediate COUTPUT consol e output
packets. Implementors should note that providing
access to a stubs'sinterpreter may have security
implications.

reply OK

A command response with no output.

reply OUTPUT

A command response with the hex encoded output
string OUTPUT.

reply ENN

Indicate a badly formed request.

reply =

When " q' * Rcnd' isnot recognized.

symbol
lookup

gSynbol : :

Notify the target that GDB is prepared to serve
symbol lookup requests. Accept requests from the
target for the values of symbols.

reply OK

The target does not need to look up any (more)
symbols.

reply qSynbol : sym name

The target requests the value of symbol sym _name
(hex encoded). GDB may provide the value by
using the gSynbol : sym value:sym name
message, described below.

symbol value

gSynbol : sym value:sym name

Set the value of SYM_NAME to SYM_VALUE.

sym_name (hex encoded) is the name of a symbol
whose value the target has previously requested.

sym value (hex) isthe value for symbol
sym name. If GDB cannot supply avalue for
sym_name, then thisfield will be empty.

file:///C|/gdb.html (157 of 352)19. 1. 2004 20:32:03

reply OK

The target does not need to look up any (more)
symbols.

Debugging with GDB

The target requests the value of a new symbol
sym_name (hex encoded). GDB will continueto
supply the values of symbols (if available), until
the target ceases to request them.

reply gSynbol : sym name

Thefollowing " g' /" G packets have previously been defined. In the below, some thirty-two bit
registers are transferred as sixty-four bits. Those registers should be zero/sign extended (which?) to fill
the space allocated. Register bytes are transfered in target byte order. The two nibbles within aregister
byte are transfered most-significant - least-significant.

All registers are transfered as thirty-two bit quantities in the order: 32 general-purpose; sr; 10;

MIPS32 hi; bad; cause; pc; 32 floating-point registers; fsr; fir; fp.

All registers are transfered as sixty-four bit quantities (including thirty-two bit registers such

MIPSo4 assr). Theordering isthe sameas M PS32.

Example sequence of atarget being re-started. Notice how the restart does not get any direct output:

<- ROO

-> 4+

target restarts

<- ?

-> 4+

-> T001:1234123412341234
<- +

Example sequence of atarget being stepped by a single instruction:

<- (l1445. ..
-> +

<- s

-> +

ti me passes
-> T001: 1234123412341234
<- +

<- g

-> +

-> 1455. ..
<- +

Using the gdbser ver program

file:///C|/gdb.html (158 of 352)19. 1. 2004 20:32:03

Debugging with GDB

gdbser ver isacontrol program for Unix-like systems, which allows you to connect your program
with aremote GDB viat ar get r enpt e---but without linking in the usual debugging stub.

gdbser ver isnot acomplete replacement for the debugging stubs, because it requires essentially the
same operating-system facilities that GDB itself does. In fact, a system that can run gdbser ver to
connect to aremote GDB could also run GDB locally! gdbser ver issometimes useful nevertheless,
because it is a much smaller program than GDB itself. It isaso easier to port than all of GDB, so you
may be able to get started more quickly on a new system by using gdbser ver . Findly, if you develop
code for real-time systems, you may find that the tradeoffs involved in real-time operation make it more
convenient to do as much development work as possible on another system, for example by cross-
compiling. You can use gdbser ver to make asimilar choice for debugging.

GDB and gdbser ver communicate via either aserial line or a TCP connection, using the standard
GDB remote seria protocol.

On the target machine,
you need to have a copy of the program you want to debug. gdbser ver does not need your
program's symbol table, so you can strip the program if necessary to save space. GDB on the host
system does all the symbol handling. To use the server, you must tell it how to communicate with
GDB; the name of your program; and the arguments for your program. The syntax is:

target > gdbserver comnm program|[args ...]

commi s either adevice name (to use aserial line) or a TCP hostname and portnumber. For
example, to debug Emacs with the argument * f 00. t xt ' and communicate with GDB over the
seria port " / dev/ coml’ :

t arget > gdbserver /dev/conl enmacs foo.txt

gdbser ver waits passively for the host GDB to communicate with it. To use a TCP connection
instead of a serid line:

target > gdbserver host: 2345 enmacs foo.txt

The only difference from the previous example is the first argument, specifying that you are
communicating with the host GDB viaTCP. The " host : 2345" argument means that

gdbser ver isto expect a TCP connection from machine " host ' to local TCP port 2345.
(Currently, the " host ' part isignored.) Y ou can choose any number you want for the port
number as long as it does not conflict with any TCP ports already in use on the target system (for
example, 23 isreserved for t el net).(5) You must use the same port number with the host GDB

target renote command.
On the GDB host machine,

file:///C|/gdb.html (159 of 352)19. 1. 2004 20:32:03

Debugging with GDB

you need an unstripped copy of your program, since GDB needs symbols and debugging
information. Start up GDB as usual, using the name of the local copy of your program as the first
argument. (You may also need the ™ - - baud' option if the serial lineis running at anything
other than 9600bps.) After that, uset ar get r enot e to establish communications with
gdbser ver . Itsargument is either a device name (usually a seria device, like ™ / dev/
ttyb'), oraTCP port descriptor in the form host : PORT. For example:

(gdb) target renote /dev/ttyb
communicates with the server viaseria line " / dev/ttyb' , and
(gdb) target renote the-target: 2345

communicates viaa TCP connection to port 2345on host "t he-t arget' . For TCP
connections, you must start up gdbser ver prior tousingthet ar get renot e command.
Otherwise you may get an error whose text depends on the host system, but which usually looks
something like ™ Connecti on refused'.

Using the gdbser ve. nl mprogram

gdbser ve. nl misacontrol program for NetWare systems, which allows you to connect your program
with aremote GDB viat ar get renot e.

GDB and gdbser ve. nl mcommunicate viaaserial line, using the standard GDB remote serial
protocol.

On the target machine,
you need to have a copy of the program you want to debug. gdbser ve. nl mdoes not need your
program’'s symbol table, so you can strip the program if necessary to save space. GDB on the host
system does all the symbol handling. To use the server, you must tell it how to communicate with
GDB; the name of your program; and the arguments for your program. The syntax is:

| oad gdbserve [BOARD=board] [PORT=port]
[BAUD=baud] program|[args ...]

board and port specify the seria line; baud specifies the baud rate used by the connection. port
and node default to O, baud defaults to 9600bps. For example, to debug Emacs with the argument
“foo. txt"' and communicate with GDB over serial port number 2 or board 1 using a 19200bps
connection:

| oad gdbserve BOARD=1 PORT=2 BAUD=19200 emacs fo0o0.t xt

file:///C|/gdb.html (160 of 352)19. 1. 2004 20:32:03

Debugging with GDB

On the GDB host machine,
you need an unstripped copy of your program, since GDB needs symbols and debugging
information. Start up GDB as usual, using the name of the local copy of your program as the first
argument. (You may also need the ™ - - baud' option if the serial lineis running at anything
other than 9600bps. After that, uset ar get r enpt e to establish communications with
gdbser ve. nl m Itsargument is adevice name (usually a serial device, like ™ / dev/ttyb').
For example:

(gdb) target renote /dev/ttyb

communications with the server viaserial line " / dev/ ttyb' .

Kernel Object Display

Some targets support kernel object display. Using this facility, GDB communicates specially with the
underlying operating system and can display information about operating system-level objects such as
mutexes and other synchronization objects. Exactly which objects can be displayed is determined on a
per-OS basis.

Usetheset o0s command to set the operating system. Thistells GDB which kernel object display
module to initialize:

(gdb) set os cisco

If set o0s succeeds, GDB will display some information about the operating system, and will create a
new i nf o command which can be used to query the target. Thei nf o command is named after the
operating system:

(gdb) info cisco

List of C sco Kernel Qbjects
hj ect Descri ption

any Any and all objects

Further subcommands can be used to query about particular objects known by the kernel.

Thereis currently no way to determine whether a given operating system is supported other than to try
it.

Configuration-Specific Information

file:///C|/gdb.html (161 of 352)19. 1. 2004 20:32:03

Debugging with GDB

While nearly all GDB commands are available for all native and cross versions of the debugger, there
are some exceptions. This chapter describes things that are only available in certain configurations.

There are three major categories of configurations. native configurations, where the host and target are
the same, embedded operating system configurations, which are usually the same for several different
processor architectures, and bare embedded processors, which are quite different from each other.

. Native

. Embedded OS

. Embedded Processors
. Architectures

Native

This section describes details specific to particular native configurations.

. HP-UX: HP-UX
. SVRA4 Process Information: SV R4 process information
. DJGPP Native: Features specific to the DJGPP port

HP-UX

On HP-UX systems, if you refer to afunction or variable name that begins with adollar sign, GDB
searches for auser or system name first, before it searches for a convenience variable.

SVRA4 process information

Many versions of SVR4 provide afacility called " / pr oc' that can be used to examine the image of a
running process using file-system subroutines. If GDB is configured for an operating system with this
facility, thecommand i nf o pr oc isavailable to report on several kinds of information about the
process running your program. i nf o pr oc works only on SVR4 systems that include the pr ocf s
code. Thisincludes OSF/1 (Digital Unix), Solaris, Irix, and Unixware, but not HP-UX or Linux, for
example.

I nfo proc
Summarize available information about the process.

I nfo proc mappi ngs
Report on the address ranges accessible in the program, with information on whether your
program may read, write, or execute each range.

I nfo proc tines

file:///C|/gdb.html (162 of 352)19. 1. 2004 20:32:03

Debugging with GDB

Starting time, user CPU time, and system CPU time for your program and its children.

info proc id
Report on the process IDs related to your program: its own process D, the ID of its parent, the
process group ID, and the session ID.

I nfo proc status
General information on the state of the process. If the process is stopped, this report includes the
reason for stopping, and any signal received.

info proc all
Show all the above information about the process.

Features for Debugging DJGPP Programs

DJGPP is the port of GNU development toolsto MS-DOS and MS-Windows. DJGPP programs are 32-
bit protected-mode programs that use the DPMI (DOS Protected-Mode Interface) API to run on top of
real-mode DOS systems and their emulations.

GDB supports native debugging of DJGPP programs, and defines afew commands specific to the
DJGPP port. This subsection describes those commands.

I nfo dos
Thisisaprefix of DJGPP-specific commands which print information about the target system
and important OS structures.

i nfo dos sysinfo
This command displays assorted information about the underlying platform: the CPU type and
features, the OS version and flavor, the DPMI version, and the available conventional and DPMI
memory.

I nfo dos gdt

i nfo dos | dt

i nfo dos idt
These 3 commands display entries from, respectively, Global, Local, and Interrupt Descriptor
Tables (GDT, LDT, and IDT). The descriptor tables are data structures which store a descriptor
for each segment that is currently in use. The segment's selector is an index into a descriptor
table; the table entry for that index holds the descriptor's base address and limit, and its attributes
and accessrights. A typical DJGPP program uses 3 segments. a code segment, a data segment
(used for both data and the stack), and a DOS segment (which allows access to DOS/BIOS data
structures and absol ute addresses in conventional memory). However, the DPMI host will usually
define additional segmentsin order to support the DPMI environment. These commands allow to
display entries from the descriptor tables. Without an argument, all entries from the specified
table are displayed. An argument, which should be an integer expression, means display asingle
entry whose index is given by the argument. For example, here's a convenient way to display
information about the debugged program'’s data segment:

file:///C|/gdb.html (163 of 352)19. 1. 2004 20:32:03

Debugging with GDB

I nfo
i nfo

i nfo

(gdb) info dos |dt $ds
Ox13f: base=0x11970000 |im t=0x0009ffff 32-Bit Data (Read/Wite,
Exp- up)

This comes in handy when you want to see whether a pointer is outside the data segment's limit (i.
e. garbled).

dos pde

dos pte

These two commands display entries from, respectively, the Page Directory and the Page Tables.
Page Directories and Page Tables are data structures which control how virtual memory
addresses are mapped into physical addresses. A Page Table includes an entry for every page of
memory that is mapped into the program's address space; there may be several Page Tables, each
one holding up to 4096 entries. A Page Directory has up to 4096 entries, one each for every Page
Table that is currently in use. Without an argument, i nf o dos pde displaysthe entire Page
Directory, andi nf o dos pt e displaysall theentriesin al of the Page Tables. An argument,
an integer expression, giventothei nf o dos pde command means display only that entry
from the Page Directory table. An argument giventothei nf o dos pt e command means
display entries from a single Page Table, the one pointed to by the specified entry in the Page
Directory. These commands are useful when your program uses DMA (Direct Memory Access),
which needs physical addresses to program the DMA controller. These commands are supported
only with some DPMI servers.

dos address-pte addr

This command displays the Page Table entry for a specified linear address. The argument linear
address addr should already have the appropriate segment's base address added to it, because this
command accepts addresses which may belong to any segment. For example, here's how to
display the Page Table entry for the page where the variable i is stored:

(gdb) info dos address-pte _ djgpp_base address + (char *) &
Page Table entry for address 0x11a00d30:

Base=0x02698000 Dirty Acc. Not-Cached Wite-Back Usr Read-Wite
+0xd30

Thissaysthat i isstored at offset 0xd30 from the page whose physical base addressis
0x02698000, and prints all the attributes of that page. Note that you must cast the addresses of
variablestoachar *, since otherwisethevalueof _ dj gpp_base_addr ess, the base
address of all variables and functionsin a DJGPP program, will be added using the rules of C
pointer arithmetics: if i isdeclared ani nt , GDB will add 4 times the value of

__dj gpp_base_addr ess totheaddress of i . Here's another example, it displays the Page
Table entry for the transfer buffer:

(gdb) info dos address-pte *((unsigned *)& go32 info_block + 3)
Page Table entry for address 0x29110:
Base=0x00029000 Dirty Acc. Not-Cached Wite-Back Usr Read-Wite

file:///C|/gdb.html (164 of 352)19. 1. 2004 20:32:03

Debugging with GDB
+0x110
(The + 3 offset is because the transfer buffer's address is the 3rd member of the
~go32_i nfo_bl ock structure.) The output of this command clearly shows that addresses in

conventional memory are mapped 1:1, i.e. the physical and linear addresses are identical. This
command is supported only with some DPMI servers.

Embedded Operating Systems

This section describes configurations involving the debugging of embedded operating systems that are
available for several different architectures.

. VxWorks: Using GDB with VxWorks
GDB includes the ahbility to debug programs running on various real-time operating systems.

Using GDB with VxWorks

target vxwor ks machi nenane
A VxWorks system, attached via TCP/IP. The argument machinename is the target system's
machine name or |P address.

On VxWorks, | oad links filename dynamically on the current target system as well as adding its
symbolsin GDB.

GDB enables developers to spawn and debug tasks running on networked VxWorks targets from a Unix
host. Already-running tasks spawned from the VxWorks shell can also be debugged. GDB uses code
that runs on both the Unix host and on the VxWorks target. The program gdb isinstalled and executed
on the Unix host. (It may be installed with the name vxgdb, to distinguish it from a GDB for debugging
programs on the host itself.)

VxWor ks-ti meout args
All VxWorks-based targets now support the option vxwor ks-t i meout . Thisoption is set by
the user, and args represents the number of seconds GDB waits for responses to rpc's. Y ou might
use thisif your VxWorkstarget is a slow software simulator or is on the far side of athin network
line.

The following information on connecting to VxWorks was current when this manual was produced;
newer releases of VxWorks may use revised procedures.

file:///C|/gdb.html (165 of 352)19. 1. 2004 20:32:03

Debugging with GDB

To use GDB with VxWorks, you must rebuild your VxWorks kernel to include the remote debugging
interface routines in the VxWorks library " r db. a' . To do this, define | NCLUDE _RDB in the VxWorks
configuration file” confi gAl | . h' and rebuild your VxWorks kernel. The resulting kernel contains
“rdb. a' , and spawns the source debugging task t RdbTask when VxWorks is booted. For more
information on configuring and remaking VxWorks, see the manufacturer's manual.

Onceyou haveincluded " r db. a' inyour VxWorks system image and set your Unix execution search
path to find GDB, you are ready to run GDB. From your Unix host, run gdb (or vxgdb, depending on
your installation).

GDB comes up showing the prompt:

(vxgdb)

« VxWorks Connection: Connecting to VxWorks
« VxWorks Download: VxWorks download
. VxXWorks Attach: Running tasks

Connecting to VxWorks

The GDB commandt ar get letsyou connect to a VxWorks target on the network. To connect to a
target whose host nameis"tt ", type:

(vxgdb) target vxworks tt
GDB displays messages like these:

Attaching renote nmachi ne across net...
Connected to tt.

GDB then attempts to read the symbol tables of any object modules |oaded into the VxWorks target
since it was last booted. GDB |ocates these files by searching the directories listed in the command
search path (see section Y our program's environment); if it fails to find an object file, it displays a

message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB command pat h, and
execute thet ar get command again.

VxWorks download

file:///Cl/gdb.html (166 of 352)19. 1. 2004 20:32:04

Debugging with GDB

If you have connected to the VxWorks target and you want to debug an object that has not yet been
loaded, you can use the GDB | oad command to download afile from Unix to VxWorks incrementally.
The object file given as an argument to thel oad command is actually opened twice: first by the
VxWorks target in order to download the code, then by GDB in order to read the symbol table. This can
lead to problems if the current working directories on the two systems differ. If both systems have NFS
mounted the same filesystems, you can avoid these problems by using absolute paths. Otherwise, it is
simplest to set the working directory on both systems to the directory in which the object file resides,
and then to reference the file by its name, without any path. For instance, aprogram * pr og. o' may
residein” vxpat h/ vw/ deno/ r db' inVxWorksandin ™ host pat h/ vw/ deno/ r db' on the host.
To load this program, type this on VxWorks:

-> cd "vxpat h/ vw deno/ r db"
Then, in GDB, type:

(vxgdb) cd host pat h/ vw/ deno/ rdb
(vxgdb) | oad prog.o

GDB displays aresponse similar to this:
Readi ng synbol data from wherever/vw deno/rdb/ prog.o... done.

You can also usethel oad command to reload an object module after editing and recompiling the
corresponding source file. Note that this makes GDB delete all currently-defined breakpoints, auto-
displays, and convenience variables, and to clear the value history. (Thisis necessary in order to
preserve the integrity of debugger's data structures that reference the target system's symbol table.)

Running tasks

Y ou can also attach to an existing task using the at t ach command as follows:
(vxgdb) attach task

where task is the VxWorks hexadecimal task ID. The task can be running or suspended when you attach
to it. Running tasks are suspended at the time of attachment.

Embedded Processors

This section goes into details specific to particular embedded configurations.

file:///C|/gdb.html (167 of 352)19. 1. 2004 20:32:04

Debugging with GDB

A29K Embedded: AMD A29K Embedded
ARM: ARM

H8/300: Hitachi H8/300

H8/500: Hitachi H8/500

1960: Intel 1960

M32R/D: Mitsubishi M32R/D
MG68K: Motorola M68K

M88K: Motorola M88K

MIPS Embedded: MIPS Embedded
PA: HP PA Embedded

PowerPC

SH: Hitachi SH

Sparclet: Tsqware Sparclet
Sparclite: Fujitsu Sparclite
ST2000: Tandem ST2000

Z8000: Zilog Z8000

AMD A29K Embedded

A29K UDI

A29K EB29K

Comms (EB29K): Communications setup
adb-EB29K: EB29K cross-debugging
Remote L og: Remote log

target adapt dev

Adapt monitor for A29K.

target and-eb dev speed PROG

Remote PC-resident AMD EB29K board, attached over serial lines. dev isthe serial device, asfor
target renot e; speed allowsyou to specify the linespeed; and PROG is the name of the
program to be debugged, as it appears to DOS on the PC. See section EBMON protocol for

AMD29K.

A29K UDI

GDB supports AMD's UDI ("Universal Debugger Interface") protocol for debugging the a29k processor
family. To use this configuration with AMD targets running the MiniMON monitor, you need the
program MONTI P, available from AMD at no charge. Y ou can aso use GDB with the UDI-conformant
a29%k simulator program | SSTI P, also available from AMD.

file:///Cl/gdb.html (168 of 352)19. 1. 2004 20:32:04

Debugging with GDB

target udi keyword
Select the UDI interface to aremote a29k board or simulator, where keyword is an entry in the
AMD configuration file " udi _soc' . Thisfile contains keyword entries which specify
parameters used to connect to a29k targets. If the ™ udi _soc"' fileisnot in your working
directory, you must set the environment variable ~ UDI CONF' to its pathname.

EBMON protocol for AMD29K

AMD distributes a 29K development board meant to fit in a PC, together with a DOS-hosted monitor
program called EBMON. As a shorthand term, this development system is called the "EB29K™". To use
GDB from a Unix system to run programs on the EB29K board, you must first connect a serial cable
between the PC (which hosts the EB29K board) and a serial port on the Unix system. In the following,
we assume you've hooked the cable between the PC's - COML' portand "/ dev/ttya' onthe Unix
system.

Communications setup

The next step isto set up the PC's port, by doing something like thisin DOS on the PC:
C.\> MODE coni: 9600, n, 8, 1, none

This example--run on an MS DOS 4.0 system--sets the PC port to 9600 bps, no parity, eight data bits,
one stop bit, and no "retry" action; you must match the communications parameters when establishing
the Unix end of the connection as well.

To give control of the PC to the Unix side of the serial line, type the following at the DOS console:
C\> CTTY conl

(Later, if you wish to return control to the DOS console, you can use the command CTTY con---but
you must send it over the device that had control, in our example over the " COML' serial line.)

From the Unix host, use a communications program such ast i p or cu to communicate with the PC; for
example,

cu -s 9600 -1 /dev/ttya

The cu options shown specify, respectively, the linespeed and the serial port to use. If you useti p
instead, your command line may look something like the following:

tip -9600 /dev/ttya

file:///Cl/gdb.html (169 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Y our system may require a different name wherewe show " / dev/ttya' astheargumenttoti p. The
communications parameters, including which port to use, are associated with thet i p argument in the
"remote" descriptions file--normally the system table " / et ¢/ r enot e’ .

Usingthet i p or cu connection, change the DOS working directory to the directory containing a copy
of your 29K program, then start the PC program EBMON (an EB29K control program supplied with your
board by AMD). Y ou should see aninitial display from EBMON similar to the one that follows, ending
with the EBMON prompt ~ #' ---

C\> G

G \> CD \usr\joe\work29k

G \ USR\ JOE\ WORK29K> EBMON

Am29000 PC Coprocessor Board Monitor, version 3.0-18
Copyri ght 1990 Advanced M cro Devices, Inc.

Witten by G bbons and Associ ates, Inc.

Enter '?" or '"H for help

PC Coprocessor Type = EB29K
| / O Base = 0x208
Menory Base = 0xd0000
Data Menory Size 2048KB

Avai | abl e | - RAM Range
Avai | abl e D- RAM Range

Ox8000 to Ox1fffff
0x80002000 to Ox801fffff

PageSi ze = 0x400
Regi ster Stack Size = 0x800
Menory Stack Size = 0x1800
CPU PRL = 0x3
AnR9027 Avai l abl e = No
Byte Wite Available = Yes

~.

Then exitthecu or t i p program (done in the example by typing ~. at the EBMON prompt). EBMON
keeps running, ready for GDB to take over.

file:///C/gdb.html (170 of 352)19. 1. 2004 20:32:04

Debugging with GDB

For this example, we've assumed what is probably the most convenient way to make sure the same 29K
program is on both the PC and the Unix system: a PC/NFS connection that establishes"drive” G ' " on
the PC as afile system on the Unix host. If you do not have PC/NFS or something similar connecting the
two systems, you must arrange some other way--perhaps floppy-disk transfer--of getting the 29K
program from the Unix system to the PC; GDB does not download it over the seria line.

EB29K cross-debugging

Finally, cd to the directory containing an image of your 29K program on the Unix system, and start
GDB---specifying as argument the name of your 29K program:

cd /usr/joel/ work29k
gdb nyf oo

Now you can usethet ar get command:

target and-eb /dev/ttya 9600 MYFQOO

In this example, we've assumed your programisin afilecalled " nyf oo’ . Note that the filename given
asthelast argument tot ar get and- eb should be the name of the program as it appearsto DOS. In
our example thisis simply MYFQO, but in general it can include a DOS path, and depending on your

transfer mechanism may not resemble the name on the Unix side.

At this point, you can set any breakpoints you wish; when you are ready to see your program run on the
29K board, use the GDB command r un.

To stop debugging the remote program, use the GDB det ach command.

To return control of the PC to its console, uset i p or cu once again, after your GDB session has
concluded, to attach to EBMON. Y ou can then type the command g to shut down EBMON, returning
control to the DOS command-line interpreter. Type CTTY con to return command input to the main
DOS console, and type~. toleaveti p or cu.

Remote log

Thet ar get and- eb command createsafile eb. | og' inthe current working directory, to help
debug problems with the connection. " eb. | og" records all the output from EBMON, including echoes
of the commands sent toit. Running "t ai |l -f' onthisfilein another window often helpsto
understand trouble with EBMON, or unexpected events on the PC side of the connection.

ARM

file:///C|/gdb.html (171 of 352)19. 1. 2004 20:32:04

Debugging with GDB

target rdi dev
ARM Angel monitor, viaRDI library interface to ADP protocol. Y ou may use thistarget to
communicate with both boards running the Angel monitor, or with the EmbeddedI CE JTAG
debug device.

target rdp dev
ARM Demon monitor.

Hitachi H8/300

target hns dev
A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host. Use special
commandsdevi ce and speed to control the serial line and the communications speed used.
target e7000 dev
E7000 emulator for Hitachi H8 and SH.
target sh3 dev
target sh3e dev
Hitachi SH-3 and SH-3E target systems.

When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board, thel oad command
downloads your program to the Hitachi board and also opens it as the current executable target for GDB
on your host (likethef i | e command).

GDB needs to know these things to talk to your Hitachi SH, H8/300, or H8/500:

1. that youwanttouse t ar get hns' , the remote debugging interface for Hitachi
microprocessors, or "t arget e7000' , thein-circuit emulator for the Hitachi SH and the
Hitachi 300H. (" t ar get hns' isthe default when GDB is configured specifically for the
Hitachi SH, H8/300, or H8/500.)

2. what serial device connects your host to your Hitachi board (the first serial device available on
your host is the default).

3. what speed to use over the serial device.

« Hitachi Boards: Connecting to Hitachi boards.
. Hitachi ICE: Using the E7000 In-Circuit Emulator.
. Hitachi Special: Special GDB commands for Hitachi micros.

Connecting to Hitachi boards

Use the special GDB command ~ devi ce port' if you need to explicitly set the serial device. The
default port isthefirst available port on your host. Thisis only necessary on Unix hosts, whereit is

file:///C|/gdb.html (172 of 352)19. 1. 2004 20:32:04

Debugging with GDB

typically something like " / dev/ttya'.

GDB has another special command to set the communications speed: * speed bps' . Thiscommand
also isonly used from Unix hosts; on DOS hosts, set the line speed as usual from outside GDB with the
DOS node command (for instance, node con®: 9600, n, 8, 1, p for a 9600bps connection).

The devi ce' and " speed’ commands are available only when you use a Unix host to debug your
Hitachi microprocessor programs. If you use a DOS host, GDB depends on an auxiliary terminate-and-
stay-resident program called asynct sr to communicate with the development board through a PC
seria port. You must also use the DOS node command to set up the seria port on the DOS side.

The following sample session illustrates the steps needed to start a program under GDB control on an
H8/300. The example uses a sample H8/300 program called " t . X' . The procedure is the same for the
Hitachi SH and the H8/500.

First hook up your development board. In this example, we use a board attached to serial port COVR; if
you use a different serial port, substitute its name in the argument of the rode command. When you call
asynct sr, the auxiliary comms program used by the debugger, you give it just the numeric part of the
seria port's name; for example, " asyncstr 2' belowrunsasyncst r on COMR.

C. \ H8300\ TEST> asynctsr 2
C. \ HB300\ TEST> node con®: 9600, n, 8,1, p

Resi dent portion of MODE | oaded

cove: 9600, n, 8, 1, p

Warning: We have noticed a bug in PC-NFS that conflictswith asynct sr . If you aso
run PC-NFS on your DOS host, you may need to disableit, or even boot without it, to use
asynct sr to control your development board.

Now that serial communications are set up, and the development board is connected, you can start up
GDB. Call gdb with the name of your program as the argument. GDB prompts you, as usual, with the
prompt ~ (gdb) ' . Usetwo special commands to begin your debugging session: "t ar get hns' to
specify cross-debugging to the Hitachi board, and thel oad command to download your program to the
board. | oad displays the names of the program's sections, anda” *' for each 2K of data downloaded.
(If you want to refresh GDB data on symbols or on the executable file without downloading, use the
GDB commandsfi | e or synbol - fi | e. These commands, and | oad itself, are described in section
Commands to specify files.)

(eg- C: \ H8300\ TEST) gdb t.x

file:///C|/gdb.html (173 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB is free software and you are wel cone to distribute copies
of it under certain conditions; type "show copying" to see
t he conditions.
There is absolutely no warranty for CGDB; type "show warranty"”
for details.
GDB 5.1.1, Copyright 1992 Free Software Foundation, Inc...
(gdb) target hns
Connected to renpte H8/ 300 HVE system
(gdb) load t.x
. text : 0x8000 .. Oxabde ******x*xkx
. dat a . Oxabde .. Oxad30 *
.stack : Oxf000 .. Oxf0l1l4 *

At this point, you're ready to run or debug your program. From here on, you can use all the usual GDB
commands. The br eak command sets breakpoints; the r un command starts your program; pri nt or x
display data; the cont i nue command resumes execution after stopping at a breakpoint. Y ou can use
the hel p command at any time to find out more about GDB commands.

Remember, however, that operating system facilities aren't available on your development board; for
example, if your program hangs, you can't send an interrupt--but you can press the RESET switch!

Use the RESET button on the development board

. tointerrupt your program (don't usect | - C on the DOS host--it has no way to pass an interrupt
signal to the development board); and

. toreturn to the GDB command prompt after your program finishes normally. The
communications protocol provides no other way for GDB to detect program completion.

In either case, GDB sees the effect of a RESET on the development board as a"normal exit" of your
program.

Using the E7000 in-circuit emulator

Y ou can use the E7000 in-circuit emulator to develop code for either the Hitachi SH or the H8/300H.
Use one of these forms of the " t ar get €7000" command to connect GDB to your E7000:

target e7000 port speed
Usethisform if your E7000 is connected to a serial port. The port argument identifies what serial
port to use (for example, " con®?'). The third argument is the line speed in bits per second (for
example, - 9600").

target e7000 host nane
If your E7000 isinstalled as a host on a TCP/IP network, you can just specify its hostname; GDB

file:///C|/gdb.html (174 of 352)19. 1. 2004 20:32:04

Debugging with GDB

usest el net to connect.

Special GDB commands for Hitachi micros

Some GDB commands are available only for the H8/300:

set machi ne h8300

set machi ne h8300h
Condition GDB for one of the two variants of the H8/300 architecture with ~ set nmachi ne' .
Youcanuse show nachi ne' to check which variant is currently in effect.

H8/500

set nmenory nod

show nmenory
Specify which H8/500 memory model (mod) you are using with ~ set nenory' ; check which
memory model isin effect with * show nmenory' . The accepted valuesfor mod aresmal | ,
bi g, medi um and conpact .

Intel 1960

target non960 dev
MON960 monitor for Intel i1960.

target nindy devi cenane
An Intel 960 board controlled by a Nindy Monitor. devicename is the name of the serial deviceto
use for the connection, e.qg. / dev/ttya'.

Nindy isa ROM Monitor program for Intel 960 target systems. When GDB is configured to control a
remote Intel 960 using Nindy, you can tell GDB how to connect to the 960 in severa ways.

. Through command line options specifying seria port, version of the Nindy protocol, and
communications speed;

. By responding to a prompt on startup;

. Byusingthet ar get command at any point during your GDB session. See section Commands
for managing targets.

With the Nindy interface to an Intel 960 board, | oad downloads filename to the 960 as well as adding
its symbolsin GDB.

« Nindy Startup: Startup with Nindy

file:///C|/gdb.html (175 of 352)19. 1. 2004 20:32:04

Debugging with GDB

« Nindy Options: Options for Nindy
« Nindy Reset: Nindy reset command

Startup with Nindy

If you ssimply start gdb without using any command-line options, you are prompted for what serial port
to use, before you reach the ordinary GDB prompt:

Attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever suffix (after * / dev/ tty') identifies the seria port you want to
use. You can, if you choose, smply start up with no Nindy connection by responding to the prompt with
an empty line. If you do this and later wish to attach to Nindy, uset ar get (see section Commands for

managing targets).

Options for Nindy

These are the startup options for beginning your GDB session with a Nindy-960 board attached:

-r port
Specify the serial port name of a seria interface to be used to connect to the target system. This
option is only available when GDB is configured for the Intel 960 target architecture. Y ou may
specify port asany of: afull pathname (e.g. -r /dev/ttya'),adevicenamein /dev' (e
g. -r ttya'),or smply the unique suffix for aspecifictty (eg. -r a').

(An uppercase letter "O", not a zero.) Specify that GDB should use the "old" Nindy monitor
protocol to connect to the target system. This option is only available when GDB is configured
for the Intel 960 target architecture.

Warning: if you specify * - O , but are actually trying to connect to atarget system that
expects the newer protocol, the connection fails, appearing to be a speed mismatch. GDB
repeatedly attempts to reconnect at several different line speeds. Y ou can abort this
process with an interrupt.

- brk
Specify that GDB should first send a BREAK signal to the target system, in an attempt to reset it,
before connecting to a Nindy target.

Warning: Many target systems do not have the hardware that this requires; it only works
with afew boards.

file:///C|/gdb.html (176 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The standard ™ - b' option controls the line speed used on the serial port.

Nindy reset command

reset
For aNindy target, this command sends a "break” to the remote target system; thisis only useful
If the target has been equipped with a circuit to perform a hard reset (or some other interesting
action) when a break is detected.

Mitsubishi M32R/D

target nB2r dev
Mitsubishi M32R/D ROM monitor.

M68k

The Motorola m68k configuration includes ColdFire support, and target command for the following
ROM monitors.

target abug dev

ABug ROM monitor for M68K.
target cpu32bug dev

CPU32BUG monitor, running on a CPU32 (M68K) board.
t arget dbug dev

dBUG ROM monitor for Motorola ColdFire.
target est dev

EST-300 ICE monitor, running on a CPU32 (M68K) board.
target ronb8k dev

ROM 68K monitor, running on an M68K IDP board.

If GDB is configured with n68* - er i csson- *, it will instead have only a single special target
command:

target es1800 dev
ES-1800 emulator for M68K.

[context?]

target ronbug dev
ROMBUG ROM monitor for OS/9000.

file:///C|/gdb.html (177 of 352)19. 1. 2004 20:32:04

Debugging with GDB

M88K

target bug dev
BUG monitor, running on aMVME187 (m88k) board.

MIPS Embedded

GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to a seria line. This
is available when you configure GDB with ™ - - t ar get =m ps-i dt-ecoff' .

Use these GDB commands to specify the connection to your target board:

target m ps port
To run aprogram on the board, start up gdb with the name of your program as the argument. To
connect to the board, use the command "t ar get m ps port' , whereport isthe name of the
serial port connected to the board. If the program has not already been downloaded to the board,
you may use thel oad command to download it. Y ou can then use all the usual GDB commands.
For example, this sequence connects to the target board through a serial port, and loads and runs
a program called prog through the debugger:

host$ gdb prog

GB is free software and ...
(gdb) target mps /dev/ttyb
(gdb) | oad prog

(gdb) run

target m ps host nane: port nunber
On some GDB host configurations, you can specify a TCP connection (for instance, to a serial
line managed by aterminal concentrator) instead of a serial port, using the syntax = host nane:
port nunber' .
target pnon port
PMON ROM monitor.
target ddb port
NEC's DDB variant of PMON for Vr4300.
target |si port
LSI variant of PMON.
target r3900 dev
Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
target array dev
Array Tech LSI33K RAID controller board.

file:///C|/gdb.html (178 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB also supports these special commands for MIPS targets:

set processor args

show processor
Usetheset processor command to set the type of MIPS processor when you want to access
processor-type-specific registers. For example, set processor r 3041 tellsGDB to usethe
CPU registers appropriate for the 3041 chip. Usetheshow pr ocessor command to see what
MIPS processor GDB isusing. Usethei nf o r eg command to see what registers GDB is
using.

set m psfpu double

set m psfpu single

set m psfpu none

show m psf pu
If your target board does not support the MIPS floating point coprocessor, you should use the
command ~ set m psf pu none' (if you need this, you may wish to put the command in
your GDB init file). Thistells GDB how to find the return value of functions which return
floating point values. It also alows GDB to avoid saving the floating point registers when calling
functions on the board. If you are using a floating point coprocessor with only single precision
floating point support, as on the R4650 processor, use the command ~ set i psf pu
si ngl e' . The default double precision floating point coprocessor may be selected using ~ set
m psf pu doubl e’ . In previous versions the only choices were double precision or no floating
point, so " set m psfpu on' will select double precisonand ™ set m psfpu of f' will
select no floating point. As usual, you can inquire about the m psf pu variable with * show
m psfpu' .

set renotedebug n

show r enot edebug
Y ou can see some debugging information about communications with the board by setting the
r enot edebug variable. If you setitto 1 using " set renot edebug 1', every packetis
displayed. If you set it to 2, every character is displayed. Y ou can check the current value at any
time with the command * show r enot edebug’ .

set tinmeout seconds

set retransmt-tineout seconds

show ti nmeout

show retransmt-ti meout
Y ou can control the timeout used while waiting for a packet, in the MIPS remote protocol, with
theset tineout seconds command. The defaultis5 seconds. Similarly, you can control
the timeout used while waiting for an acknowledgement of a packet with the set
retransmt-ti meout seconds command. The default is 3 seconds. Y ou can inspect both
valueswithshow ti meout andshow retransm t-ti nmeout . (These commands are only
available when GDB isconfigured for ™ - -t ar get =m ps-i dt - ecof f') Thetimeout set by
set timeout doesnot apply when GDB iswaiting for your program to stop. In that case,
GDB waits forever because it has no way of knowing how long the program is going to run
before stopping.

file:///C|/gdb.html (179 of 352)19. 1. 2004 20:32:04

Debugging with GDB

PowerPC

target di nk32 dev
DINK32 ROM monitor.
target ppcbug dev
target ppcbugl dev
PPCBUG ROM monitor for PowerPC.
target sds dev
SDS monitor, running on a PowerPC board (such as Motorolas ADS).

HP PA Embedded

target op50n dev

OP50N monitor, running on an OKI HPPA board.
target w89k dev

W89K monitor, running on a Winbond HPPA board.

Hitachi SH

target hns dev
A Hitachi SH board attached via serial line to your host. Use special commandsdevi ce and
speed to control the serial line and the communications speed used.
target e7000 dev
E7000 emulator for Hitachi SH.
target sh3 dev
target sh3e dev
Hitachi SH-3 and SH-3E target systems.

Tsqware Sparclet

GDB enables devel opers to debug tasks running on Sparclet targets from a Unix host. GDB uses code
that runs on both the Unix host and on the Sparclet target. The program gdb isinstalled and executed on
the Unix host.

renot et i meout args
GDB supportsthe option r enot et i meout . Thisoption is set by the user, and args represents
the number of seconds GDB waits for responses.

When compiling for debugging, include the options ™ - g' to get debug information and ™ - Tt ext' to
relocate the program to where you wish to load it on the target. Y ou may also want to add the options ™ -

file:///Cl/gdb.html (180 of 352)19. 1. 2004 20:32:04

Debugging with GDB

n' or - N inorder to reduce the size of the sections. Example:

sparcl et -aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
Y ou can use obj dunp to verify that the addresses are what you intended:

spar cl et - aout - obj dunp --headers --syns prog

Once you have set your Unix execution search path to find GDB, you are ready to run GDB. From your
Unix host, run gdb (or spar cl et - aout - gdb, depending on your installation).

GDB comes up showing the prompt:
(gdbsl et)

. Sparclet File: Setting the file to debug

. Sparclet Connection: Connecting to Sparclet
. Sparclet Download: Sparclet download

. Sparclet Execution: Running and debugging

Setting file to debug

The GDB command f i | e lets you choose with program to debug.
(gdbslet) file prog

GDB then attempts to read the symbol table of * pr og' . GDB locates the file by searching the

directories listed in the command search path. If the file was compiled with debug information (option "-
g"), source fileswill be searched as well. GDB locates the source files by searching the directories listed
in the directory search path (see section Y our program's environment). If it failsto find afile, it displays

amessage such as:

prog: No such file or directory.

When this happens, add the appropriate directories to the search paths with the GDB commands pat h
and di r , and executethet ar get command again.

Connecting to Sparclet

The GDB commandt ar get letsyou connect to a Sparclet target. To connect to atarget on seria port

file:///C|/gdb.html (181 of 352)19. 1. 2004 20:32:04

Debugging with GDB

"ttya", type

(gdbsl et) target sparclet /dev/ttya
Renote target sparclet connected to /dev/ttya
main () at ../prog.c:3

GDB displays messages like these:
Connected to ttya.

Sparclet download

Once connected to the Sparclet target, you can use the GDB | oad command to download the file from
the host to the target. The file name and load offset should be given as argumentsto the |l oad
command. Since the file format is aout, the program must be |oaded to the starting address. Y ou can use
obj dunp to find out what this valueis. The load offset is an offset which is added to the VMA (virtual
memory address) of each of thefile's sections. For instance, if the program ~ pr og' waslinked to text
address 0x1201000, with data at 0x12010160 and bss at 0x12010170, in GDB, type:

(gdbsl et) |l oad prog 0x12010000
Loadi ng section .text, size 0OxdbO vma 0x12010000

If the code is loaded at a different address then what the program was linked to, you may need to use the
secti on and add- synbol -fi | e commandsto tell GDB where to map the symbol table.

Running and debugging

Y ou can now begin debugging the task using GDB's execution control commands, b, st ep, r un, €tc.
See the GDB manual for the list of commands.

(gdbslet) b main

Breakpoint 1 at 0x12010000: file prog.c, line 3.
(gdbslet) run

Starting program prog

Breakpoint 1, main (argc=1, argv=0xeffff2lc) at prog.c:3
3 char *symarg = O;

(gdbslet) step

4 char *execarg = "hello!";

(gdbsl et)

Fujitsu Sparclite

file:///C|/gdb.html (182 of 352)19. 1. 2004 20:32:04

Debugging with GDB

target sparclite dev
Fujitsu sparclite boards, used only for the purpose of loading. Y ou must use an additional
command to debug the program. For example: target remote dev using GDB standard remote
protocol.

Tandem ST2000

GDB may be used with a Tandem ST2000 phone switch, running Tandem's STDBUG protocol.

To connect your ST2000 to the host system, see the manufacturer's manual. Once the ST2000 is
physically attached, you can run:

target st2000 dev speed

to establish it as your debugging environment. dev is normally the name of a serial device, suchas ™ /
dev/ttya', connected to the ST2000 viaaserial line. Y ou can instead specify devasa TCP
connection (for example, to a serial line attached viaaterminal concentrator) using the syntax

host nane: por t nunber.

Thel oad and at t ach commands are not defined for this target; you must load your program into the
ST2000 as you normally would for standalone operation. GDB reads debugging information (such as
symbols) from a separate, debugging version of the program available on your host computer.

These auxiliary GDB commands are available to help you with the ST2000 environment:

st 2000 command
Send a command to the STDBUG monitor. See the manufacturer's manual for available
commands.

connect
Connect the controlling terminal to the STDBUG command monitor. When you are done
interacting with STDBUG, typing either of two character sequences gets you back to the GDB
command prompt: RET~. (Return, followed by tilde and period) or RET~C- d (Return, followed
by tilde and control-D).

Zilog Z8000

When configured for debugging Zilog Z8000 targets, GDB includes a Z8000 simulator.

For the Z8000 family, "t ar get si mi simulates either the Z8002 (the unsegmented variant of the
Z8000 architecture) or the Z8001 (the segmented variant). The simulator recognizes which architecture

file:///Cl/gdb.html (183 of 352)19. 1. 2004 20:32:04

Debugging with GDB

IS appropriate by inspecting the object code.

target simargs
Debug programs on asimulated CPU. If the simulator supports setup options, specify them via
args.

After specifying thistarget, you can debug programs for the ssmulated CPU in the same style as
programs for your host computer; usethef i | e command to load a new program image, ther un
command to run your program, and so on.

Aswell as making available all the usual machine registers (see section Registers), the Z8000 simulator
provides three additional items of information as specially named registers:

cycl es

Counts clock-ticks in the simulator.
I nsts

Counts instructions run in the simulator.
tinme

Execution time in 60ths of a second.

Y ou can refer to these values in GDB expressions with the usual conventions; for example, " b f put ¢
i f $cycl es>5000" setsaconditiona breakpoint that suspends only after at least 5000 simulated
clock ticks.

Architectures

This section describes characteristics of architectures that affect all uses of GDB with the architecture,
both native and cross.

. A29K

. Alpha
. MIPS

A29K

set rstack _hi gh _address address
On AMD 29000 family processors, registers are saved in a separate register stack. Thereisno
way for GDB to determine the extent of this stack. Normally, GDB just assumes that the stack is
"large enough". This may result in GDB referencing memory locations that do not exist. If
necessary, you can get around this problem by specifying the ending address of the register stack
withtheset rstack _hi gh_addr ess command. The argument should be an address, which

file:///Cl/gdb.html (184 of 352)19. 1. 2004 20:32:04

Debugging with GDB

you probably want to precede with = 0x" to specify in hexadecimal.
show rstack _hi gh_address
Display the current limit of the register stack, on AMD 29000 family processors.

Alpha

See the following section.
MIPS

Alpha- and MIPS-based computers use an unusual stack frame, which sometimes requires GDB to
search backward in the object code to find the beginning of afunction.

To improve response time (especially for embedded applications, where GDB may be restricted to a
slow seria line for this search) you may want to limit the size of this search, using one of these
commands:

set heuristic-fence-post |imt
Restrict GDB to examining at most limit bytesin its search for the beginning of afunction. A
value of 0 (the default) means thereis no limit. However, except for O, the larger the limit the
more bytesheuri sti c-f ence- post must search and therefore the longer it takes to run.
show heuri stic-fence- post
Display the current limit.

These commands are available only when GDB is configured for debugging programs on Alpha or
MIPS processors.

Controlling GDB

Y ou can alter the way GDB interacts with you by using the set command. For commands controlling
how GDB displays data, see section Print settings. Other settings are described here.

« Prompt: Prompt

. Editing: Command editing

« History: Command history

. Screen Size: Screen size

. Numbers: Numbers

. Messages/Warnings. Optional warnings and messages

. Debugging Output: Optional messages about internal happenings

file:///Cl/gdb.html (185 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Prompt

GDB indicates its readiness to read a command by printing a string called the prompt. Thisstring is
normally ~ (gdb) ' . You can change the prompt string withtheset pr onpt command. For instance,
when debugging GDB with GDB, it is useful to change the prompt in one of the GDB sessions so that
you can always tell which one you are talking to.

Note: set pronpt doesnot add a space for you after the prompt you set. Thisallows you to set a
prompt which ends in a space or a prompt that does not.

set pronpt newpronpt

Directs GDB to use newprompt as its prompt string henceforth.
show pr onpt

Printsaline of theform: * Gdb' s pronpt is: your-pronpt'

Command editing

GDB reads its input commands viathe readline interface. This GNU library provides consistent

behavior for programs which provide a command line interface to the user. Advantages are GNU Emacs-
style or vi-style inline editing of commands, csh-like history substitution, and a storage and recall of
command history across debugging sessions.

Y ou may control the behavior of command line editing in GDB with the command set .

set editing
set editing on
Enable command line editing (enabled by default).
set editing off
Disable command line editing.
show edi ting
Show whether command line editing is enabled.

Command history

GDB can keep track of the commands you type during your debugging sessions, so that you can be
certain of precisely what happened. Use these commands to manage the GDB command history facility.

set history filenanme fnane
Set the name of the GDB command history file to fname. Thisisthe file where GDB reads an
initial command history list, and where it writes the command history from this session when it

file:///Cl/gdb.html (186 of 352)19. 1. 2004 20:32:04

Debugging with GDB

exits. You can access this list through history expansion or through the history command editing
characters listed below. Thisfile defaults to the value of the environment variable
GDBHI STFI LE,orto " ./.gdb_history' (./ _gdb_history' on MS-DOY) if this
variable is not set.

set history save

set history save on
Record command history in afile, whose name may be specified withtheset hi st ory
fi | ename command. By default, this option is disabled.

set history save off
Stop recording command history in afile.

set history size size
Set the number of commands which GDB keepsinits history list. This defaults to the value of
the environment variable HI STSI ZE, or to 256 if this variable is not set.

History expansion assigns special meaning to the character ! .

Since! isalsothelogical not operator in C, history expansion is off by default. If you decide to enable
history expansion withtheset hi story expansi on on command, you may sometimes need to
follow ! (whenitisused aslogical not, in an expression) with a space or atab to prevent it from being
expanded. The readline history facilities do not attempt substitution on the strings! = and! (, even
when history expansion is enabled.

The commands to control history expansion are:

set history expansi on on

set history expansion
Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion. The readline code comes with more complete documentation of
editing and history expansion features. Users unfamiliar with GNU Emacsor vi may wish to
read it.

show hi story

show hi story filenane

show hi story save

show hi story size

show hi story expansi on
These commands display the state of the GDB history parameters. show hi st ory by itself
displays all four states.

show commmands
Display the last ten commands in the command history.
show commands n

file:///C|/gdb.html (187 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Print ten commands centered on command number n.
show commands +
Print ten commands just after the commands last printed.

Screen size

Certain commands to GDB may produce large amounts of information output to the screen. To help you
read all of it, GDB pauses and asks you for input at the end of each page of output. Type RET when you
want to continue the output, or g to discard the remaining output. Also, the screen width setting
determines when to wrap lines of output. Depending on what is being printed, GDB tries to break the
line at a readable place, rather than simply letting it overflow onto the following line.

Normally GDB knows the size of the screen from the terminal driver software. For example, on Unix
GDB uses the termcap data base together with the value of the TERMenvironment variable and the
stty rows andstty col s settings. If thisisnot correct, you can override it with the set

hei ght andset w dt h commands:

set height |pp

show hei ght

set wdth cpl

show wi dt h
These set commands specify a screen height of Ipp lines and a screen width of cpl characters.
The associated s how commands display the current settings. If you specify a height of zero lines,
GDB does not pause during output no matter how long the output is. Thisisuseful if output isto
afileor to an editor buffer. Likewise, you can specify " set wi dt h 0" to prevent GDB from
wrapping its output.

Numbers

Y ou can always enter numbersin octal, decimal, or hexadecimal in GDB by the usual conventions: octal
numbers begin with * 0" , decimal numbersend with ™ . ' , and hexadecimal numbers begin with * Ox" .
Numbers that begin with none of these are, by default, entered in base 10; likewise, the default display
for numbers--when no particular format is specified--is base 10. Y ou can change the default base for
both input and output with theset r adi x command.

set input-radi x base
Set the default base for numeric input. Supported choices for base are decimal 8, 10, or 16. base
must itself be specified either unambiguously or using the current default radix; for example, any
of

set radi x 012

file:///Cl/gdb.html (188 of 352)19. 1. 2004 20:32:04

Debugging with GDB

set radix 10.
set radi x Oxa

sets the base to decimal. On the other hand, " set radi x 10' leavesthe radix unchanged no
matter what it was.

set output-radi x base
Set the default base for numeric display. Supported choices for base are decimal 8, 10, or 16.
base must itself be specified either unambiguously or using the current default radix.

show i nput - radi x
Display the current default base for numeric input.

show out put - r adi x
Display the current default base for numeric display.

Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running on a slow machine, you may want
tousetheset ver bose command. This makes GDB tell you when it does a lengthy internal
operation, so you will not think it has crashed.

Currently, the messages controlled by set ver bose are those which announce that the symbol table
for asourcefileisbeing read; seesynbol - fi | e in section Commands to specify files.

set verbose on

Enables GDB output of certain informational messages.
set verbose off

Disables GDB output of certain informational messages.
show ver bose

Displays whether set ver bose ison or off.

By default, if GDB encounters bugs in the symbol table of an object file, it issilent; but if you are
debugging a compiler, you may find this information useful (see section Errors reading symbol files).

set conplaints limt
Permits GDB to output limit complaints about each type of unusual symbols before becoming
silent about the problem. Set limit to zero to suppress all complaints; set it to alarge number to
prevent complaints from being suppressed.

show conpl ai nts
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seemsto be alot of stupid questions to confirm
certain commands. For example, if you try to run a program which is already running:

file:///Cl/gdb.html (189 of 352)19. 1. 2004 20:32:04

Debugging with GDB

(gdb) run
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you can disable this
"“feature":

set confirm off

Disables confirmation requests.
set confirm on

Enables confirmation requests (the default).
show confirm

Displays state of confirmation requests.

Optional messages about internal happenings

set debug arch
Turns on or off display of gdbarch debugging info. The default is off
show debug arch
Displays the current state of displaying gdbarch debugging info.
set debug event
Turns on or off display of GDB event debugging info. The default is off.
show debug event
Displays the current state of displaying GDB event debugging info.
set debug expression
Turns on or off display of GDB expression debugging info. The default is off.
show debug expression
Displays the current state of displaying GDB expression debugging info.
set debug overl oad
Turns on or off display of GDB C++ overload debugging info. This includes info such as ranking
of functions, etc. The default is off.
show debug overl oad
Displays the current state of displaying GDB C++ overload debugging info.
set debug renote
Turns on or off display of reports on all packets sent back and forth across the serial line to the
remote machine. Theinfo is printed on the GDB standard output stream. The default is off.
show debug renote
Displays the state of display of remote packets.
set debug seri al
Turns on or off display of GDB seria debugging info. The default is off.
show debug seri al
Displays the current state of displaying GDB serial debugging info.

file:///Cl/gdb.html (190 of 352)19. 1. 2004 20:32:04

Debugging with GDB

set debug target
Turns on or off display of GDB target debugging info. Thisinfo includes what is going on at the
target level of GDB, asit happens. The default is off.
show debug target
Displays the current state of displaying GDB target debugging info.
set debug varobj
Turns on or off display of GDB variable object debugging info. The default is off.
show debug var obj
Displays the current state of displaying GDB variable object debugging info.

Canned Sequences of Commands

Aside from breakpoint commands (see section Breakpoint command lists), GDB provides two ways to
store sequences of commands for execution as a unit: user-defined commands and command files.

. Define: User-defined commands

. Hooks: User-defined command hooks

. Command Files. Command files

. Output: Commands for controlled output

User-defined commands

A user-defined command is a sequence of GDB commands to which you assign anew name as a
command. Thisis done with the def i ne command. User commands may accept up to 10 arguments
separated by whitespace. Arguments are accessed within the user command via $arg0...$arg9. A trivial
example:

defi ne adder
print $arg0 + $argl + $arg2

To execute the command use:

adder 1 2 3

This defines the command adder , which prints the sum of its three arguments. Note the arguments are
text substitutions, so they may reference variables, use complex expressions, or even perform inferior

functions calls.

defi ne commandnane
Define a command named commandname. If there is already a command by that name, you are

file:///C|/gdb.html (191 of 352)19. 1. 2004 20:32:04

Debugging with GDB

asked to confirm that you want to redefine it. The definition of the command is made up of other
GDB command lines, which are given following the def i ne command. The end of these
commands is marked by aline containing end.

Takes a single argument, which is an expression to evaluate. It isfollowed by a series of
commands that are executed only if the expression is true (nonzero). There can then optionally be
alineel se, followed by a series of commands that are only executed if the expression was false.
The end of the list is marked by aline containing end.

whi | e
The syntax issimilar to i f : the command takes a single argument, which is an expression to
evaluate, and must be followed by the commands to execute, one per line, terminated by an end.
The commands are executed repeatedly as long as the expression evaluates to true.

docunent commandnane
Document the user-defined command commandname, so that it can be accessed by hel p. The
command commandname must already be defined. This command reads lines of documentation
just asdef i ne readsthe lines of the command definition, ending with end. After the
docunent command isfinished, hel p on command commandname displays the
documentation you have written. Y ou may use the docunment command again to change the
documentation of acommand. Redefining the command with def i ne does not change the
documentation.

hel p user-defi ned
List all user-defined commands, with the first line of the documentation (if any) for each.

show user

show user conmandnane
Display the GDB commands used to define commandname (but not its documentation). If no
commandname is given, display the definitions for all user-defined commands.

When user-defined commands are executed, the commands of the definition are not printed. An error in
any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking when used
inside a user-defined command. Many GDB commands that normally print messages to say what they
are doing omit the messages when used in a user-defined command.

User-defined command hooks

Y ou may define hooks, which are a special kind of user-defined command. Whenever you run the
command " f 00", if the user-defined command ™~ hook- f 00" exists, it is executed (with no
arguments) before that command.

A hook may also be defined which is run after the command you executed. Whenever you run the
command " f 00" , if the user-defined command ~ hookpost - f 00" exists, it is executed (with no

file:///C|/gdb.html (192 of 352)19. 1. 2004 20:32:04

Debugging with GDB

arguments) after that command. Post-execution hooks may exist simultaneously with pre-execution
hooks, for the same command.

It isvalid for ahook to call the command which it hooks. If this occurs, the hook is not re-executed,
thereby avoiding infinte recursion.

In addition, a pseudo-command, ~ st op’ exists. Defining (" hook- st op') makes the associated
commands execute every time execution stopsin your program: before breakpoint commands are run,
displays are printed, or the stack frame is printed.

For example, to ignore SI GALRMsignals while single-stepping, but treat them normally during normal
execution, you could define:

defi ne hook-stop
handl e SI GALRM nopass
end

defi ne hook-run
handl e SI GALRM pass
end

defi ne hook-conti nue
handl e SI GLARM pass
end

As afurther example, to hook at the begining and end of the echo command, and to add extratext to
the beginning and end of the message, you could define:

def i ne hook-echo
echo <<<---
end

defi ne hookpost-echo
echo --->>>\n
end

(gdb) echo Hello Wrld
<<<---Hello Wrld--->>>

(gdb)

Y ou can define a hook for any single-word command in GDB, but not for command aliases; you should

file:///Cl/gdb.html (193 of 352)19. 1. 2004 20:32:04

Debugging with GDB

define ahook for the basic command name, e.g. backt r ace rather than bt . If an error occurs during
the execution of your hook, execution of GDB commands stops and GDB issues a prompt (before the
command that you actually typed had a chance to run).

If you try to define a hook which does not match any known command, you get awarning from the
def i ne command.

Command files

A command file for GDB is afile of linesthat are GDB commands. Comments (lines starting with #)
may also be included. An empty linein acommand file does nothing; it does not mean to repesat the last
command, as it would from the terminal.

When you start GDB, it automatically executes commands from itsinit files. These are filesnamed ™ .
gdbi nit' onUnixand gdb. i ni' on DOS/Windows. During startup, GDB does the following:

1. Readstheinit file (if any) in your home directory(6).

2. Processes command line options and operands.

3. Readstheinit file (if any) in the current working directory.
4. Reads command files specified by the ™ - X' option.

Theinit filein your home directory can set options (suchas ™ set conpl ai nt s’) that affect
subsequent processing of command line options and operands. Init files are not executed if you use the
“-nx' option (see section Choosing modes).

On some configurations of GDB, theinit file is known by a different name (these are typically
environments where a specialized form of GDB may need to coexist with other forms, hence a different
name for the specialized version'sinit file). These are the environments with special init file names:

« VxWorks (Wind River Systems real-time OS): ~ . vxgdbi ni t'
. OS68K (EneaData Systemsreal-time OS): ~ . 0s68gdbi ni t'
. ES-1800 (Ericsson Telecom AB M68000 emulator): * . esgdbi ni t'

Y ou can also request the execution of a command file with the sour ce command:

source fil enane
Execute the command file filename.

The linesin acommand file are executed sequentially. They are not printed as they are executed. An
error in any command terminates execution of the command file.

file:///Cl/gdb.html (194 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Commands that would ask for confirmation if used interactively proceed without asking when used in a
command file. Many GDB commands that normally print messages to say what they are doing omit the
messages when called from command files.

Commands for controlled output

During the execution of acommand file or a user-defined command, normal GDB output is suppressed;
the only output that appears is what is explicitly printed by the commands in the definition. This section
describes three commands useful for generating exactly the output you want.

echo text
Print text. Nonprinting characters can be included in text using C escape sequences, such as
\ n' to print anewline. No newlineis printed unless you specify one. In addition to the
standard C escape sequences, a backslash followed by a space stands for a space. Thisis useful
for displaying a string with spaces at the beginning or the end, since leading and trailing spaces
are otherwise trimmed from all arguments. Toprint - and foo = ', usethecommand
“echo \ and foo =\ '.A backdash at the end of text can be used, asin C, to continue
the command onto subsequent lines. For example,

echo This 1s sone text\n\
whi ch i s conti nued\ n\
onto several lines.\n

produces the same output as

echo This is sone text\n
echo which is conti nued\n
echo onto several lines.\n

out put expressi on

Print the value of expression and nothing but that value: no newlines, no ™ $nn = ' . Thevaue
is not entered in the value history either. See section Expressions, for more information on
expressions.

output/fm expression
Print the value of expression in format fmt. Y ou can use the same formats asfor pri nt . See
section Output formats, for more information.

printf string, expressions...
Print the values of the expressions under the control of string. The expressions are separated by
commas and may be either numbers or pointers. Their values are printed as specified by string,
exactly asif your program were to execute the C subroutine

file:///Cl/gdb.html (195 of 352)19. 1. 2004 20:32:04

Debugging with GDB

printf (string, expressions...);
For example, you can print two valuesin hex like this:
printf "foo, bar-foo = Ox%&, Ox%\n", foo, bar-foo

The only backsl ash-escape sequences that you can use in the format string are the simple ones
that consist of backslash followed by aletter.

GDB Text User Interface

. TUI Overview: TUI overview

. TUI Keys: TUI key bindings

« TUI Commands: TUI specific commands

. TUI Configuration: TUI configuration variables

The GDB Text User Interface, TUI in short, is aterminal interface which usesthe cur ses library to
show the source file, the assembly output, the program registers and GDB commands in separate text
windows. The TUI is available only when GDB is configured with the - - enabl e- t ui configure
option (see section conf i gur e options).

TUI overview

The TUI has two display modes that can be switched while GDB runs:

. A curses (or TUI) mode in which it displays several text windows on the terminal.
. A standard mode which corresponds to the GDB configured without the TUI.

In the TUI mode, GDB can display several text window on the terminal:

command
Thiswindow isthe GDB command window with the GDB prompt and the GDB outputs. The
GDB input is still managed using readline but through the TUI. The command window is always
visible.

source
The source window shows the source file of the program. The current line as well as active
breakpoints are displayed in this window. The current program position is shown with the ™ >
marker and active breakpoints are shown with * *' markers.

assembly
The assembly window shows the disassembly output of the program.

file:///Cl/gdb.html (196 of 352)19. 1. 2004 20:32:04

Debugging with GDB

register
Thiswindow shows the processor registers. It detects when aregister is changed and when thisis
the case, registers that have changed are highlighted.

The source, assembly and register windows are attached to the thread and the frame position. They are
updated when the current thread changes, when the frame changes or when the program counter
changes. These three windows are arranged by the TUI according to several layouts. The layout defines
which of these three windows are visible. The following layouts are available:

. source

. assembly

. source and assembly
. source and registers

. assembly and registers

TUI Key Bindings

The TUI installs several key bindings in the readline keymaps (see section Command Line Editing).

They allow to leave or enter in the TUI mode or they operate directly on the TUI layout and windows.
The following key bindings are installed for both TUI mode and the GDB standard mode.

Cx Ca

Cx a

Cx A
Enter or leave the TUI mode. When the TUI mode is left, the curses window management is left
and GDB operates using its standard mode writing on the terminal directly. When the TUI mode
Is entered, the control is given back to the curses windows. The screen is then refreshed.

Cx 1
Use a TUI layout with only one window. The layout will either be " sour ce' or " assenbl y' .
When the TUI mode is not active, it will switch to the TUI mode. Think of this key binding as the
Emacs C- x 1 binding.

Cx 2
UseaTUI layout with at least two windows. When the current layout shows already two
windows, a next layout with two windows is used. When a new layout is chosen, one window
will always be common to the previous layout and the new one. Think of it asthe EmacsC- x 2
binding.

The following key bindings are handled only by the TUI mode:
PgUp
Scroll the active window one page up.

PgDn

file:///C/gdb.html (197 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Scroll the active window one page down.
Up

Scroll the active window one line up.
Down

Scroll the active window one line down.
Left

Scroll the active window one column left.
Ri ght

Scroll the active window one column right.
CL

Refresh the screen.

In the TUI mode, the arrow keys are used by the active window for scrolling. This means they are not
available for readline. It is necessary to use other readline key bindingssuchasC- p, C-n, C- b and G-
f.

TUI specific commands

The TUI has specific commands to control the text windows. These commands are always available, that
Is they do not depend on the current terminal mode in which GDB runs. When GDB isin the standard
mode, using these commands will automatically switch in the TUI mode.

| ayout next
Display the next layout.
| ayout prev
Display the previous layout.
| ayout src
Display the source window only.
| ayout asm
Display the assembly window only.
| ayout split
Display the source and assembly window.
| ayout regs
Display the register window together with the source or assembly window.
focus next | prev | src | asm| regs | split
Set the focus to the named window. This command allows to change the active window so that
scrolling keys can be affected to another window.
refresh
Refresh the screen. Thisissimilar to using C- L key.
updat e
Update the source window and the current execution point.
wi nhei ght nanme +count

file:///Cl/gdb.html (198 of 352)19. 1. 2004 20:32:04

Debugging with GDB

wi nhei ght nanme - count

Change the height of the window name by count lines. Positive counts increase the height, while
negative counts decrease it.

TUI configuration variables

The TUI has several configuration variables that control the appearance of windows on the terminal.

set tui border-kind kind
Select the border appearance for the source, assembly and register windows. The possible values
are the following:
space
Use a space character to draw the border.
ascii
Use ascii characters + - and | to draw the border.
acs
Use the Alternate Character Set to draw the border. The border is drawn using character
line graphicsif the terminal supports them.
set tui active-border-node node
Select the attributes to display the border of the active window. The possible values are nor mal
st andout ,reverse, hal f, hal f- st andout, bol d andbol d- st andout .
set tui border-node node
Select the attributes to display the border of other windows. The mode can be one of the
following:
nor nal
Use normal attributes to display the border.
st andout
Use standout mode.
reverse
Use reverse video mode.
hal f
Use half bright mode.
hal f - st andout
Use half bright and standout mode.
bol d
Use extra bright or bold mode.
bol d- st andout
Use extra bright or bold and standout mode.

Using GDB under GNU Emacs

file:///Cl/gdb.html (199 of 352)19. 1. 2004 20:32:04

Debugging with GDB

A speciad interface allows you to use GNU Emacsto view (and edit) the source files for the program you
are debugging with GDB.

To usethisinterface, use the command M x gdb in Emacs. Give the executable file you want to debug
as an argument. This command starts GDB as a subprocess of Emacs, with input and output through a
newly created Emacs buffer.

Using GDB under Emacsisjust like using GDB normally except for two things:
. All "termina” input and output goes through the Emacs buffer.

This applies both to GDB commands and their output, and to the input and output done by the program
you are debugging.

Thisis useful because it means that you can copy the text of previous commands and input them again;
you can even use parts of the output in thisway.

All the facilities of Emacs Shell mode are available for interacting with your program. In particular, you
can send signals the usual way--for example, C- ¢ C- ¢ for an interrupt, G- ¢ C- z for a stop.

. GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file for that frame and puts
an arrow (- =>') at the left margin of the current line. Emacs uses a separate buffer for source display,
and splits the screen to show both your GDB session and the source.

Explicit GDB | i st or search commands still produce output as usual, but you probably have no reason
to use them from Emacs.

Warning: If the directory where your program resides is not your current directory, it can
be easy to confuse Emacs about the location of the source files, in which case the auxiliary
display buffer does not appear to show your source. GDB can find programs by searching
your environment's PATH variable, so the GDB input and output session proceeds
normally; but Emacs does not get enough information back from GDB to locate the source
filesin this situation. To avoid this problem, either start GDB mode from the directory
where your program resides, or specify an absolute file name when prompted for the M x
gdb argument.

A similar confusion can result if you usethe GDB f i | e command to switch to debugging
aprogram in some other location, from an existing GDB buffer in Emacs.

By default, M x gdb callsthe program called " gdb' . If you need to call GDB by a different name (for

file:///Cl/gdb.html (200 of 352)19. 1. 2004 20:32:04

Debugging with GDB

example, if you keep several configurations around, with different names) you can set the Emacs
variable gdb- command- nane; for example,

(setqg gdb- command- nanme "nygdb")

(preceded by M : or ESC : , or typed inthe* scr at ch* buffer, orinyour " . emacs’ file) makes
Emacs call the program named "nygdb" instead.

In the GDB 1/O buffer, you can use these special Emacs commands in addition to the standard Shell

mode commands:

Chm
Describe the features of Emacs GDB Mode.

M s
Execute to another source line, like the GDB st ep command; also update the display window to
show the current file and location.

M n
Execute to next source linein this function, skipping al function calls, like the GDB next
command. Then update the display window to show the current file and location.

M i
Execute one instruction, like the GDB st epi command; update display window accordingly.

M x gdb- nexti
Execute to next instruction, using the GDB next i command; update display window
accordingly.

Cc Cf
Execute until exit from the selected stack frame, like the GDB f i ni sh command.

M c
Continue execution of your program, like the GDB cont i nue command. Warning: In Emacs
v19, thiscommandisC-¢c C- p.

M u
Go up the number of frames indicated by the numeric argument (see section "Numeric
Arguments in The GNU Emacs Manual), like the GDB up command. Warning: In Emacsv19,
thiscommandisC-c¢ C- u.

M d
Go down the number of frames indicated by the numeric argument, like the GDB down
command. Warning: In Emacs v19, thiscommandisC-¢ C-d.

Cx &

Read the number where the cursor is positioned, and insert it at the end of the GDB 1/0 buffer.
For example, if you wish to disassemble code around an address that was displayed earlier, type
di sassenbl e; then move the cursor to the address display, and pick up the argument for

di sassenbl e by typing C- x &. You can customize this further by defining elements of the
list gdb- pri nt - command; onceit is defined, you can format or otherwise process numbers

file:///C/gdb.html (201 of 352)19. 1. 2004 20:32:04

Debugging with GDB

picked up by C- x & before they are inserted. A numeric argument to C- x & indicates that you
wish special formatting, and also acts as an index to pick an element of thelist. If the list element
Isastring, the number to be inserted is formatted using the Emacs function f or mat ; otherwise
the number is passed as an argument to the corresponding list e ement.

In any source file, the Emacs command C- x SPC (gdb- br eak) tells GDB to set a breakpoint on the
source line point is on.

If you accidentally delete the source-display buffer, an easy way to get it back is to type the command f
in the GDB buffer, to request aframe display; when you run under Emacs, this recreates the source
buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the source filesin
the usual way. Y ou can edit the files with these buffersif you wish; but keep in mind that GDB
communicates with Emacs in terms of line numbers. If you add or delete lines from the text, the line
numbers that GDB knows cease to correspond properly with the code.

GDB Annotations

This chapter describes annotations in GDB. Annotations are designed to interface GDB to graphical user
interfaces or other similar programs which want to interact with GDB at arelatively high level.

. Annotations Overview: What annotations are; the general syntax.
. Server Prefix: Issuing a command without affecting user state.

. Value Annotations. Values are marked as such.

. Frame Annotations: Stack frames are annotated.

. Displays: GDB can be told to display something periodically.

. Prompting: Annotations marking GDB's need for input.

. Errors: Annotations for error messages.

. Breakpoint Info: Information on breakpoints.

. Invalidation: Some annotations describe things now invalid.

« Annotations for Running Whether the program is running, how it stopped, etc.
. Source Annotations: Annotations describing source code.

. TODO: Annotations which might be added in the future.

What is an Annotation?

To produce annotations, start GDB with the - - annot at e=2 option.

file:///C|/gdb.html (202 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Annotations start with a newline character, two ~ cont r ol - z' characters, and the name of the
annotation. If there is no additional information associated with this annotation, the name of the
annotation is followed immediately by anewline. If there is additional information, the name of the
annotation is followed by a space, the additional information, and a newline. The additional information
cannot contain newline characters.

Any output not beginning with anewlineandtwo ~ cont r ol - z' characters denotes literal output from
GDB. Currently thereis no need for GDB to output a newline followed by two “ cont r ol - z'
characters, but if there was such a need, the annotations could be extended with an ~ escape'
annotation which means those three characters as output.

A simple example of starting up GDB with annotationsis:

$ gdb --annot at e=2

G\NU GDB 5.0

Copyright 2000 Free Software Foundation, Inc.

GB is free software, covered by the GNU General Public License,
and you are welcone to change it and/or distribute copies of it
under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"
for details.

This GDB was configured as "sparc-sun-sunos4. 1. 3"

NZINZpr e- pronpt

(gdb)
NN Zpr onpt
qui t

NZNZpost - pr onpt
$

Here qui t' isinput to GDB; the rest is output from GDB. The three lines beginning * ~Z~Z' (where
"NZ' denotesa control -z' character) are annotations; the rest is output from GDB.

The Server Prefix

To issue acommand to GDB without affecting certain aspects of the state which is seen by users, prefix
itwith " server ' .Thismeansthat thiscommand will not affect the command history, nor will it
affect GDB's notion of which command to repeat if RET is pressed on aline by itself.

The server prefix does not affect the recording of valuesinto the value history; to print a value without

file:///Cl/gdb.html (203 of 352)19. 1. 2004 20:32:04

Debugging with GDB

recording it into the value history, use the out put command instead of the pr i nt command.
Values

When avalue is printed in various contexts, GDB uses annotations to delimit the value from the
surrounding text.

If avalueis printed using pr i nt and added to the value history, the annotation looks like

NZNZval ue- hi story-begi n history-nunber val ue-fl ags
hi story-string

NZNZval ue- hi story-val ue

t he-val ue

NZNZval ue- hi story-end

where history-number is the number it is getting in the value history, history-string isastring, such as”
$5 = ', whichintroduces the value to the user, the-value is the output corresponding to the value
itself, and value-flagsis ™ *' for avalue which can be dereferenced and ™ - ' for a value which cannot.

If the value is not added to the value history (it isan invalid float or it is printed with the out put
command), the annotation is similar:

NZNZval ue- begi n val ue-fl ags
t he- val ue
NZNZval ue- end

When GDB prints an argument to a function (for example, in the output from the backt r ace
command), it annotatesit as follows:

NZNZar g- begi n

ar gunent - name
NZNZar g- name- end
separator-string

NZNZar g-val ue val ue-fl ags
t he-val ue

NZNZar g- end

where argument-name is the name of the argument, separator-string is text which separates the name
from the value for the user's benefit (such as ™ ='), and value-flags and the-value have the same
meaningsasinaval ue- hi st or y- begi n annotation.

file:///Cl/gdb.html (204 of 352)19. 1. 2004 20:32:04

Debugging with GDB

When printing a structure, GDB annotates it as follows:

NZNZf i el d-begi n val ue-fl ags
field-nane

nNZNZf 1 el d- name- end
Separator-string
nNZNZf 1 el d-val ue

t he-val ue

nNZNZf 1 el d- end

where field-name is the name of the field, separator-string is text which separates the name from the
value for the user's benefit (such as ™ ='), and value-flags and the-value have the same meanings asin a
val ue- hi st ory- begi n annotation.

When printing an array, GDB annotates it as follows:
NZNZarray-section-begin array-index val ue-fl ags

where array-index is the index of the first element being annotated and value-flags has the same
meaning asinaval ue- hi st ory- begi n annotation. Thisis followed by any number of elements,
where is element can be either a single element:

“," whitespace ; omtted for the first el enent

t he-val ue

Nz~ Zel t

or arepeated element

“," whitespace ; omtted for the first el enent
t he-val ue

NZNZel t-rep nunber-of -repititions

repetition-string

nNZNZel t -rep-end

In both cases, the-value is the output for the value of the element and whitespace can contain spaces,
tabs, and newlines. In the repeated case, number-of-repititons is the number of consecutive array
elements which contain that value, and repetition-string is a string which is designed to convey to the
user that repitition is being depicted.

Once dl the array elements have been output, the array annotation is ended with

NZNZarray-section-end

file:///Cl/gdb.html (205 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Frames

Whenever GDB prints aframe, it annotates it. For example, this applies to frames printed when GDB
stops, output from commands such asbackt r ace or up, etc.

The frame annotation begins with

NZNZframe- begin | evel address
| evel -string

where level isthe number of the frame (0 is the innermost frame, and other frames have positive
numbers), address is the address of the code executing in that frame, and level-string is a string designed
to convey the level to the user. addressisintheform ™ Ox' followed by one or more lowercase hex
digits (note that this does not depend on the language). The frame ends with

NZNZF ranme- end
Between these annotations is the main body of the frame, which can consist of

« NZMZfunction-cal |
function-call-string

where function-call-string is text designed to convey to the user that this frame is associated with
afunction call made by GDB to afunction in the program being debugged.

. NZ™Zsignal - handl er-cal | er
signal -handl er-cal l er-string

where signal-handler-caller-string is text designed to convey to the user that thisframeis
associated with whatever mechanism is used by this operating system to call asignal handler (it
isthe frame which calls the signal handler, not the frame for the signal handler itself).

. A normal frame. This can optionally (depending on whether this is thought of as interesting
information for the user to see) begin with

NZNZE rane- addr ess
addr ess

NZNZf rane- addr ess- end
separator-string

where address is the address executing in the frame (the same address asin thef r ane- begi n

file:///Cl/gdb.html (206 of 352)19. 1. 2004 20:32:04

Debugging with GDB

annotation, but printed in aform which is intended for user consumption--in particular, the syntax
varies depending on the language), and separator-string is a string intended to separate this
address from what follows for the user's benefit. Then comes

NZNZfF rame-functi on- nane
functi on- nane

NZNZE rame- ar gs

argunent s

where function-name is the name of the function executing in the frame, or ~ ??" if not known,
and arguments are the arguments to the frame, with parentheses around them (each argument is
annotated individually as well, see section Values). If source information is available, areference

to it isthen printed:

NZNZE rame- sour ce- begi n
source-intro-string
nNZNZfrane-source-fil e
filenane

nNZNZf rane-source-fil e-end

nNZNZE rame-source-1 i ne
| i ne- nunber
nNZNZE rame- sour ce-end

where sour ce-intro-string separates for the user's benefit the reference from the text which
precedes it, filename is the name of the source file, and line-number is the line number within that
file (thefirst lineisline 1). If GDB prints some information about where the frame is from
(which library, which load segment, etc.; currently only done on the RS/6000), it is annotated
with

nNZNZE rame- wher e
i nformati on

Then, if source isto actually be displayed for this frame (for example, thisis not true for output
from the backt r ace command), then asour ce annotation (see section Displaying Source) is
displayed. Unlike most annotations, thisis output instead of the normal text which would be
output, not in addition.

Displays

When GDB istold to display something using thedi spl ay command, the results of the display are

file:///C|/gdb.html (207 of 352)19. 1. 2004 20:32:04

Debugging with GDB

annotated:

NZNZdi spl ay- begi n
nunber
NZMZdi spl ay- nunber - end
nunber - separ at or
NZMZdi spl ay- f or mat

f or mat
NZMZdi spl ay- expressi on
expr essi on

NZMZdi spl ay- expressi on- end
expr essi on- separ at or
NZhZdi spl ay-val ue

val ue

NZhZdi spl ay-end

where number is the number of the display, number-separator isintended to separate the number from
what follows for the user, format includes information such as the size, format, or other information
about how the value is being displayed, expression is the expression being displayed, expression-
separator isintended to separate the expression from the text that follows for the user, and value is the
actual value being displayed.

Annotation for GDB Input

When GDB prompts for input, it annotates this fact so it is possible to know when to send output, when
the output from a given command is over, €tc.

Different kinds of input each have a different input type. Each input type has three annotations: apr e-
annotation, which denotes the beginning of any prompt which is being output, a plain annotation, which
denotes the end of the prompt, and then apost - annotation which denotes the end of any echo which
may (or may not) be associated with the input. For example, the pr onpt input type features the
following annotations:

~NZNZpr e- pr onpt
~NZNZpr onpt
NZNZpost - pronpt

The input types are

pr onpt
When GDB is prompting for acommand (the main GDB prompt).
comrands

file:///Cl/gdb.html (208 of 352)19. 1. 2004 20:32:04

Debugging with GDB

When GDB prompts for a set of commands, like in the commands command. The annotations
are repeated for each command which isinput.

over | oad- choi ce
When GDB wants the user to select between various overloaded functions.

query
When GDB wants the user to confirm a potentially dangerous operation.

pronpt -for-continue
When GDB is asking the user to press return to continue. Note: Don't expect this to work well;
instead use set hei ght 0 to disable prompting. Thisis because the counting of linesis buggy
in the presence of annotations.

Errors

AZAZqui t

This annotation occurs right before GDB responds to an interrupt.
NINZerror

This annotation occurs right before GDB responds to an error.

Quit and error annotations indicate that any annotations which GDB was in the middle of may end
abruptly. For example, if aval ue- hi st or y- begi n annotation isfollowed by aer r or , one cannot
expect to receive the matching val ue- hi st or y- end. One cannot expect not to receive it either,
however; an error annotation does not necessarily mean that GDB isimmediately returning all the way
to the top level.

A quit or error annotation may be preceded by
NZNZerror-begin
Any output between that and the quit or error annotation is the error message.

Warning messages are not yet annotated.

Information on Breakpoints

The output fromthei nf o br eakpoi nt s command is annotated as follows:

NZNZbr eakpoi nt s- header s

file:///Cl/gdb.html (209 of 352)19. 1. 2004 20:32:04

Debugging with GDB

header-entry
NZNZbr eakpoi nts-tabl e

where header-entry has the same syntax as an entry (see below) but instead of containing data, it
contains strings which are intended to convey the meaning of each field to the user. Thisisfollowed by
any number of entries. If afield does not apply for thisentry, it is omitted. Fields may contain trailing
whitespace. Each entry consists of:

nNZNZr ecord
nZnZfield O
nunber
nZznZfield 1
type
nZnZfield 2
di sposi tion
nZznZfield 3
enabl e
nZnZfield 4
addr ess
nZnZfield 5
what
nZnZfield 6
frane
nZznZfield 7
condi tion
nZznZfield 8
| gnor e- count
nZznZfield 9
commands

Note that addressisintended for user consumption--the syntax varies depending on the language.
The output ends with

NZNZbr eakpoi nt s-t abl e- end

Invalidation Notices

The following annotations say that certain pieces of state may have changed.

NZNZframes-invalid
The frames (for example, output from the backt r ace command) may have changed.

file:///C|/gdb.html (210 of 352)19. 1. 2004 20:32:04

Debugging with GDB

NZNZbr eakpoi nts-invalid
The breakpoints may have changed. For example, the user just added or deleted a breakpoint.

Running the Program

When the program starts executing due to a GDB command such asst ep or cont i nue,
NZNZstarting

Is output. When the program stops,

NZNZst opped

isoutput. Before the st opped annotation, a variety of annotations describe how the program stopped.

NZNZexited exit-status

The program exited, and exit-status is the exit status (zero for successful exit, otherwise nonzero).
NZMZsignal | ed

The program exited with asignal. After the”*Z”*Zsi gnal | ed, the annotation continues:

I ntro-text
NZNZsi gnal - nane

name
NZMNZsi gnal - name- end

m ddl e-t ext

NZMZsignal -string
string

NZMZsignal -string-end
end- t ext

where name is the name of the signal, suchas SI G LL or SI GSEGV, and string isthe
explanation of thesignal, suchasl | | egal I nstructionorSegnentation fault.
intro-text, middle-text, and end-text are for the user's benefit and have no particular format.
NZNZsi gnal
The syntax of thisannotationisjust likesi gnal | ed, but GDB isjust saying that the program
received the signal, not that it was terminated with it.
NZNZbr eakpoi nt nunber
The program hit breakpoint number number.
NZNZwat chpoi nt nunber
The program hit watchpoint number number .

file:///C/gdb.html (211 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Displaying Source

The following annotation is used instead of displaying source code:
nNZhZsource fil enane:line:character: m ddl e: addr

where filename is an absolute file name indicating which source file, line is the line number within that
file (where 1 isthefirst linein thefile), character isthe character position within the file (where O isthe
first character in thefile) (for most debug formats this will necessarily point to the beginning of aline),
middleis” m ddl e' if addr isinthe middie of theline, or ~ beg' if addr isat the beginning of the
line, and addr is the address in the target program associated with the source which is being displayed.
addr isintheform = Ox' followed by one or more lowercase hex digits (note that this does not depend
on the language).

Annotations We Might Want in the Future

- target-invalid
the target m ght have changed (registers, heap contents, or
execution status). For performance, we m ght eventual ly want
to hit "registers-invalid and "all-registers-invalid wth
greater precision

- systematic annotation for set/show paraneters (including
I nval i dati on notices).

- simlarly, "info'" returns a list of candidates for invalidation
not i ces.

The GDB/MI Interface

Function and Purpose

GDB/MI is aline based machine oriented text interface to GDB. It is specifically intended to support the
development of systems which use the debugger as just one small component of alarger system.

This chapter is a specification of the GDB/MI interface. It iswritten in the form of areference manual.

Note that GDB/MI is still under construction, so some of the features described below are incomplete
and subject to change.

file:///C|/gdb.html (212 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Notation and Terminology

This chapter uses the following notation:

. | separatestwo aternatives.

. [sonethi ng] indicatesthat something isoptional: it may or may not be given.

(group)* meansthat group inside the parentheses may repeat zero or more times.
(group)+ meansthat group inside the parentheses may repeat one or more times.
. "string" meansaliteral string.

Acknowledgments
In alphabetic order: Andrew Cagney, Fernando Nasser, Stan Shebs and Elena Zannoni.

. GDB/MI Command Syntax

. GDB/MI Compatibility with CLI

. GDB/MI Output Records

. GDB/MI Command Description Format
. GDB/MI Breakpoint Table Commands
. GDB/MI Data Manipulation

. GDB/MI Program Control

. GDB/MI Miscellaneous Commands

. GDB/MI Stack Manipulation

. GDB/MI Symbol Query

. GDB/MI Target Manipulation

. GDB/MI Thread Commands

. GDB/MI Tracepoint Commands

. GDB/MI Variable Objects

GDB/MI Command Syntax

. GDB/MI Input Syntax
. GDB/MI Output Syntax
. GDB/MI| Simple Examples

GDB/MI Input Syntax

command ==>

file:///C|/gdb.html (213 of 352)19. 1. 2004 20:32:04

Debugging with GDB

cli-comand | m -conmmand
cli-comand ==>

[token] cli-command nl,wherecli-command isany existing GDB CLI command.
m - command ==>

[token] "-" operation (" " option)* [" --"171 (

paraneter)* nl
t oken ==>

"any sequence of digits’
option ==>

"-" paraneter |
par aneter ==>

non- bl ank- sequence | c-string
operation ==>

any of the operations described in this chapter
non- bl ank- sequence ==>

anything, provided it doesn't contain special characters such as"-", nl, """ and of course " "
c-string ==>

""" seven-bit-iso-c-string-content

par anet er |

nl ==>
CR | CRLF

Notes:

. The CLI commands are still handled by the M1 interpreter; their output is described below.

. Thet oken, when present, is passed back when the command finishes.

. Some MI commands accept optional arguments as part of the parameter list. Each option is
identified by aleading " - ' (dash) and may be followed by an optional argument parameter.
Options occur first in the parameter list and can be delimited from normal parameters using
T --" (thisisuseful when some parameters begin with a dash).

Pragmatics:

. Wewant easy accessto the existing CLI syntax (for debugging).
. Wewant it to be easy to spot a M| operation.

GDB/MI Output Syntax

The output from GDB/MI consists of zero or more out-of-band records followed, optionally, by asingle
result record. Thisresult record is for the most recent command. The sequence of output recordsis
terminated by ~ (gdb) " .

If an input command was prefixed with at oken then the corresponding output for that command will

file:///C|/gdb.html (214 of 352)19. 1. 2004 20:32:04

Debugging with GDB

also be prefixed by that same token.

out put ==>

(out-of-band-record)* [result-record] "(gdb)" n
result-record ==>

[token] "~" result-class (",
out - of - band-record ==>

async-record | streamrecord
async-record ==>

exec-async-out put | status-async-output | notify-async-output
exec-async-out put ==>

[token] "*" async-out put
st at us- async- out put ==>

[token] "+" async-out put
noti fy-async-out put ==>

result)* nl

[token] "=" async-out put
async- out put ==>
async-class ("," result)* nl
result-class ==>
“done" | "running" | "connected" | "error" | "exit"

async-cl ass ==>
"stopped" | ot hers (whereotherswill be added depending on the needs--thisis still in

development).
result ==>
variable "=" val ue
vari abl e ==>
string
val ue ==>
const | tuple | |ist
const ==>
c-string
tuple ==>
{3} "{" result ("," result)* "}"
list ==>
"T1" | "[" value ("," value)* "]" | "[" result ("," result)*

3t

streamrecord ==>

consol e-streamoutput | target-streamoutput | |og-stream output
consol e- stream out put ==>

"~" c-string
t ar get - st ream out put ==>

"@ c-string

| 0og- st ream out put ==>

file:///C|/gdb.html (215 of 352)19. 1. 2004 20:32:04

Debugging with GDB

"&" c-string
nl ==>

CR| CRLF
t oken ==>

Notes:

any sequence of digits.

All output sequences end in asingle line containing a period.

Thet oken isfrom the corresponding request. If an execution command is interrupted by the ™ -
exec-i nterrupt' command, the token associated with the ™ * st opped’ messageisthe one
of the original execution command, not the one of the interrupt command.

status-async-output contains on-going status information about the progress of a slow operation.
It can be discarded. All status output is prefixed by ™ +' .

exec-async-output contains asynchronous state change on the target (stopped, started,
disappeared). All async output is prefixed by ™ ** .

notify-async-output contains supplementary information that the client should handle (e.g., anew
breakpoint information). All notify output is prefixed by ™ =" .

console-stream-output is output that should be displayed asisin the console. It is the textual
response to a CLI command. All the console output is prefixed by ™ ~' .

tar get-stream-output is the output produced by the target program. All the target output is
prefixedby ~ @ .

log-stream-output is output text coming from GDB's internals, for instance messages that should
be displayed as part of an error log. All the log output is prefixed by~ & .

New GDB/MI commands should only output lists containing val ues.

See section GDB/MI Stream Records, for more details about the various output records.

Simple Examples of GDB/MI Interaction

This subsection presents several simple examples of interaction using the GDB/MI interface. In these
examples, " - >' meansthat the following lineis passed to GDB/MI asinput, while ™ <-' means the

output

received from GDB/MI.

Target Stop

Here's an example of stopping the inferior process:

-> -stop
<- (gdb)

file:///C|/gdb.html (216 of 352)19. 1. 2004 20:32:04

Debugging with GDB

and later:

<- *stop, reason="stop", address="0x123", source="a. c: 123"
<- (gdb)

Simple CLI Command

Here's an example of asimple CLI command being passed through GDB/MI and on to the CL1I.

-> print 1+2
<- ~3\n
<- (gdb)

Command With Side Effects

-> -synbol -file xyz. exe

<- *preakpoint,nr="3", address="0x123", source="a. c: 123"
<- (gdb)

A Bad Command

Here's what happens if you pass a non-existent command:

-> -rubbi sh
<- error, "Rubbi sh not found"
<- (gdb)

GDB/MI Compatibility with CLI

To help users familiar with GDB's existing CL 1 interface, GDB/MI accepts existing CLI commands. As
specified by the syntax, such commands can be directly entered into the GDB/MI interface and GDB
will respond.

This mechanism is provided as an aid to developers of GDB/MI clients and not as areliable interface
into the CLI. Since the command is being interpreteted in an environment that assumes GDB/M|
behaviour, the exact output of such commandsislikely to end up being an un-supported hybrid of GDB/
MI and CLI output.

GDB/MI Output Records

file:///C|/gdb.html (217 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. GDB/MI Result Records
. GDB/MI Stream Records
. GDB/MI Out-of-band Records

GDB/MI Result Records

In addition to a number of out-of-band notifications, the response to a GDB/MI command includes one
of the following result indications:

“Adone" ["," results]
The synchronous operation was successful, r esul t s arethe return values.
“Arunni ng"

The asynchronous operation was successfully started. The target is running.

“Nerror" "," c-string
The operation failed. Thec- st r i ng contains the corresponding error message.

GDB/MI Stream Records

GDB internally maintains a number of output streams:. the console, the target, and the log. The output
intended for each of these streams is funneled through the GDB/MI interface using stream records.

Each stream record begins with a unique prefix character which identifiesits stream (see section GDB/
MI Output Syntax). In addition to the prefix, each stream record containsast r i ng- out put . Thisis

either raw text (with an implicit new line) or a quoted C string (which does not contain an implicit
newline).

n n
~

st ri ng- out put
The console output stream contains text that should be displayed in the CL1 console window. It
contains the textual responsesto CLI commands.
"@ string-out put
The target output stream contains any textual output from the running target.
"&" string-out put
The log stream contains debugging messages being produced by GDB's internals.

GDB/MI Out-of-band Records

Out-of-band records are used to notify the GDB/MI client of additional changes that have occurred.
Those changes can either be a consequence of GDB/MI (e.g., abreakpoint modified) or aresult of target
activity (e.g., target stopped).

file:///C|/gdb.html (218 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The following isapreliminary list of possible out-of-band records.

AT st op”

GDB/MI Command Description Format

The remaining sections describe blocks of commands. Each block of commandsislaid out in afashion
similar to this section.

Note the the line breaks shown in the examples are here only for readability. They don't appear in the
real output. Also note that the commands with a non-available example (N.A.) are not yet implemented.

Motivation
The motivation for this collection of commands.
Introduction
A brief introduction to this collection of commands as a whole.
Commands
For each command in the block, the following is described:
Synopsis
-command args. ..
GDB Command
The corresponding GDB CLI command.
Result
Out-of-band
Notes

Example

file:///C|/gdb.html (219 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB/MI Breakpoint table commands

This section documents GDB/MI commands for manipulating breakpoints.
The - br eak- af t er Command
Synopsis

- br eak-after nunmber count

The breakpoint number number is not in effect until it has been hit count times. To see how thisis
reflected in the output of the ™ - br eak- 1 i st' command, see the description of the ™ - br eak-
| i st' command below.

GDB Command
The corresponding GDB command is " i gnor e' .

Example

(gdb)
-break-insert nmain

Adone, bkpt ={ nunber =" 1", addr =" 0x000100d0",fil e="hell o.c", |l ine="5"}
(gdb)
-break-after 1 3

Adone

(gdb)

- break-11i st

Adone, Br eakpoi nt Tabl e={nr _rows="1", nr _col s="6",

hdr=[{w dt h="3", al i gnnment ="-1", col _nane="nunber", col hdr="Nuni'},
{w dt h="14",ali gnnent ="-1", col _nane="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col nanme="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col nanme="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="- 1", col nane="addr", col hdr="Address"},
{w dt h="40", al i gnnent =" 2", col _nanme="what", col hdr="What"}],
body=[bkpt ={ nunber ="1", t ype="br eakpoi nt", di sp="keep", enabl ed="y",
addr =" 0x000100d0", func="main",file="hello.c",line="5",times="0",
I gnore="3"}]}

(gdb)

file:///C|/gdb.html (220 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The - br eak- condi ti on Command
Synopsis
- break-condi ti on nunber expr

Breakpoint number will stop the program only if the condition in expr istrue. The condition becomes
part of the " - br eak-1i st' output (seethe description of the ™ - br eak- | i st' command below).

GDB Command
The corresponding GDB command is ™ condi ti on' .

Example

(gdb)
-break-condition 1 1

Ndone

(gdb)

- break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="1", nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nane="nunber", col hdr =" Nuni'},
{w dt h="14",ali gnnent ="-1", col _nane="type", col hdr="Type"},

{w dth="4",alignnent="-1", col nanme="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col nanme="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="- 1", col nane="addr", col hdr="Address"},
{w dt h="40", al i gnnent =" 2", col _nanme="what", col hdr="What"}],
body=[bkpt ={ nunber ="1", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr =" 0x000100d0", func="main",file="hello.c",line="5", cond="1",
times="0",ignore="3"}]}

(gdb)

The - br eak- del et e Command
Synopsis
- break-del ete (breakpoint)+

Delete the breakpoint(s) whose number(s) are specified in the argument list. Thisis obvioudly reflected
in the breakpoint list.

file:///C|/gdb.html (221 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB command
The corresponding GDB command is ™ del et e .

Example

(gdb)
-break-delete 1

Adone

(gdb)

- break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="0", nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr ="Nuni'},
{w dt h="14",al i gnnent="-1", col _nanme="type", col hdr="Type"},
{w dt h="4" alignnment="-1", col nanme="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},
{w dt h="10", al i gnnent ="-1", col _nane="addr", col hdr =" Addr ess"},
{w dt h="40", al i gnnent =" 2", col _nanme="what", col hdr="Wat"}],
body=[] }

(gdb)
The - br eak- di sabl e Command
Synopsis

- break-di sabl e (breakpoint)+

Disable the named breakpoint(s). Thefield " enabl ed' inthebreak listisnow setto ™ n' for the
named breakpoint(s).

GDB Command
The corresponding GDB command is ™ di sabl e' .

Example

(gdb)
- break-di sable 2

Adone

(gdb)
-break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="1", nr _col s="6",

file:///C|/gdb.html (222 of 352)19. 1. 2004 20:32:04

Debugging with GDB

hdr =[{w dt h="3", al i gnnent ="-1", col _nane="nunber", col hdr =" Nuni'},

{w dt h="14", alignnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col _nane="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="-1", col _nane="addr", col hdr =" Address"},

{w dt h="40", al i gnnent =" 2", col _nanme="what", col hdr="Wat"}],

body=[bkpt ={ nunber =" 2", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="n",
addr =" 0x000100d0", func="main",file="hello.c",line="5",tinmes="0"}]}
(gdb)

The - br eak- enabl e Command
Synopsis

- br eak-enabl e (breakpoint)+
Enable (previously disabled) breakpoint(s).
GDB Command
The corresponding GDB command is ™ enabl e' .

Example

(gdb)
- break-enabl e 2

Adone

(gdb)

- break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="1",nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr ="Nuni'},
{w dt h="14",al i gnnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col nane="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="-1", col _nanme="addr", col hdr =" Addr ess"},

{w dt h="40", al i gnnent =" 2", col _nane="what", col hdr="Wat"}],

body=[bkpt ={ nunber =" 2", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr =" 0x000100d0", func="main",file="hello.c",line="5",times="0"}]}
(gdb)

The - br eak-i nf o Command

file:///C/gdb.html (223 of 352)19. 1. 2004 20:32:04

Debugging with GDB
Synopsis

- break-i nfo breakpoi nt
Get information about a single breakpoint.

GDB command

The corresponding GDB commandis ™ i nf o break breakpoi nt
Example

N.A.
The - break-i nsert Command
Synopsis

-break-insert [-t] [-h] [-r]
[-c condition] [-i ignore-count |
[-pthread] [line | addr]

If specified, line, can be one of:

. function
. filename:linenum
. filename:function
. *address

The possible optional parameters of this command are:

Y
Insert atempoary breakpoint.
S
Insert a hardware breakpoint.
“-c condition'
Make the breakpoint conditional on condition.
“-1 1gnore-count’
Initialize the ignore-count.
<
Insert aregular breakpoint in all the functions whose names match the given regular expression.

file:///C|/gdb.html (224 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Other flags are not applicable to regular expresson.
Result
Theresult isin the form:

Adone, bkpt no="nunber", func="f uncnane",
file="filenanme",line="1ineno"

where number isthe GDB number for this breakpoint, funcname is the name of the function where the
breakpoint was inserted, filename is the name of the source file which contains this function, and lineno
Is the source line number within that file.

Note: thisformat is open to change.
GDB Command

The corresponding GDB commands are ™ br eak' , "t break' , hbreak', t hbreak', and
“rbreak’.

Example

(gdb)
-break-insert nain

Ndone, bkpt ={ nunber =" 1", addr =" 0x0001072c",fil e="recursive2.c",|line="4"}
(gdb)

-break-insert -t foo

Adone, bkpt ={ nunber =" 2", addr =" 0x00010774" ,fil e="recursive2.c",

i ne="11"}
(gdb)
-break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="2",nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr =" Nuni'},
{w dt h="14",alignnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col _nanme="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="-1", col _nanme="addr", col hdr="Address"},
{w dt h="40", al i gnnent =" 2", col _nane="what ", col hdr="Wat"}],
body=[bkpt ={ nunber ="1", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr ="0x0001072c", func="main",file="recursive2.c",|ine="4",
times="0"},

bkpt ={ nunber =" 2", t ype="br eakpoi nt", di sp="del ", enabl ed="y",

file:///C/gdb.html (225 of 352)19. 1. 2004 20:32:04

Debugging with GDB

addr =" 0x00010774", func="foo", fil e="recursive2.c",|line="11",
times="0"}]}

(gdb)

-break-insert -r foo.*

~int foo(int, int);

Adone, bkpt ={ nunber =" 3", addr =" 0x00010774" ,fil e="recursive2.c",
i ne="11"}

(gdb)

The - break-1i st Command
Synopsis
- break-11i st
Displaysthelist of inserted breakpoints, showing the following fields:

" Nunber"
number of the breakpoint
" Type'
type of the breakpoint: ~ br eakpoi nt' or " wat chpoi nt'
"Di sposition'
should the breakpoint be deleted or disabled when it ishit: * keep' or " nokeep’
" Enabl ed’
isthe breakpoint enabled or no: " y' or " n'
" Addr ess’
memory location at which the breakpoint is set
“What'
logical location of the breakpoint, expressed by function name, file name, line number
“Ti mes'
number of times the breakpoint has been hit

If there are no breakpoints or watchpoints, the Br eakpoi nt Tabl e body field isan empty list.
GDB Command
The corresponding GDB commandis i nf o break' .

Example

(gdb)
-break-1i st

file:///C|/gdb.html (226 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Adone, Br eakpoi nt Tabl e={nr _rows="2",nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr =" Nuni'},
{w dt h="14",al i gnnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col _nane="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="-1", col _nanme="addr", col hdr="Address"},

{w dt h="40", al i gnnent =" 2", col _nane="what", col hdr="Wat"}],

body=[bkpt ={ nunber =" 1", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr =" 0x000100d0", func="main",file="hello.c",line="5",tinmes="0"},
bkpt ={ nunber =" 2", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",

addr ="0x00010114", func="foo",file="hello.c",line="13",tinmes="0"}]}
(gdb)

Here's an example of the result when there are no breakpoints:

(gdb)
-break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="0", nr _col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr =" Nuni'},
{w dt h="14",ali gnnent ="-1", col _nane="type", col hdr="Type"},

{w dth="4",alignnent="-1", col nanme="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col nanme="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="- 1", col nane="addr", col hdr =" Address"},
{w dt h="40", al i gnnent =" 2", col _nanme="what", col hdr="What"}],
body=[] }

(gdb)

The - br eak- wat ch Command
Synopsis
-break-watch [-a | -r]

Create awatchpoint. Withthe ™ - a' option it will create an access watchpoint, i.e. a watchpoint that
triggers either on aread from or on awrite to the memory location. Withthe ™ - r' option, the
watchpoint created is aread watchpoint, i.e. it will trigger only when the memory location is accessed
for reading. Without either of the options, the watchpoint created is a regular watchpoint, i.e. it will
trigger when the memory location is accessed for writing. See section Setting watchpoints.

Notethat " - break-1i st will report asinglelist of watchpoints and breakpoints inserted.
GDB Command

file:///C|/gdb.html (227 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The corresponding GDB commands are " wat ch' , " awat ch' ,and " rwat ch' .
Example

Setting awatchpoint on avariable in the mai n function:

(gdb)
- break-wat ch x

Adone, wpt ={ nunber =" 2", exp="x"

(gdb)

- exec-conti nue

Arunni ng

Adone, reason="wat chpoi nt-trigger", wpt ={ nunber ="2", exp="x"
val ue={ol d="-268439212", new="55"},
frame={func="main",args=[],file="recursive2.c",line="5"}

(gdb)

Setting awatchpoint on avariable local to afunction. GDB will stop the program execution twice: first
for the variable changing value, then for the watchpoint going out of scope.

(gdb)
- break-watch C

Adone, wpt ={ nunber =" 5", exp="C"}

(gdb)

- exec-conti nue

Arunni ng

Adone, reason="wat chpoint-tri gger",

wpt ={ nunber ="5", exp="C"}, val ue={ ol d="-276895068", new="3"},
frame={func="cal | ee4",args=[],
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="13"}
(gdb)

- exec-conti nue

Arunni ng

Adone, reason="wat chpoi nt - scope", wonum="5",
frame={func="cal | ee3", args=[{ nane="strarg",

val ue="0x11940 \"A string argunent.\""}],
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="18"}

(gdb)

Listing breakpoints and watchpoints, at different points in the program execution. Note that once the
watchpoint goes out of scope, it is deleted.

file:///C|/gdb.html (228 of 352)19. 1. 2004 20:32:04

Debugging with GDB

(gdb)
-break-watch C

Adone, wpt ={ nunber =" 2", exp="C"}

(gdb)

- break-11i st

Adone, Br eakpoi nt Tabl e={nr _rows="2", nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr ="Nuni'},
{w dt h="14",alignnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col _nane="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},
{w dt h="10", al i gnnent ="-1", col _nane="addr", col hdr =" Address"},
{w dt h="40", al i gnnent =" 2", col _nane="what", col hdr="Wat"}],
body=[bkpt ={ nunber =" 1", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr ="0x00010734", func="cal | ee4",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="8",
times="1"},

bkpt ={ nunber ="2", t ype="wat chpoi nt", di sp="keep",

enabl ed="y", addr="",what="C", ti nes="0"}]}

(gdb)

- exec-conti nue

Arunni ng

Adone, reason="wat chpoi nt-trigger", wpt ={ nunber ="2", exp="C"},
val ue={ol d="-276895068", new="3"},
frame={func="cal | ee4",args=[],
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="13"}
(gdb)

- break-11i st

Adone, Br eakpoi nt Tabl e={nr _rows="2", nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr ="Nuni'},
{w dt h="14",alignnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col _nanme="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},
{w dt h="10", al i gnnent ="-1", col _nane="addr", col hdr =" Addr ess"},
{w dt h="40", al i gnnent =" 2", col _nane="what", col hdr="Wat"}],
body=[bkpt ={ nunber =" 1", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr ="0x00010734", func="cal | ee4",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="8",
times="1"},

bkpt ={ nunber ="2", t ype="wat chpoi nt", di sp="keep",

enabl ed="y", addr="",what="C", ti nes="-5"}]}

(gdb)

- exec-conti nue

Arunni ng

file:///C|/gdb.html (229 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Adone, r eason="wat chpoi nt - scope", wonum=" 2",
frame={func="cal | ee3", args=[{ nane="strarg",

val ue="0x11940 \"A string argunent.\""}],
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="18"}
(gdb)

- break-1i st

Adone, Br eakpoi nt Tabl e={nr _rows="1",nr_col s="6",

hdr =[{w dt h="3", al i gnnent ="-1", col _nanme="nunber", col hdr =" Nuni'},
{w dt h="14",al i gnnent="-1", col _nanme="type", col hdr="Type"},

{w dt h="4" alignnent="-1", col nane="di sp", col hdr="Di sp"},

{w dt h="3",alignnent="-1", col _nane="enabl ed", col hdr="Enb"},

{w dt h="10", al i gnnent ="-1", col _nanme="addr", col hdr =" Address"},
{w dt h="40", al i gnnent =" 2", col _nane="what ", col hdr="Wat"}],
body=[bkpt ={ nunber ="1", t ype="Dbr eakpoi nt", di sp="keep", enabl ed="y",
addr =" 0x00010734", func="cal | ee4",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="8",
times="1"}]}

(gdb)

GDB/MI Data Manipulation

This section describes the GDB/MI commands that manipulate data: examine memory and registers,
evaluate expressions, etc.

The - dat a- di sassenbl e Command
Synopsis

- dat a- di sassenbl e
[-s start-addr -e end-addr]
| [-f filenane -1 linenum|[-n lines |]
- - node

Where:

“start-addr’
is the beginning address (or $pc)

“end- addr
isthe end address
“fil enane’

is the name of the file to disassemble

file:///Cl/gdb.html (230 of 352)19. 1. 2004 20:32:04

Debugging with GDB

“li nenum
is the line number to disassemble around

“lines'
IS the the number of disassembly lines to be produced. If it is-1, the whole function will be
disassembled, in case no end-addr is specified. If end-addr is specified as a non-zero value, and
linesislower than the number of disassembly lines between start-addr and end-addr, only lines
lines are displayed; if linesis higher than the number of lines between start-addr and end-addr,
only the lines up to end-addr are displayed.

" nmode’
iseither 0 (meaning only disassembly) or 1 (meaning mixed source and disassembly).

Result
The output for each instruction is composed of four fields:

. Address

. Func-name
. Offset

. Instruction

Note that whatever included in the instruction field, is not manipulated directely by GDB/MI, i.e. it is
not possible to adjust its format.

GDB Command
There's no direct mapping from this command to the CLI.
Example

Disassemble from the current value of $pc to $pc + 20:

(gdb)

- dat a- di sassenble -s $pc -e "$pc + 20" -- O

~done,

asm i nsns=[

{addr ess="0x000107c0", f unc- nane="nai n", of f set =" 4",
I nst="nov 2, % 0"},

{addr ess="0x000107c4", f unc- nane="nmai n", of f set =" 8",
i nst="sethi %hi (0x11800), %®2"},

{addr ess="0x000107c8", f unc- nane="nmai n", of f set =" 12",
i nst="or %02, 0x140, %l1\t! 0x11940 < |ib_versi on+8>"},
{addr ess="0x000107cc", f unc- nanme="mai n", of f set =" 16",

file:///C/gdb.html (231 of 352)19. 1. 2004 20:32:04

Debugging with GDB

i nst="sethi %hi (0x11800), %®2"},
{addr ess="0x000107d0", f unc- nane="rmai
inst="or %02, 0x168, %o4\t!

(gdb)

n", of fset =" 20",

0x11968 < lib_versi on+48>"}]

Disassemble the whole mai n function. Line 32 is part of mai n.

- dat a- di sassenble -f basics.c -1 32
Adone, asm i nsns=[

{addr ess="0x000107bc", f unc- nane=" nai
| nst="save %sp, -112, %p"},

{addr ess="0x000107c0", f unc- nane="nai
I nst =" nov 2, %0"},

{addr ess="0x000107c4", f unc- nane="nai
I nst="sethi %i (0x11800), %®2"},
[...]

{addr ess="0x0001081c", f unc- nane=" nai
{addr ess="0x00010820", f unc- nane="nai

(gdb)

Disassemble 3 instructions from the start of nai n:

(gdb)

-dat a- di sassenble -f basics.c -1 32
Adone, asm i nsns=|

{addr ess="0x000107bc", f unc- nane="nai

| nst ="save %sp, -112, %sp"},
{addr ess="0x000107c0", f unc- nane="
I nst="nov 2, % 0"},

{addr ess="0x000107c4", f unc- nane="
I nst="sethi %hi (0x11800), %®©2"}]

(gdb)

-- 0
n", of fset="0",
n", of fset="4",

n", of fset="8",

n",of fset="96",i nst="ret
n", of fset =
-n 3 --0

I n", of fset="0",
I n", of fset="4",

I n", of fset="8",

Disassemble 3 instructions from the start of nmai n in mixed mode:

(gdb)
-dat a- di sassenble -f basics.c -|

Adone, asm i nsns=[
src_and_asm|line={line="31",

32

-n 3 -- 1

file="/kw kemart/ marge/ ezannoni / f| at head- dev/ devo/ gdb/ \
testsuite/ gdb. m/basics.c",line_asm.insnI|

{addr ess="0x000107bc", f unc- nane="nai

file:///C|/gdb.html (232 of 352)19. 1. 2004 20:32:04

n", of fset="0",

"y

"100",inst="restore "}]

Debugging with GDB

i nst="save %sp, -112, %p"}]},

src_and_asm|line={line="32",

file="/kw kemart/ marge/ ezannoni / f| at head- dev/ devo/ gdb/ \
testsuite/ gdb. m/basics.c",line_asm.insnI|

{addr ess="0x000107c0", f unc- nane="mai n", of f set =" 4",

inst="nov 2, % 0"},

{addr ess="0x000107c4", f unc- nane="mai n", of f set =" 8",

i nst="sethi %hi (0x11800), %©2"}]}]

(gdb)

The - dat a- eval uat e- expr essi on Command
Synopsis

- dat a- eval uat e- expr essi on expr

Evaluate expr as an expression. The expression could contain an inferior function call. The function call
will execute synchronoudly. If the expression contains spaces, it must be enclosed in double quotes.

GDB Command

The corresponding GDB commandsare " print', output',and call'.Ingdbtk only, theresa
corresponding - gdb_eval ' command.

Example

In the following example, the numbers that precede the commands are the tokens described in section
GDB/MI Command Syntax. Notice how GDB/MI returns the same tokens in its output.

211- dat a- eval uat e- expressi on A
211”done, val ue="1"

(gdb)

311- dat a- eval uat e- expressi on &A
311"done, val ue="0xef ffeb7c"
(gdb)

411- dat a- eval uat e- expressi on A+3
411~done, val ue="4"

(gdb)

511- dat a- eval uat e-expression "A + 3"
511”~done, val ue="4"

(gdb)

file:///Cl/gdb.html (233 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The -dat a-1i st -changed-regi sters Command
Synopsis
-data-1list-changed-regi sters
Display alist of the registers that have changed.
GDB Command

GDB doesn't have adirect analog for this command; gdbt k has the corresponding command
"gdb_changed register list'.

Example

On aPPC MBX board:

(gdb)
-exec-conti nue

Arunni ng

(gdb)
*st opped, reason="br eakpoi nt-hit", bkpt no="1", frame={func="mai n",

args=[],file="try.c",line="5"}

(gdb)

-data-1ist-changed-registers

~done, changed-regi sters=["0","1","2","4", "5" "6", "7","8","9",
*10","11","13","14", " 15", "16","17","18", " 19", "20", " 21", " 22", " 23",
" 24", " 25", 26", " 27", "28","30", " 31", " 64", "65","66","67","69"]
(gdb)

The -data-1ist-register-names Command
Synopsis
-data-list-register-nanes [(regno)+]

Show alist of register names for the current target. If no arguments are given, it shows alist of the
names of all the registers. If integer numbers are given as arguments, it will print alist of the names of
the registers corresponding to the arguments. To ensure consistency between aregister name and its
number, the output list may include empty register names.

file:///Cl/gdb.html (234 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB Command

GDB does not have a command which correspondsto ™ - dat a- | i st -regi st er- nanes’ . In

gdbt k thereisacorresponding command * gdb_r egnanes’ .
Example

For the PPC MBX board:

(gdb)

-data-list-register-nanes

~done, regi ster-nanmes=["r0","r1","r2","r3","r4","r5","r6","r7",
“r8","r9","r10","r211","r12","r13","r 14", "r 15", "r 16", "r 17", "r 18",
"rl19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r 29",
“r30","r31","fo","f1","f2","f3","f4", "f5", "fe","f7","f8","f9",
“fio","f11","f12","f13","f14","f 15", "f16","f17","f18","f19", "f 20",
“f21","f22","f23","f24","f25","f26","f27","f28","f29","f30", "f31",
o tpet,tpst,tert et et "xer"

(gdb)
-data-list-register-nanes 1 2 3
Adone, regi ster-nanes=["r1","r2","r3"]
(gdb)

The -data-1ist-register-val ues Command
Synopsis
-data-list-register-values fnt [(regno)*]

Display the registers' contents. fmt is the format according to which the registers contents are to be
returned, followed by an optional list of numbers specifying the registers to display. A missing list of
numbers indicates that the contents of al the registers must be returned.

Allowed formats for fmt are:

X
Hexadecimal
0
Octal
t
Binary

file:///Cl/gdb.html (235 of 352)19. 1. 2004 20:32:04

Debugging with GDB

d

Decimd
r

Raw
N

Natural

GDB Command

The corresponding GDB commandsare " i nfo reg', info all-reg',and(ingdbt k)
"gdb _fetch registers'.

Example

For aPPC MBX board (note: line breaks are for readability only, they don't appear in the actual output):

(gdb)
-data-list-register-values r 64 65

Adone, r egi st er - val ues=[{ nunber =" 64", val ue="0xf e00a300"},

{ nunber =" 65", val ue="0x00029002"}]

(gdb)

-data-list-register-val ues x

Adone, r egi st er - val ues=[{ nunber =" 0", val ue="0xf e0043c8"},

{nunmber ="1", val ue="0x3fff 88"}, { nunber="2", val ue="0Oxfffffffe"},

{ nunber ="3", val ue="0x0"}, { nunber ="4", val ue="0xa"},

{nunber ="5", val ue="0x3fff 68"}, { nunber ="6", val ue="0x3fff 58"},
{nunber ="7", val ue="0xf e011e98"}, { nunber =" 8", val ue="0x2"},

{ nunber =" 9", val ue="0xf a202820"}, { nunber =" 10", val ue="0xf a202808"} ,
{nunber ="11", val ue="0x1"}, { nunber ="12", val ue="0x0"},

{nunber =" 13", val ue="0x4544"}, { nunber =" 14", val ue="0xffdfffff"},
{nunber ="15", val ue="0xffffffff"}, {nunber="16", val ue="0xfffffeff"},
{nunber ="17", val ue="0xefffffed"}, { nunber="18", val ue="0xfffffffe"},
{nunber="19", val ue="0xffffffff"}, {nunber="20", val ue="0Oxffffffff"},
{nunber ="21",val ue="0xffffffff"}, {nunber="22" val ue="0xfffffff7"},
{nunber ="23", val ue="0xffffffff"}, {nunber="24" val ue="0Oxffffffff"},
{nunber ="25", val ue="0xffffffff"}, {nunber="26", val ue="0xfffffffb"},
{nunmber ="27",val ue="0xffffffff"}, {nunber="28", val ue="0xf 7bf ffff"},
{ nunber =" 29", val ue="0x0"}, { nunber =" 30", val ue="0xf e010000"},
{nunber =" 31", val ue="0x0"}, { nunber =" 32", val ue="0x0"},

{ nunber =" 33", val ue="0x0"}, { nunber =" 34", val ue="0x0"},

{ nunber =" 35", val ue="0x0"}, { nunber =" 36", val ue="0x0"},

{ nunber =" 37", val ue="0x0"}, { nunber =" 38", val ue="0x0"},

file:///Cl/gdb.html (236 of 352)19. 1. 2004 20:32:04

Debugging with GDB

{ nunber ="39", val ue="0x0"
{ nunber ="41", val ue="0x0"
{ nunber ="43", val ue="0x0"
{ nunber =" 45", val ue="0x0"
{ nunber ="47", val ue="0x0"
{ nunber ="49", val ue="0x0"
{ nunber ="51", val ue="0x0"
{ nunber ="53", val ue="0x0"
{ nunber =" 55", val ue="0x0"

nunber =" 40", val ue="0x0"},

nunber =" 42", val ue="0x0"},

nunber =" 44", val ue="0x0"},

nunber =" 46", val ue="0x0"},

nunber =" 48", val ue="0x0"},

nunber =" 50", val ue="0x0"},

nunber =" 52", val ue="0x0"},

nunber =" 54", val ue="0x0"},

nunber =" 56", val ue="0x0"},

{ nunber ="57", val ue="0x0" nunber =" 58", val ue="0x0"},

{ nunber ="59", val ue="0x0"}, { nunber =" 60", val ue="0x0"},
{nunber="61", val ue="0x0"}, { nunber =" 62", val ue="0x0"},

{ nunber ="63", val ue="0x0"}, { nunber =" 64", val ue="0xf e00a300"},

{ nunber =" 65", val ue="0x29002"}, { nunber =" 66", val ue="0x202f 04b5"},
{nunber ="67", val ue="0xf e0043b0"}, { nunber ="68", val ue="0xf e00b3e4"},
{ nunber ="69", val ue="0x20002b03"}]

(gdb)

e e e))) e)) o
(et Nate Nt Wate Wate Wate Wate Wate Wate Wass Waa Y

The - dat a- r ead- nrenory Command
Synopsis

-data-read-nmenory [-0 byte-offset]
address word-format word-size
nr-rows nr-cols [aschar]

where;

“addr ess’
An expression specifying the address of the first memory word to be read. Complex expressions
containing embedded white space should be quoted using the C convention.
“word-format’
The format to be used to print the memory words. The notation is the same asfor GDB'spr i nt
command (see section Output formats).
“wor d- si ze
The size of each memory word in bytes.
nr-rows'
The number of rows in the output table.
‘nr-cols’
The number of columnsin the output table.
“aschar'
If present, indicates that each row should include an ASCII dump. The value of aschar isused as

file:///C|/gdb.html (237 of 352)19. 1. 2004 20:32:04

Debugging with GDB

a padding character when a byte is not amember of the printable ASCII character set (printable
ASCII characters are those whose code is between 32 and 126, inclusively).

“byte-of fset'
An offset to add to the address before fetching memory.

This command displays memory contents as atable of nr-rows by nr-cols words, each word being word-
sizebytes. Intotal, nr-rows * nr-cols * word-size bytesareread (returned as " t ot al -

byt es'). Should less then the requested number of bytes be returned by the target, the missing words
areidentified using " N/ A" . The number of bytes read from thetarget isreturned in * nr - byt es' and
the starting address used to read memory in ~ addr ' .

The address of the next/previous row or pageisavailablein " next -row and prev-row , next -
page' and prev-page'.

GDB Command
The corresponding GDB command is ™ x' . gdbt k has™ gdb_get _mem memory read command.
Example

Read six bytes of memory starting at byt es+6 but then offset by - 6 bytes. Format as three rows of two
columns. One byte per word. Display each word in hex.

(gdb)

9-data-read-nenory -0 -6 -- bytes+6 x 1 3 2

97done, addr =" 0x00001390", nr- byt es="6", t ot al - byt es="6",

next - row="0x00001396", prev-row="0x0000138e", next - page="0x00001396",
prev- page="0x0000138a", nenory=|

{addr ="0x00001390", dat a=["0x00", "0x01"]},

{addr ="0x00001392", dat a=["0x02", "0x03"] },

{addr ="0x00001394", dat a=["0x04", "0x05"]}]

(gdb)

Read two bytes of memory starting at addressshorts + 64 and display asasingle word formatted in
decimal.

(gdb)

5-data-read-nenory shorts+64 d 2 1 1

57done, addr =" 0x00001510", nr- byt es="2", t ot al - byt es="2",
next - row="0x00001512", prev-row="0x0000150e",

next - page="0x00001512", pr ev- page="0x0000150e", menor y=|
{addr ="0x00001510", data=[" 128"] }]

file:///Cl/gdb.html (238 of 352)19. 1. 2004 20:32:04

Debugging with GDB

(gdb)

Read thirty two bytes of memory starting at byt es+16 and format as eight rows of four columns.

Include a string encoding with ~ X' used as the non-printable character.

(gdb)
4-dat a-read- nenory bytes+16 x 1 8 4 X

4"done, addr =" 0x000013a0", nr- byt es="32",tot al - byt es="32",
next - row="0x000013c0", prev-row="0x0000139c",

next - page="0x000013c0", prev- page="0x00001380", nmenor y=[
{addr ="0x000013a0", dat a=["0x10", "0Ox11", "0x12", "0x13"], asci
{addr ="0x000013a4", dat a=["0x14", "0x15", "0x16", "0x17"], asci
{addr ="0x000013a8", dat a=["0x18", "0x19", "0Ox1la", "0x1lb"], asci
{addr ="0x000013ac", dat a=["Ox1c", "0Ox1ld", "Oxle", "0Ox1lf"], asci
{addr ="0x000013b0", dat a=[" 0x20", "0x21", "0x22", "0x23"], asci
{addr ="0x000013b4", dat a=[" 0x24", "0x25", "0x26", "0x27"], asci
{addr ="0x000013b8", dat a=[" 0x28", "0x29", "0x2a", "0x2b"], asci
{addr ="0x000013bc", dat a=["0x2c", "0x2d", "0x2e", "0x2f"], asci

(gdb)
The - di spl ay- del et e Command
Synopsis
- di spl ay- del et e nunber
Delete the display number.
GDB Command
The corresponding GDB command is ™ del et e di spl ay' .
Example
N.A.
The - di spl ay- di sabl e Command
Synopsis

- di spl ay- di sabl e nunber

file:///Cl/gdb.html (239 of 352)19. 1. 2004 20:32:04

X
X
X

X"},
XXX"},
XXXX"},
"XXxx"},
B AW
"$U& "},
(),
AN

X

Debugging with GDB
Disable display number.
GDB Command
The corresponding GDB command is ™ di sabl e di spl ay' .
Example
N.A.
The - di spl ay- enabl e Command
Synopsis
- di spl ay- enabl e nunber
Enable display number.
GDB Command
The corresponding GDB command is ™ enabl e di spl ay' .
Example
N.A.
The - di spl ay-i nsert Command
Synopsis
-di spl ay-i nsert expression
Display expression every time the program stops.
GDB Command
The corresponding GDB command is ™ di spl ay' .

Example

file:///C|/gdb.html (240 of 352)19. 1. 2004 20:32:04

Debugging with GDB

N.A.
The - di spl ay-li st Command
Synopsis

-di splay-1i st
List the displays. Do not show the current values.
GDB Command
The corresponding GDB commandis " i nf o di spl ay' .
Example
N.A.
The - envi ronnent - cd Command
Synopsis

-envi ronnent-cd pathdir
Set GDB'sworking directory.
GDB Command
The corresponding GDB command is ™ cd' .

Example

(gdb)
-envi ronnment - cd / kw kemart/ mar ge/ ezannoni / f| at head- dev/ devo/ gdb

"done
(gdb)

The - envi ronnent - di rect ory Command
Synopsis

file:///C|/gdb.html (241 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-environnent-directory pathdir
Add directory pathdir to beginning of search path for source files.
GDB Command
The corresponding GDB commandis dir' .

Example

(gdb)
-environnment-directory /kw kemart/ marge/ ezannoni / fl| at head- dev/ devo/ gdb
Adone

(gdb)
The - envi r onnment - pat h Command
Synopsis
-environment-path (pathdir)+
Add directories pathdir to beginning of search path for object files.
GDB Command
The corresponding GDB command is ™ pat h' .

Example

(gdb)
-envi ronnment - path / kw kemart/ mar ge/ ezannoni / f| at head- dev/ ppc- eabi / gdb
Adone

(gdb)
The - envi ronnment - pwd Command
Synopsis

- envi ronnent - pwd

file:///C|/gdb.html (242 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Show the current working directory.
GDB command
The corresponding GDB command is ™ pwd' .

Example

(gdb)
- envi ronnent - pwd
~Wor ki ng directory /kw kemart/ marge/ ezannoni / fl at head- dev/ devo/ gdb.

"done
(gdb)

GDB/MI Program control

Program termination

As aresult of execution, the inferior program can run to completion, if it doesn't encounter any
breakpoints. In this case the output will include an exit code, if the program has exited exceptionally.

Examples

Program exited normally:

(gdb)
- exec-run

Arunni ng

(gdb)

X = 55

*st opped, reason="exi ted-normal | y"
(gdb)

Program exited exceptionally:

(gdb)
- exec-run

Arunni ng

(gdb)

X = 55

*st opped, reason="exi ted", exi t-code="01"

file:///C|/gdb.html (243 of 352)19. 1. 2004 20:32:04

Debugging with GDB

(gdb)

Another way the program can terminateisif it receivesasignal such as SI G NT. In this case, GDB/MI
displaysthis:

(gdb)
*st opped, reason="exi t ed- si gnal | ed", si gnal - name="SI G NT",

si gnal - neani ng="Interrupt"
The - exec-abort Command
Synopsis
- exec- abort
Kill the inferior running program.
GDB Command
The corresponding GDB command is " ki | | *.
Example
N.A.
The - exec- argunent s Command
Synopsis
-exec-argunents args
Set the inferior program arguments, to be used inthe next * - exec-run' .
GDB Command
The corresponding GDB command is ™ set args' .
Example

Don't have one around.

file:///Cl/gdb.html (244 of 352)19. 1. 2004 20:32:04

Debugging with GDB
The - exec-conti nue Command
Synopsis

- exec-conti nue

Asynchronous command. Resumes the execution of the inferior program until a breakpoint is
encountered, or until the inferior exits.

GDB Command
The corresponding GDB corresponding is ™ cont i nue' .
Example

-exec-conti nue

Arunni ng
(gdb)
@¥ello wrld

*st opped, reason="br eakpoi nt-hit", bkpt no="2", frame={func="foo0", args=[],
file="hello.c",line="13"}

(gdb)
The - exec-fi ni sh Command
Synopsis

-exec-finish

Asynchronous command. Resumes the execution of the inferior program until the current function is
exited. Displays the results returned by the function.

GDB Command
The corresponding GDB command is fi ni sh' .
Example

Function returning voi d.

file:///C|/gdb.html (245 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-exec-finish

Arunni ng

(gdb)

@ello fromfoo

*st opped, reason="function-fini shed", frame={func="nmai n", args=[],
file="hello.c",line="7"}

(gdb)

Function returning other than voi d. The name of the internal GDB variable storing the result is printed,
together with the value itself.

-exec-finish

Arunni ng

(gdb)

*st opped, reason="function-fini shed", frane={addr =" 0x000107b0",
func="fo0",

args=[{nane="a", val ue="1"], { name="b", val ue="9"}},

file="recursive2.c",line="14"},
gdb-resul t-var="$1", return-val ue="0"
(gdb)

The - exec-i nterrupt Command
Synopsis
-exec-interrupt

Asynchronous command. Interrupts the background execution of the target. Note how the token
associated with the stop message is the one for the execution command that has been interrupted. The
token for the interrupt itself only appearsinthe “done' output. If the user istrying to interrupt a non-
running program, an error message will be printed.

GDB Command
The corresponding GDB command is " i nt errupt ' .

Example

(gdb)
111- exec-conti nue

1117r unni ng

file:///C|/gdb.html (246 of 352)19. 1. 2004 20:32:04

Debugging with GDB

(gdb)
222- exec-i nterrupt

222”done

(gdb)

111*st opped, si gnal - nanme="SI G NT", si gnal - neani ng="Interrupt",
frame={ addr =" 0x00010140", func="foo0",args=[],file="try.c",line="13"}

(gdb)

(gdb)

-exec-interrupt

Nerror,nmsg="m cnd _exec_interrupt: Inferior not executing."
(gdb)

The - exec- next Command
Synopsis
- exec- next

Asynchronous command. Resumes execution of the inferior program, stopping when the beginning of
the next source line is reached.

GDB Command
The corresponding GDB command is ™ next ' .
Example

- exec- next
Arunni ng

(gdb)

*st opped, reason="end- st eppi ng-range",line="8",file="hell o0.c"
(gdb)

The - exec-next -instructi on Command

Synopsis

-exec-next-instruction

Asynchronous command. Executes one machine instruction. If the instruction is afunction call

file:///C|/gdb.html (247 of 352)19. 1. 2004 20:32:04

Debugging with GDB

continues until the function returns. If the program stops at an instruction in the middle of a source line,
the address will be printed as well.

GDB Command
The corresponding GDB command is ™ nexti ' .

Example

(gdb)
-exec-next-instruction

Arunni ng

(gdb)
*st opped, r eason="end- st eppi ng- r ange",
addr ="0x000100d4",line="5",file="hello.c"

(gdb)

The - exec-return Command
Synopsis

-exec-return

Makes current function return immediately. Doesn't execute the inferior. Displays the new current
frame.

GDB Command
The corresponding GDB commandis " return' .

Example

(gdb)
200- break-i nsert call ee4d

2007done, bkpt ={ nunber =" 1", addr =" 0x00010734",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="8"}
(gdb)

000- exec-run

000”r unni ng

(gdb)

file:///C|/gdb.html (248 of 352)19. 1. 2004 20:32:04

Debugging with GDB

000* st opped, reason="br eakpoi nt-hit", bkpt no="1",
frame={func="cal | ee4",args=[],
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="8"}
(gdb)

205- br eak-del et e

205"done

(gdb)

111-exec-return

111"done, frane={l evel ="0 ", func="cal | ee3",

args=[{name="strarg",

val ue="0x11940 \"A string argunent.\""}],
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="18"}

(gdb)
The - exec-run Command
Synopsis

-exec-run

Asynchronous command. Starts execution of the inferior from the beginning. The inferior executes unti
either a breakpoint is encountered or the program exits.

GDB Command
The corresponding GDB command is " run' .

Example

(gdb)

- break-insert main

Ndone, bkpt ={ nunber =" 1", addr =" 0x0001072c",fil e="recursive2.c",|line="4"}
(gdb)

- exec-run

Arunni ng

(gdb)

*st opped, reason="br eakpoi nt-hit", bkpt no="1",
frame={func="main",args=[],file="recursive2.c",line="4"}

(gdb)

The - exec- show ar gunent s Command

file:///C|/gdb.html (249 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Synopsis
- exec- show ar gunent s
Print the arguments of the program.
GDB Command
The corresponding GDB command is” show ar gs' .
Example

N.A.
The - exec- st ep Command
Synopsis

-exec-step

Asynchronous command. Resumes execution of the inferior program, stopping when the beginning of
the next source lineisreached, if the next source lineis not afunction call. If it is, stop at the first
instruction of the called function.

GDB Command

The corresponding GDB command is ™ st ep’ .
Example

Stepping into a function:

- exec-step

Arunni ng

(gdb)

*st opped, reason="end- st eppi ng-r ange",
frame={func="foo0", args=[{nane="a", val ue="10"},

{nanme="Db", value="0"}],file="recursive2.c",line="11"}
(gdb)
Regular stepping:

file:///Cl/gdb.html (250 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-exec-step
Arunni ng

(gdb)
*st opped, reason="end- st eppi ng-range", |l ine="14" ,fil e="recursive2.c"

(gdb)
The - exec-step-i nstructi on Command
Synopsis

-exec-step-instruction

Asynchronous command. Resumes the inferior which executes one machine instruction. The output,
once GDB has stopped, will vary depending on whether we have stopped in the middle of a source line
or not. In the former case, the address at which the program stopped will be printed as well.

GDB Command
The corresponding GDB command is ™ st epi ' .

Example

(gdb)
-exec-step-instruction

Arunni ng

(gdb)
*st opped, r eason="end- st eppi ng- r ange",
frame={func="foo",args=[],file="try.c",line="10"}

(gdb)
-exec-step-instruction

Arunni ng

(gdb)
*st opped, r eason="end- st eppi ng-r ange",
frame={addr =" 0x000100f 4", func="foo",args=[],file="try.c",line="10"}

(gdb)

The - exec-unti | Command

file:///C|/gdb.html (251 of 352)19. 1. 2004 20:32:04

Debugging with GDB
Synopsis

-exec-until [location]
Asynchronous command. Executes the inferior until the location specified in the argument is reached. If
there is no argument, the inferior executes until a source line greater than the current one isreached. The
reason for stopping inthiscase will be " | ocati on-reached' .
GDB Command

The corresponding GDB commandis unti | ' .

Example

(gdb)
-exec-unti|l recursive2.c:6

Arunni ng

(gdb)

x = 55

*st opped, reason="1 ocati on-reached", frane={func="mai n", args=[],
file="recursive2.c",|line="6"}

(gdb)
The -fil e- exec-and-synbol s Command
Synopsis

-fil e-exec-and-synbols file

Specify the executable file to be debugged. Thisfileisthe one from which the symbol table is also read.
If no fileis specified, the command clears the executable and symbol information. If breakpoints are set
when using this command with no arguments, GDB will produce error messages. Otherwise, no output
IS produced, except a completion notification.

GDB Command
The corresponding GDB commandis " fil e'.

Example
(gdb)

file:///C/gdb.html (252 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-fil e-exec-and-synbol s /kw kemart/ mar ge/ ezannoni / TRUNK/ nbx/ hel | 0. nbx
Adone

(gdb)
The -fil e-exec-fil e Command
Synopsis

-file-exec-file file

Specify the executable file to be debugged. Unlike ™ - f i | e- exec- and- synbol s’ , the symbol table
isnot read from thisfile. If used without argument, GDB clears the information about the executable
file. No output is produced, except a completion notification.

GDB Command
The corresponding GDB command is ™ exec-fil e'.

Example

(gdb)
-file-exec-file /kw kemart/ mar ge/ ezannoni / TRUNK/ nbx/ hel | 0. nbx

"done
(gdb)

The-file-1list-exec-sections Command
Synopsis
-file-1ist-exec-sections
List the sections of the current executablefile.
GDB Command

The GDB command " i nfo fil e' shows, anong the rest, the same information as this command.
gdbt k hasacorresponding command " gdb_| oad_i nfo'.

Example

N.A.

file:///Cl/gdb.html (253 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The-file-list-exec-source-files Command
Synopsis
-file-list-exec-source-files
List the source files for the current executable.
GDB Command

There'sno GDB command which directly corresponds to this one. gdbt k has an analogous command
"gdb _listfiles'.

Example
N.A.
The-file-list-shared-1ibrari es Command
Synopsis
-file-list-shared-libraries
List the shared libraries in the program.
GDB Command
The corresponding GDB commandis " i nfo shared' .
Example
N.A.
The-file-list-synbol-files Command
Synopsis

-file-list-synbol-files

file:///Cl/gdb.html (254 of 352)19. 1. 2004 20:32:04

Debugging with GDB

List symbol files.
GDB Command
The corresponding GDB commandis i nfo fil e' (partof it).
Example
N.A.
The -fil e-synbol -fil e Command
Synopsis
-file-synbol-file file

Read symbol table info from the specified file argument. When used without arguments, clears GDB's
symbol table info. No output is produced, except for a completion notification.

GDB Command
The corresponding GDB command is* synbol -file'.

Example

(gdb)
-file-synbol-file /kw kemart/ mar ge/ ezannoni / TRUNK/ nbx/ hel | 0. nbx

Ndone
(gdb)

Miscellaneous GDB commands in GDB/MI

The - gdb-exi t Command
Synopsis
-gdb-exi t

Exit GDB immediately.

file:///Cl/gdb.html (255 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB Command
Approximately correspondsto " qui t " .
Example

(gdb)
-gdb-exi t

The - gdb- set Command
Synopsis
- gdb- set
Set an internal GDB variable.
GDB Command
The corresponding GDB command is~ set ' .

Example

(gdb)
- gdb-set $f 00=3
Adone
(gdb)
The - gdb- showCommand
Synopsis
- gdb- show
Show the current value of a GDB variable.

GDB command

The corresponding GDB command is ™ show .

file:///Cl/gdb.html (256 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Example

(gdb)
- gdb- show annot at e
Adone, val ue="0"

(gdb)
The - gdb- ver si on Command
Synopsis
- gdb- versi on
Show version information for GDB. Used mostly in testing.
GDB Command

There's no equivalent GDB command. GDB by default shows this information when you start an
interactive session.

Example

(gdb)
- gdb- versi on

~G\U gdb 5.2.1
~Copyright 2000 Free Software Foundation, Inc.
~GB is free software, covered by the GNU General Public License, and
~you are welconme to change it and/or distribute copies of it under
~ certain conditions.
~Type "show copyi ng" to see the conditions.
~There is absolutely no warranty for GDB. Type "show warranty" for
~ details.
~This GDB was configured as
"--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
Adone

(gdb)

GDB/MI Stack Manipulation Commands

The - st ack-i nf o-frame Command

file:///C|/gdb.html (257 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Synopsis
-stack-info-frame
Get info on the current frame.
GDB Command
The corresponding GDB commandis i nfo frame' or frane' (without arguments).
Example

N.A.
The - st ack-i nf o- dept h Command
Synopsis

-stack-info-depth [max-depth]

Return the depth of the stack. If the integer argument max-depth is specified, do not count beyond max-
depth frames.

GDB Command
There's no equivalent GDB command.
Example

For a stack with frame levels O through 11:

(gdb)

-stack-i nfo-depth
Ndone, dept h="12"
(gdb)
-stack-info-depth 4
Ndone, dept h="4"
(gdb)
-stack-info-depth 12
Ndone, dept h="12"

(gdb)

file:///Cl/gdb.html (258 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-stack-info-depth 11
Adone, dept h="11"
(gdb)
-stack-info-depth 13
Adone, dept h="12"

(gdb)
The - stack-1ist-argunents Command
Synopsis

-stack-1list-argunents show val ues
[lowfranme high-frame]

Display alist of the arguments for the frames between low-frame and high-frame (inclusive). If low-
frame and high-frame are not provided, list the arguments for the whole call stack.

The show-values argument must have avalue of 0 or 1. A value of 0 means that only the names of the
arguments are listed, a value of 1 means that both names and values of the arguments are printed.

GDB Command

GDB does not have an equivalent command. gdbt k hasa™ gdb_get _ar gs' command which
partially overlaps with the functionality of * - st ack- | i st - argunent s’ .

Example

(gdb)
-stack-list-franmes

Adone,

st ack=][

frame={l evel ="0 ", addr ="0x00010734", func="cal | ee4",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="8"},
frame={l evel ="1 ", addr="0x0001076¢", func="cal | ee3",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="17"},
frame={l evel ="2 ", addr="0x0001078c", func="cal | ee2",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="22"},
frame={l evel ="3 ", addr ="0x000107b4", func="cal | eel",
file="../../../devo/gdb/testsuite/ gdb. m/basics.c",|ine="27"},
frame={l evel ="4 ", addr ="0x000107e0", func="mai n",
file="../../../devo/gdb/testsuite/ gdb. m /basics.c",|ine="32"}]

(gdb)

file:///Cl/gdb.html (259 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-stack-list-argunents O
Adone,
st ack-args=|

frame={l evel =" 0", args=[]},

frame={l evel ="1", args=[name="strarg"]},

frame={l evel =" 2", args=[nanme="i ntarg", name="strarg"]},

frame={l evel =" 3", args=[nanme="i ntarg", nanme="strarg", nane="fltarg"]},
frame={l evel ="4",args=[]}]

(gdb)

-stack-list-argunents 1

Ndone,

st ack-args=|
frame={l evel =" O ,args=[]},
frame={l evel =" 1",

args=[{nanme="strarg", val ue="0x11940 \"A string argunent.\""}]},
frame={l evel =" 2", args=|
{name="intarg", val ue="2"},
{name="strarg", val ue="0x11940 \"A string argunent.\""}]},
{frame={l evel =" 3", args=]|
{nanme="intarg", val ue="2"},
{nanme="strarg", val ue="0x11940 \"A string argunent.\""},
{name="fltarg", val ue="3.5"}]},
frame={l evel ="4" ,args=[]}]

(gdb)

-stack-list-argunents 0 2 2
Adone, st ack-args=[franme={l evel ="2", args=[nane="i ntarg",
nanme="strarg"] }]

(gdb)

-stack-list-argunents 1 2 2
Adone, st ack-args=[franme={l evel =" 2",
args=[{name="intarg", val ue="2"},
{nanme="strarg", val ue="0x11940 \"A string argunment.\""}]}]
(gdb)

The -stack-1i st-frames Command
Synopsis
-stack-list-frames [lowfrane high-frame]

List the frames currently on the stack. For each frame it displays the following info:

file:///Cl/gdb.html (260 of 352)19. 1. 2004 20:32:04

Debugging with GDB

“level'
The frame number, 0 being the topmost frame, i.e. the innermost function.
“addr’
The $pc vauefor that frame.
“func'
Function name.
“file
File name of the source file where the function lives.
“line'
Line number corresponding to the $pc.

If invoked without arguments, this command prints a backtrace for the whole stack. If given two integer
arguments, it shows the frames whose levels are between the two arguments (inclusive). If the two
arguments are equal, it shows the single frame at the corresponding level.

GDB Command

The corresponding GDB commands are " backt race' and " where' .
Example

Full stack backtrace:

(gdb)
-stack-list-frames

Ndone, st ack=
[frame={| evel ="0 ", addr ="0x0001076c", func="f 00",

file="recursive2.c",line="11"},
frame={l evel ="1 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="2 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="3 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="4 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="5 ", addr =" 0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="6 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="7 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},

file:///Cl/gdb.html (261 of 352)19. 1. 2004 20:32:04

Debugging with GDB

frame={l evel ="8 ", addr="0x000107a4", func="f 00",

file="recursive2.c",line="14"},

frame={l evel ="9 ", addr="0x000107a4", func="f 00",
file="recursive2.c",line="14"},

frame={l evel =" 10", addr =" 0x000107a4", func="f 00",
file="recursive2.c",line="14"},

frame={l evel =" 11", addr =" 0x00010738", f unc="mai n",
file="recursive2.c",line="4"}]

(gdb)

Show frames between low_frame and high_frame:

(gdb)

-stack-list-franes 3 5

Adone, st ack=

[frame={I| evel ="3 ", addr ="0x000107a4", func="f 00",

file="recursive2.c",line="14"},
frame={l evel ="4 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"},
frame={l evel ="5 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",line="14"}]
(gdb)

Show a single frame:

(gdb)

-stack-list-frames 3 3

Adone, st ack=

[frame={level ="3 ", addr ="0x000107a4", func="f 00",
file="recursive2.c",|line="14"}]

(gdb)
The -stack-11st-1ocal s Command
Synopsis

-stack-list-locals print-val ues

Display the local variable names for the current frame. With an argument of O prints only the names of
the variables, with argument of 1 prints also their values.

GDB Command

file:///C|/gdb.html (262 of 352)19. 1. 2004 20:32:04

Debugging with GDB

“info locals' inGDB, gdb get |ocals' ingdbtk.

Example

(gdb)
-stack-list-locals O

Adone, | ocal s=[nane="A", nane="B", nane="C"]
(gdb)

-stack-list-locals 1
Ndone, | ocal s=[{ nane="A", val ue="1"}, {nane="B", val ue="2"},
{name="C", val ue="3"}]
(gdb)
The - st ack-sel ect -frane Command
Synopsis
-stack-sel ect-frane franmenum

Change the current frame. Select a different frame framenum on the stack.

GDB Command

The corresponding GDB commandsare " f rane' , up', down', sel ect-frange'

silent',and down-silent'.
Example

(gdb)
-stack-select-frane 2

"done
(gdb)

GDB/MI Symbol Query Commands

The - synbol -i nf 0o- addr ess Command

Synopsis

file:///Cl/gdb.html (263 of 352)19. 1. 2004 20:32:04

*up-

Debugging with GDB

-synbol -i nf o- addr ess synbol
Describe where symbol is stored.
GDB Command
The corresponding GDB command is " i nf o addr ess' .
Example
N.A.
The - synbol -i nfo-fil e Command
Synopsis
-synbol -info-file
Show the file for the symbol.
GDB Command
There's no equivalent GDB command. gdbt k has gdb_find file'.
Example
N.A.
The - synbol -i nf o-functi on Command
Synopsis
-synbol -i nfo-function
Show which function the symbol livesin.
GDB Command

“gdb_get function' ingdbt K.

file:///Cl/gdb.html (264 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Example
N.A.
The - synbol -i nf o-1i ne Command
Synopsis

-synbol -info-Iline
Show the core addresses of the code for a source line.
GDB Command

The corresponding GDB comamndis i nfo |i ne'.gdbtk hasthe” gdb_get | i ne' and
"gdb_get file' commands.

Example
N.A.
The - synbol - i nf o- synbol Command
Synopsis
-synbol -i nf o- synbol addr
Describe what symbol is at location addr.
GDB Command
The corresponding GDB commandis " i nf o synbol ' .
Example
N.A.
The -synbol -11i st-functi ons Command

Synopsis

file:///Cl/gdb.html (265 of 352)19. 1. 2004 20:32:04

Debugging with GDB
-synbol -1ist-functions
List the functions in the executable.
GDB Command
“info functions' inGDB, gdb _listfunc' and gdb_search' ingdbt k.
Example
N.A.
The -synbol -1i st-types Command
Synopsis
-synbol -1ist-types
List al the type names.
GDB Command

The corresponding commandsare " i nf o types' inGDB, gdb_search' ingdbt k.

Example
N.A.
The - synbol -1i st-vari abl es Command
Synopsis
-synbol -1ist-vari abl es

List all the global and static variable names.
GDB Command

“info variabl es' inGDB, gdb_search' ingdbt k.

file:///Cl/gdb.html (266 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Example
N.A.
The - synbol -1 ocat e Command
Synopsis
-synbol -1 ocate
GDB Command
“gdb_| oc' ingdbt k.
Example
N.A.
The - synbol -t ype Command
Synopsis
-synbol -type vari abl e
Show type of variable.
GDB Command
The corresponding GDB command is ™ pt ype' ,gdbt k has” gdb_obj vari abl e' .
Example

N.A.

GDB/MI Target Manipulation Commands

The -target-attach Command

Synopsis

file:///C|/gdb.html (267 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-target-attach pid | file
Attach to a process pid or afilefile outside of GDB.
GDB command
The corresponding GDB command is ™ at t ach' .
Example

N.A.
The -t ar get - conpar e- secti ons Command
Synopsis

-target-conpare-sections [section]

Compare data of section section on target to the exec file. Without the argument, all sections are
compared.

GDB Command
The GDB equivalentis™ conpar e- secti ons' .
Example
N.A.
The -t ar get - det ach Command
Synopsis

-target-detach
Disconnect from the remote target. There's no output.
GDB command

The corresponding GDB command is ™ det ach' .

file:///Cl/gdb.html (268 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Example

(gdb)
-target -detach

Ndone
(gdb)

The -t ar get - downl oad Command
Synopsis
-target - downl oad

L oads the executable onto the remote target. It prints out an update message every half second, which
includes the fields:

“section'
The name of the section.
"section-sent'
The size of what has been sent so far for that section.
"section-size'
The size of the section.
“total -sent’
The total size of what was sent so far (the current and the previous sections).
“total -size'
The size of the overall executable to download.

Each message is sent as status record (see section GDB/MI Output Syntax).

In addition, it prints the name and size of the sections, as they are downloaded. These messages include
the following fields:

“section'
The name of the section.
"section-size'
The size of the section.
“total -size'
The size of the overall executable to download.

At the end, a summary is printed.

file:///Cl/gdb.html (269 of 352)19. 1. 2004 20:32:04

Debugging with GDB

GDB Command
The corresponding GDB commandis ™ | oad' .
Example

Note: each status message appears on a single line. Here the messages have been broken down so that
they can fit onto a page.

(gdb)
-target - downl oad

+downl oad, {section=".text", secti on-si ze="6668",total -si ze="9880"}
+downl oad, {section=".text", secti on-sent="512", section-si ze="6668",
total -sent="512", total-size—"9880"}

+downl oad, {section=".text", secti on-sent="1024", secti on-si ze="6668",
total -sent="1024", totaI-S|ze—"9880"}

+downl oad, {section=".text", section-sent="1536", secti on-si ze="6668",
total -sent="1536", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="2048", secti on-si ze="6668",
t ot al - sent =" 2048", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="2560", secti on-si ze="6668",
t ot al - sent =" 2560", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="3072", secti on-si ze="6668",
t ot al - sent =" 3072", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="3584", secti on-si ze="6668",
t ot al - sent =" 3584", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="4096", secti on-si ze="6668",
t ot al - sent ="4096", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="4608", secti on-si ze="6668",
t ot al - sent ="4608", totaI-S|ze—"9880"}

+downl oad, {section=".text", section-sent="5120", secti on-si ze="6668",
total -sent="5120", totaI-S|ze—"9880"}

+downl oad, {section=".text", section-sent="5632", secti on-si ze="6668",
total - sent ="5632", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="6144", secti on-si ze="6668",
total -sent="6144", totaI-S|ze—"9880"}

+downl oad, {section=".text", secti on-sent="6656", secti on-si ze="6668",
tot al - sent =" 6656", totaI-S|ze—"9880"}

+downl oad, {section=".init", section-size="28",total -size="9880"}
+downl oad, {section=".fini", section-size="28",total -size="9880"}
+downl oad, {secti on=".data", secti on-si ze="3156", total -si ze="9880"}
+downl oad, {secti on=".data", secti on-sent="512", secti on-si ze="3156",

file:///C/gdb.html (270 of 352)19. 1. 2004 20:32:04

Debugging with GDB

total -sent="7236",total -size="9880"}
+downl oad, {secti on=".data", secti on-sent="1024", secti on-si ze="3156"
total -sent="7748",total -si ze="9880"}
+downl oad, {secti on=".data", secti on-sent="1536", secti on-si ze="3156"
t ot al - sent ="8260", t ot al - si ze="9880"}
+downl oad, {secti on=".data", secti on-sent="2048", secti on-si ze="3156"
total -sent="8772",total -size="9880"}
+downl oad, {secti on=".data", secti on-sent ="2560", secti on-si ze="3156"
t ot al - sent ="9284",total - si ze="9880"}
+downl oad, {secti on=".data", secti on-sent="3072", secti on-si ze="3156"
total -sent="9796",total -si ze="9880"}

Adone, addr ess="0x10004", | oad- si ze="9880", transfer-rat e="6586",
wite-rate="429"

(gdb)
The -t ar get - exec- st at us Command
Synopsis
-target - exec- st at us
Provide information on the state of the target (whether it is running or not, for instance).
GDB Command
There's no equivalent GDB command.
Example
N.A.
The-target-1list-avail abl e-targets Command
Synopsis
-target-list-avail abl e-targets
List the possible targets to connect to.

GDB Command

file:///C|/gdb.html (271 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The corresponding GDB command is ™ hel p target'.
Example
N.A.
The-target-list-current-targets Command
Synopsis
-target-list-current-targets
Describe the current target.
GDB Command
The corresponding informationisprinted by " i nfo fil e' (among other things).
Example
N.A.
The -target-1ist-paraneters Command
Synopsis
-target-list-paraneters
GDB Command
No equivalent.
Example
N.A.
The -t ar get - sel ect Command

Synopsis

file:///C|/gdb.html (272 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-target-sel ect type paraneters ...

Connect GDB to the remote target. This command takes two args.

“type'
The type of target, for instance " async' , renot e' , etc.
" par aneters'
Device names, host names and the like. See section Commands for managing targets, for more

details.

The output is a connection notification, followed by the address at which the target programis, in the
following form:

Aconnect ed, addr =" addr ess", func="functi on name",
args=[arg |ist]

GDB Command
The corresponding GDB command is " t ar get ' .

Example

(gdb)
-target-sel ect async /dev/ttya
Aconnect ed, addr =" 0xf e00a300", f unc=""??", args=[|

(gdb)

GDB/MI Thread Commands

The -t hr ead-i nf o Command
Synopsis
-thread-info
GDB command
No equivalent.

Example

file:///C|/gdb.html (273 of 352)19. 1. 2004 20:32:04

Debugging with GDB
N.A.
The -thread-list-all-threads Command
Synopsis

-thread-list-all-threads
GDB Command
The equivalent GDB commandis i nfo t hreads' .
Example

N.A.
The -t hread-1list-ids Command
Synopsis

-thread-list-ids

Produces alist of the currently known GDB thread ids. At the end of thelist it also prints the total
number of such threads.

GDB Command
Partof i nfo threads' suppliesthe sameinformation.
Example

No threads present, besides the main process:

(gdb)

-thread-1list-ids

Adone, t hread-i ds={}, nunber - of -t hr eads=" 0"
(gdb)

Severdl threads:

file:///C|/gdb.html (274 of 352)19. 1. 2004 20:32:04

Debugging with GDB

(gdb)

-thread-list-ids

Adone, t hread-ids={thread-id="3",thread-id="2",thread-id="1"},
nunber - of -t hr eads=" 3"

(gdb)
The -t hr ead- sel ect Command
Synopsis

-t hread- sel ect threadnum

Make threadnum the current thread. It prints the number of the new current thread, and the topmost
frame for that thread.

GDB Command
The corresponding GDB command is " t hr ead" .

Example

(gdb)

- exec- next

Arunni ng

(gdb)

*st opped, reason="end- st eppi ng-range", thread-i d="2",11 ne="187",
file="../../../devo/gdb/testsuite/gdb.threads/I|inux-dp.c"
(gdb)

-thread-1list-ids

Ndone,

t hread-ids={thread-id="3",thread-id="2",thread-id="1"},

(gdb)
-t hread-sel ect 3

frame={level ="0 ", func="vprintf",
args=[{nane="format", val ue="0x8048e9c \"%Ws% % %\\n\""},
{nane="arg", val ue="0x2"}],file="vprintf.c",line="31"}

(gdb)

GDB/MI Tracepoint Commands

file:///C|/gdb.html (275 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The tracepoint commands are not yet implemented.

GDB/MI Variable Objects

Motivation for Variable Objects in GDB/MI

For the implementation of avariable debugger window (locals, watched expressions, €tc.), we are
proposing the adaptation of the existing code used by | nsi ght .

The two main reasons for that are:

1. It has been proven in practice (it is already on its second generation).
2. 1t will shorten development time (needless to say how important it is now).

The original interface was designed to be used by Tcl code, so it was slightly changed so it could be
used through GDB/MI. This section describes the GDB/MI operations that will be available and gives
some hints about their use.

Note: In addition to the set of operations described here, we expect the GUI implementation of avariable
window to require, at least, the following operations:

« -gdb-showout put - r adi x
. -stack-list-argunents
. -stack-list-locals

. -stack-select-frane

Introduction to Variable Objects in GDB/MI

The basic idea behind variable objects is the creation of a named object to represent a variable, an
expression, amemory location or even a CPU register. For each object created, a set of operationsis
available for examining or changing its properties.

Furthermore, complex data types, such as C structures, are represented in atree format. For instance, the
st ruct typevariableisthe root and the children will represent the struct members. If achild isitself of
acomplex type, it will also have children of its own. Appropriate language differences are handled for
C, C++ and Java.

When returning the actual values of the objects, thisfacility allows for the individual selection of the
display format used in the result creation. It can be chosen among: binary, decimal, hexadecimal, octa
and natural. Natural refers to adefault format automatically chosen based on the variable type (like

file:///C|/gdb.html (276 of 352)19. 1. 2004 20:32:04

Debugging with GDB

decimal for ani nt , hex for pointers, etc.).

The following is the complete set of GDB/MI operations defined to access this functionality:

Operation Description

-var-create create a variable object

-var-del ete delete the variable object and its children

-var -set - f or mat set the display format of this variable

-var - show f or mat show the display format of this variable

-var-info-numchildren |tellshow many children this object has

-var-list-children return alist of the object's children

-var-info-type show the type of this variable object

-var -i nf o- expressi on print what this variable object represents
Isthis variable editable? does it exist

-var-show attri butes
here?

-var - eval uat e- expr essi on |get the value of thisvariable

-var-assign set the value of this variable

-var - updat e update the variable and its children

In the next subsection we describe each operation in detail and suggest how it can be used.
Description And Use of Operations on Variable Objects

The -var - cr eat e Command

Synopsis
-var-create {nane | "-"}
{frame-addr | "*"} expression

This operation creates a variable object, which allows the monitoring of avariable, the result of an
expression, amemory cell or a CPU register.

The name parameter is the string by which the object can be referenced. It must be unique. If ~ - is
specified, the varobj system will generate astring "varNNNNNN" automatically. It will be unique
provided that one does not specify name on that format. The command failsif a duplicate name is found.

file:///C|/gdb.html (277 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The frame under which the expression should be evaluated can be specified by frame-addr. A ™ *°
indicates that the current frame should be used.

expression is any expression valid on the current language set (must not beginwitha™ *'), or one of the
following:

. *addr' , whereaddr isthe address of amemory cell
. *addr-addr' --amemory addressrange (TBD)
. $regnane' -- aCPU register name

Result

This operation returns the name, number of children and the type of the object created. Type is returned
as a string as the ones generated by the GDB CLI:

nanme="nane", nunchi | d="N", t ype="t ype"
The - var - del et e Command
Synopsis
-var-del ete nane
Deletes apreviously created variable object and al of its children.
Returns an error if the object name is not found.
The - var-set-format Command
Synopsis
-var-set-format nane fornmat-spec
Sets the output format for the value of the object name to be format-spec.
The syntax for the format-spec is as follows:

for mat - spec ==>
{binary | decimal | hexadecinmal | octal | natural}

file:///C|/gdb.html (278 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The - var - show f or mat Command
Synopsis
-var-show format nane
Returns the format used to display the value of the object name.

format ==>
f or mat - spec

The -var -i nf o- num chi | dren Command
Synopsis
-var-info-numchil dren nane
Returns the number of children of a variable object name:
nuncthi | d=n
The -var-1list-children Command
Synopsis
-var-list-children nane
Returns alist of the children of the specified variable object:

nunchi | d=n, chi | dr en={{ nane=nane,
nunchi | d=n, type=type}, (repeats N tines)}

The -var-i nfo-type Command
Synopsis
-var-info-type nane

Returns the type of the specified variable name. The typeisreturned as astring in the same format asit
Is output by the GDB CLI:

file:///C|/gdb.html (279 of 352)19. 1. 2004 20:32:04

Debugging with GDB

t ype=t ypenane
The - var -i nf o- expressi on Command
Synopsis

-var -i nf o- expressi on nane
Returns what is represented by the variable object name:

| ang=Il ang- spec, exp=expr essi on
wherelang-specis{"C" | "C++" | "Java"}.
The - var-show attri butes Command
Synopsis

-var-show attri butes nane
List attributes of the specified variable object name:

status=attr [(,attr)*]
whereattris{ { editable | noneditable } | TBD }.
The - var - eval uat e- expr essi on Command
Synopsis

-var - eval uat e- expressi on nane

Evaluates the expression that is represented by the specified variable object and returnsits value as a
string in the current format specified for the object:

val ue=val ue

The - var - assi gn Command

file:///Cl/gdb.html (280 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Synopsis
-var-assi gn name expression

Assigns the value of expression to the variable object specified by name. The object must be
“editabl e'.

The - var - updat e Command
Synopsis
-var-update {nane | "*"}

Update the value of the variable object name by evaluating its expression after fetching all the new
values from memory or registers. A~ *' causes all existing variable objects to be updated.

Reporting Bugs in GDB

Y our bug reports play an essential role in making GDB reliable.

Reporting abug may help you by bringing a solution to your problem, or it may not. But in any case the
principal function of a bug report isto help the entire community by making the next version of GDB
work better. Bug reports are your contribution to the maintenance of GDB.

In order for abug report to serve its purpose, you must include the information that enables us to fix the
bug.

. Bug Criteria: Have you found a bug?
. Bug Reporting: How to report bugs

Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

. If the debugger gets afatal signal, for any input whatever, that isa GDB bug. Reliable debuggers
never crash.

. If GDB produces an error message for valid input, that is abug. (Note that if you're cross
debugging, the problem may also be somewhere in the connection to the target.)

. |If GDB does not produce an error message for invalid input, that is a bug. However, you should

file:///C|/gdb.html (281 of 352)19. 1. 2004 20:32:04

Debugging with GDB

note that your idea of "invalid input" might be our idea of "an extension" or "support for
traditional practice".

. If you are an experienced user of debugging tools, your suggestions for improvement of GDB are
welcome in any case.

How to report bugs

A number of companies and individuals offer support for GNU products. If you obtained GDB from a
support organization, we recommend you contact that organization first.

Y ou can find contact information for many support companies and individualsin thefile ™ et ¢/
SERVI CE' inthe GNU Emacs distribution.

In any event, we also recommend that you send bug reports for GDB to this addresses:
bug- gdb@nu. or g

Do not send bug reportsto " i nf o- gdb' , or to ™ hel p- gdb' , or to any newsgroups. Most users of
GDB do not want to receive bug reports. Those that do have arranged to receive " bug- gdb' .

The mailing list * bug- gdb' hasanewsgroup " gnu. gdb. bug' which serves as arepeater. The
mailing list and the newsgroup carry exactly the same messages. Often people think of posting bug
reports to the newsgroup instead of mailing them. This appears to work, but it has one problem which
can be crucia: anewsgroup posting often lacks a mail path back to the sender. Thus, if we need to ask
for more information, we may be unable to reach you. For this reason, it is better to send bug reports to
the mailing list.

Asalast resort, send bug reports on paper to:

GNU Debugger Bugs

Free Software Foundation Inc.
59 Tenple Place - Suite 330
Boston, MA 02111-1307

USA

The fundamental principle of reporting bugs usefully isthis: report all the facts. If you are not sure
whether to state afact or leaveit out, stateit!

Often people omit facts because they think they know what causes the problem and assume that some
details do not matter. Thus, you might assume that the name of the variable you use in an example does
not matter. Well, probably it does not, but one cannot be sure. Perhaps the bug is a stray memory

file:///C|/gdb.html (282 of 352)19. 1. 2004 20:32:04

Debugging with GDB

reference which happens to fetch from the location where that name is stored in memory; perhaps, if the
name were different, the contents of that location would fool the debugger into doing the right thing
despite the bug. Play it safe and give a specific, complete example. That is the easiest thing for you to
do, and the most helpful.

Keep in mind that the purpose of abug report is to enable us to fix the bug. It may be that the bug has
been reported previously, but neither you nor we can know that unless your bug report is complete and
self-contained.

Sometimes people give afew sketchy facts and ask, "Does this ring a bell?' Those bug reports are
useless, and we urge everyone to refuse to respond to them except to chide the sender to report bugs

properly.
To enable usto fix the bug, you should include all these things:

. Theversion of GDB. GDB announcesit if you start with no arguments; you can also print it at
any time using show ver si on. Without this, we will not know whether thereis any point in
looking for the bug in the current version of GDB.

. Thetype of machine you are using, and the operating system name and version number.

. What compiler (and its version) was used to compile GDB---e.g. "gcc--2.8.1".

. What compiler (and its version) was used to compile the program you are debugging--e.g. "gcc--
2.8.1", or "HP92453-01 A.10.32.03 HP C Compiler". For GCC, you can say gcc --versi on
to get this information; for other compilers, see the documentation for those compilers.

. The command arguments you gave the compiler to compile your example and observe the bug.
For example, did you use ™ - O ? To guarantee you will not omit something important, list them
al. A copy of the Makefile (or the output from make) is sufficient. If we were to try to guess the
arguments, we would probably guess wrong and then we might not encounter the bug.

. A complete input script, and all necessary source files, that will reproduce the bug.

. A description of what behavior you observe that you believe isincorrect. For example, "It gets a
fatal signal." Of course, if the bug isthat GDB gets afatal signal, then we will certainly noticeit.
But if the bug isincorrect output, we might not notice unlessit is glaringly wrong. Y ou might as
well not give us a chance to make a mistake. Even if the problem you experience isafatal signal,
you should still say so explicitly. Suppose something strange is going on, such as, your copy of
GDB isout of synch, or you have encountered abug in the C library on your system. (This has
happened!) Y our copy might crash and ours would not. If you told usto expect a crash, then
when ours fails to crash, we would know that the bug was not happening for us. If you had not
told usto expect a crash, then we would not be able to draw any conclusion from our
observations.

. If you wish to suggest changes to the GDB source, send us context diffs. If you even discuss
something in the GDB source, refer to it by context, not by line number. The line numbersin our
development sources will not match those in your sources. Y our line numbers would convey no
useful information to us.

file:///Cl/gdb.html (283 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Here are some things that are not necessary:

« A description of the envelope of the bug. Often people who encounter a bug spend alot of time
Investigating which changes to the input file will make the bug go away and which changes will
not affect it. Thisis often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure deduction
from a series of examples. We recommend that you save your time for something else. Of course,
If you can find asimpler example to report instead of the original one, that is a convenience for
us. Errorsin the output will be easier to spot, running under the debugger will take lesstime, and
so on. However, smplification is not vital; if you do not want to do this, report the bug anyway
and send us the entire test case you used.

. A patch for the bug. A patch for the bug does help usif it isagood one. But do not omit the
necessary information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we might not
understand it at all. Sometimes with a program as complicated as GDB it is very hard to construct
an example that will make the program follow a certain path through the code. If you do not send
us the example, we will not be able to construct one, so we will not be able to verify that the bug
Isfixed. And if we cannot understand what bug you are trying to fix, or why your patch should be
an improvement, we will not install it. A test case will help us to understand.

« A guess about what the bug is or what it depends on. Such guesses are usually wrong. Even we
cannot guess right about such things without first using the debugger to find the facts.

Command Line Editing

This chapter describes the basic features of the GNU command line editing interface.

. Introduction and Notation: Notation used in this text.

« Readline Interaction: The minimum set of commands for editing aline.

. Readline Init File: Customizing Readline from a user's view.

. Bindable Readline Commands: A description of most of the Readline commands available for
binding

. Readlinevi Mode: A short description of how to make Readline behave like the vi editor.

Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.

Thetext C- k isread as "Control-K' and describes the character produced when the k key is pressed
while the Control key is depressed.

file:///Cl/gdb.html (284 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Thetext M k isread as "Meta-K' and describes the character produced when the Metakey (if you have
one) is depressed, and the k key is pressed. The Metakey islabeled ALT on many keyboards. On
keyboards with two keys labeled ALT (usually to either side of the space bar), the ALT on the left sideis
generaly set to work asaMetakey. The ALT key on the right may also be configured to work as aMeta
key or may be configured as some other modifier, such as a Compose key for typing accented
characters.

If you do not have aMetaor ALT key, or another key working as a Meta key, the identical keystroke can
be generated by typing ESC first, and then typing k. Either process is known as metafying the k key.

Thetext M C- k isread as "Meta-Control-k' and describes the character produced by metafying C- k.

In addition, several keys have their own names. Specifically, DEL, ESC, LFD, SPC, RET, and TAB all
stand for themselves when seen in thistext, or in an init file (see section Readline Init File). If your

keyboard lacks a LFD key, typing C- j will produce the desired character. The RET key may be labeled
Ret ur n or Ent er on some keyboards.

Readline Interaction

Often during an interactive session you type in along line of text, only to notice that the first word on
the line is misspelled. The Readline library gives you a set of commands for manipulating the text as you
typeit in, allowing you to just fix your typo, and not forcing you to retype the majority of the line. Using
these editing commands, you move the cursor to the place that needs correction, and delete or insert the
text of the corrections. Then, when you are satisfied with the line, you ssmply press RETURN. Y ou do
not have to be at the end of the line to press RETURN; the entire line is accepted regardless of the
location of the cursor within the line.

. Readline Bare Essentials: The least you need to know about Readline.

. Readline Movement Commands: Moving about the input line.

. Readline Killing Commands. How to delete text, and how to get it back!
. Readline Arguments: Giving numeric arguments to commands.

« Searching: Searching through previous lines.

Readline Bare Essentials

In order to enter characters into the line, ssmply type them. The typed character appears where the cursor
was, and then the cursor moves one space to the right. If you mistype a character, you can use your erase
character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed several other

file:///Cl/gdb.html (285 of 352)19. 1. 2004 20:32:04

Debugging with GDB

characters. In that case, you can type C- b to move the cursor to the left, and then correct your mistake.
Afterwards, you can move the cursor to the right with C- f .

When you add text in the middle of aline, you will notice that charactersto the right of the cursor are
“pushed over' to make room for the text that you have inserted. Likewise, when you delete text behind
the cursor, characters to the right of the cursor are "pulled back' to fill in the blank space created by the
removal of the text. A list of the bare essentials for editing the text of an input line follows.

Cb

Move back one character.
Cf

Move forward one character.
DEL or Backspace

Delete the character to the | eft of the cursor.
Cd

Delete the character underneath the cursor.
Printing characters

Insert the character into the line at the cursor.
G _oCx Cu

Undo the last editing command. Y ou can undo all the way back to an empty line.

(Depending on your configuration, the Backspace key be set to delete the character to the left of the
cursor and the DEL key set to delete the character underneath the cursor, like C- d, rather than the
character to the left of the cursor.)

Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing of the input
line. For your convenience, many other commands have been added in additionto G- b, C-f, C-d, and
DEL. Here are some commands for moving more rapidly about the line.

Ca
Move to the start of theline.
Ce
Move to the end of theline.
M f
Move forward a word, where aword is composed of |etters and digits.
M b
Move backward a word.
C

Clear the screen, reprinting the current line at the top.

file:///Cl/gdb.html (286 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Notice how C- f moves forward a character, while M f moves forward aword. It is aloose convention
that control keystrokes operate on characters while meta keystrokes operate on words.

Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use, usually by yanking
(re-inserting) it back into the line. ("Cut' and "paste’ are more recent jargon for “kill' and “yank'.)

If the description for acommand says that it “kills' text, then you can be sure that you can get the text
back in a different (or the same) place later.

When you use akill command, the text is saved in akill-ring. Any number of consecutive kills save all
of the killed text together, so that when you yank it back, you get it al. Thekill ring is not line specific;
the text that you killed on a previously typed line is available to be yanked back later, when you are
typing another line.

Hereisthelist of commands for killing text.

C k
Kill the text from the current cursor position to the end of theline.

M d
Kill from the cursor to the end of the current word, or, if between words, to the end of the next
word. Word boundaries are the same asthose used by M- f .

M DEL
Kill from the cursor the start of the previous word, or, if between words, to the start of the
previous word. Word boundaries are the same as those used by M b.

Cw
Kill from the cursor to the previous whitespace. Thisis different than M DEL because the word
boundaries differ.

Hereis how to yank the text back into the line. Y anking means to copy the most-recently-killed text
from the kill buffer.

Cy
Y ank the most recently killed text back into the buffer at the cursor.

My
Rotate the kill-ring, and yank the new top. Y ou can only do thisif the prior command isC-y or
My.

Readline Arguments

file:///C|/gdb.html (287 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Y ou can pass numeric arguments to Readline commands. Sometimes the argument acts as a repeat
count, other times it isthe sign of the argument that is significant. If you pass a negative argument to a
command which normally acts in aforward direction, that command will act in a backward direction.
For example, to kill text back to the start of the line, you might type™ M- C- k' .

The general way to pass numeric arguments to a command is to type meta digits before the command. If
thefirst “digit' typed isaminussign (" - '), then the sign of the argument will be negative. Once you
have typed one meta digit to get the argument started, you can type the remainder of the digits, and then
the command. For example, to give the C- d command an argument of 10, you couldtype M1 0 C-
d .

Searching for Commands in the History

Readline provides commands for searching through the command history for lines containing a specified
string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each character of the
search string is typed, Readline displays the next entry from the history matching the string typed so far.
An incremental search requires only as many characters as needed to find the desired history entry. To
search backward in the history for a particular string, type C-r . Typing C- s searches forward through
the history. The characters present in the value of thei sear ch-t er m nat or s variable are used to
terminate an incremental search. If that variable has not been assigned a value, the ESCand C- J
characters will terminate an incremental search. C- g will abort an incremental search and restore the
origina line. When the search is terminated, the history entry containing the search string becomes the
current line.

To find other matching entriesin the history list, type C-r or C- s as appropriate. Thiswill search
backward or forward in the history for the next entry matching the search string typed so far. Any other
key sequence bound to a Readline command will terminate the search and execute that command. For
instance, a RET will terminate the search and accept the line, thereby executing the command from the
history list.

Non-incremental searches read the entire search string before starting to search for matching history
lines. The search string may be typed by the user or be part of the contents of the current line.

Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed by default, it is
possible to use a different set of keybindings. Any user can customize programs that use Readline by
putting commands in an inputrc file, conventionally in his home directory. The name of thisfileis taken
from the value of the environment variable | NPUTRC. If that variable is unset, the default is™ ~/ .

file:///Cl/gdb.html (288 of 352)19. 1. 2004 20:32:04

Debugging with GDB
| nputrc'.

When a program which uses the Readline library starts up, theinit fileis read, and the key bindings are
Set.

In addition, the G- x C-r command re-reads thisinit file, thus incorporating any changes that you
might have made o it.

. Readline Init File Syntax: Syntax for the commands in the inputrc file.
« Conditional Init Constructs: Conditional key bindings in the inputrc file.
. Sample Init File: An example inputrc file.

Readline Init File Syntax

There are only afew basic constructs allowed in the Readline init file. Blank lines are ignored. Lines
beginning witha ™ #' are comments. Linesbeginningwitha™ $' indicate conditional constructs (see
section Conditional Init Constructs). Other lines denote variable settings and key bindings.

Variable Settings
Y ou can modify the run-time behavior of Readline by altering the values of variablesin Readline
using theset command within theinit file. Here is how to change from the default Emacs-like
key binding to use vi line editing commands:

set editing-node vi

A great deal of run-time behavior is changeable with the following variables.

bel |l -style
Controls what happens when Readline wants to ring the terminal bell. If setto " none’ ,
Readline never ringsthe bell. If setto " vi si bl e' , Readline uses avisible bell if oneis
available. If setto ~ audi bl e' (the default), Readline attemptsto ring the terminal’s bell.

comrent - begi n
The string to insert at the beginning of the line when thei nsert - conment command is
executed. The default valueis™ #" .

conpl etion-i gnore-case
If setto " on' , Readline performs filename matching and completion in a case-insensitive
fashion. The default valueis™ of f ' .

conpl etion-query-itens
The number of possible completions that determines when the user is asked whether he
wants to see the list of possibilities. If the number of possible completionsis greater than
this value, Readline will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. The default limitis 100.

file:///Cl/gdb.html (289 of 352)19. 1. 2004 20:32:04

Debugging with GDB

convert-neta
If setto ™ on' , Readline will convert characters with the eighth bit set to an ASCII key
sequence by stripping the eighth bit and prefixing an ESC character, converting them to a
meta-prefixed key sequence. The default valueis ™ on' .

di sabl e- conpl eti on
If setto” On' , Readline will inhibit word completion. Completion characters will be
inserted into the line asif they had been mappedtosel f -1 nsert. Thedefaultis
Toff'.

edi ti ng- node
Theedi ti ng- node variable controls which default set of key bindingsis used. By
default, Readline starts up in Emacs editing mode, where the keystrokes are most similar
to Emacs. Thisvariable can be set to either “ emacs' or " vi ' .

enabl e- keypad
When set to * on' , Readline will try to enable the application keypad when it is called.
Some systems need this to enable the arrow keys. The defaultis ™ of f ' .

expand-til de
If setto ™ on' , tilde expansion is performed when Readline attempts word completion.
Thedefaultis™ of f' .

hori zont al - scrol | - node
Thisvariable can be set to either " on' or " of f' . Settingitto on' meansthat the text
of the lines being edited will scroll horizontally on a single screen line when they are
longer than the width of the screen, instead of wrapping onto a new screen line. By
default, thisvariableissetto " of ' .

I nput - net a
If setto” on' , Readline will enable eight-bit input (it will not strip the eighth bit from the
characters it reads), regardless of what the terminal claimsit can support. The default
valueis” of f' . Thename et a- f | ag isasynonym for this variable.

I search-term nators
The string of characters that should terminate an incremental search without subsequently
executing the character as a command (see section Searching for Commandsin the

History). If this variable has not been given avalue, the characters ESC and C- J will

terminate an incremental search.
keymap
Sets Readline's idea of the current keymap for key binding commands. Acceptable
keynmap namesareenacs, enacs- st andar d, emacs- net a, enacs-ct | x, vi,
vi -command, andvi -i nsert.vi isequivaenttovi - conmand; enmacs is
equivalent to emacs- st andar d. The default valueisenmacs. The value of the
edi ti ng- node variable also affects the default keymap.
mar k- di rectori es
If setto ™ on' , completed directory names have a slash appended. The defaultis™ on' .
mar k- nodi fi ed-11 nes
Thisvariable, when setto * on' , causes Readlineto display an asterisk (" *') at the start
of history lineswhich have been modified. Thisvariableis™ of f' by default.

file:///Cl/gdb.html (290 of 352)19. 1. 2004 20:32:04

Debugging with GDB

out put - net a
If setto ™ on' , Readline will display characters with the eighth bit set directly rather than
as a meta-prefixed escape sequence. The default is ™ of f' .
print-conpl etions-horizontally
If setto” on' , Readline will display completions with matches sorted horizontally in
alphabetical order, rather than down the screen. The default is™ of f ' .
showal | -i f - anbi guous
This alters the default behavior of the completion functions. If setto " on' , words which
have more than one possible compl etion cause the matches to be listed immediately
instead of ringing the bell. The default valueis™ of f ' .
Vi si bl e-stats
If setto " on' , acharacter denoting afile'stypeis appended to the filename when listing
possible completions. The default is™ of f' .
Key Bindings
The syntax for controlling key bindingsin theinit file is ssmple. First you need to find the name
of the command that you want to change. The following sections contain tables of the command
name, the default keybinding, if any, and a short description of what the command does. Once
you know the name of the command, simply place the name of the key you wish to bind the
command to, a colon, and then the name of the command on alinein the init file. The name of
the key can be expressed in different ways, depending on which is most comfortable for you.
keyname: function-name or macro
keyname is the name of akey spelled out in English. For example:

Control -u: universal - ar gunent
Met a- Rubout : backward-kill-word
Control -o: "> output”

In the above example, C- u is bound to the function uni ver sal - ar gunent ,and C- o
is bound to run the macro expressed on the right hand side (that is, to insert the text ~ >
out put' intotheline).

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an entire key sequence can be
specified, by placing the key sequence in double quotes. Some GNU Emacs style key
escapes can be used, asin the following example, but the special character names are not
recognized.

"\ G- u": universal -argunent
"\CGx\Cr": re-read-init-file
"\'e[11~": "Function Key 1"

In the above example, C- u is bound to the function uni ver sal - ar gunent (just asit
wasinthefirst example), C-x C-r' isboundtothefunctionre-read-init-file,
and ESC [1 1 ~' isboundtoinsertthetext Functi on Key 1'.

file:///C/gdb.html (291 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The following GNU Emacs style escape sequences are available when specifying key sequences:

\ G

control prefix
\ M

meta prefix
\e

an escape character
\\

backslash
\ n

", adouble quotation mark
\ 1

', asingle quote or apostrophe
In addition to the GNU Emacs style escape sequences, a second set of backslash escapesis

available:
\a

aert (bell)
\'b

backspace
\d

delete
\ f

form feed
\'n

newline
\'r

carriage return
\ t

horizontal tab
\v

vertical tab
\ nnn

the character whose ASCl | codeis the octal value nnn (one to three digits)
\ xnnn

the character whose ASCI | code is the hexadecimal value nnn (one to three digits)
When entering the text of a macro, single or double quotes must be used to indicate a macro
definition. Unquoted text is assumed to be a function name. In the macro body, the backslash
escapes described above are expanded. Backslash will quote any other character in the macro
text, including " "' and "' ' . For example, the following binding will make™ C-x \' inserta
single \' intotheline

NCx\\ T

file:///C|/gdb.html (292 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Conditional Init Constructs

Readline implements afacility similar in spirit to the conditional compilation features of the C
preprocessor which allows key bindings and variable settings to be performed as the result of tests.
There are four parser directives used.

$i f
The $i f construct allows bindings to be made based on the editing mode, the terminal being
used, or the application using Readline. The text of the test extends to the end of the line; no
characters are required to isolate it.
node
The node=form of the $i f directiveis used to test whether Readlineisin enacs or vi
mode. This may be used in conjunction withthe " set keynap' command, for
instance, to set bindingsintheenacs- st andar d and enacs- ct | x keymapsonly if
Readlineis starting out in emacs mode.
term
Thet er m= form may be used to include terminal-specific key bindings, perhaps to bind
the key sequences output by the terminal's function keys. The word on the right side of the
" ="' istested against both the full name of the terminal and the portion of the terminal
name before thefirst ™ - ' . Thisallows sun to match both sun and sun- cnd, for
Instance.
application
The application construct is used to include application-specific settings. Each program
using the Readline library sets the application name, and you can test for it. This could be
used to bind key sequences to functions useful for a specific program. For instance, the
following command adds a key sequence that quotes the current or previous word in Bash:
$if Bash
Quote the current or previous word
"\Cxq": "\eb\"\ef\""
$endi f
$endi f
This command, as seen in the previous example, terminates an $i f command.
$el se
Commandsin this branch of the $i f directive are executed if the test fails.
$i ncl ude

This directive takes a single filename as an argument and reads commands and bindings from
that file.

$include /etc/inputrc

file:///Cl/gdb.html (293 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Sample Init File

Hereis an example of an inputrc file. Thisillustrates key binding, variable assignment, and conditional
syntax.

This file controls the behaviour of line input editing for
prograns that use the Gwu Readline library. Existing prograns
I ncl ude FTP, Bash, and Gdb.

#

#

#

#

You can re-read the inputrc file with Gx GCr.

Lines beginning with '# are comments.

#

First, include any systema de bindings and vari abl e assi gnnents from
letc/lnputrc

$include /etc/lnputrc

#
Set various bindings for emacs node.

set editing-nbde emacs

$i f node=enacs

Met a- Control - h: backward-kill-word Text after the function nane
I s i gnored

#

Arrow keys in keypad node

#

#'\ M QOD": backwar d- char
#'\ M OC": f or war d- char

#'\ M OA": previ ous- hi story
#'\ M OB": next - hi story

#

Arrow keys in ANSI node

#

"\M[D": backwar d- char
"\M[C": f or war d- char
"\MJ[A": previ ous- hi story
"\M[B": next - hi story

#

Arrow keys in 8 bit keypad node
#

file:///Cl/gdb.html (294 of 352)19. 1. 2004 20:32:04

Debugging with GDB

#\M\NC OD': backwar d- char
#\M\C OC': f or war d- char
#\M\C QA" previ ous- hi story
#\M\C OB": next - hi story

#

Arrow keys in 8 bit ANSI node

#

#\M\C[D": backwar d- char
#\M\NC[C: f or war d- char
#\M\NC[A": previ ous- hi story
#\M\C[B": next - hi story

C-g: quoted-insert
$endi f

An old-style binding. This happens to be the default.
TAB: conpl ete

Macros that are convenient for shell interaction

$i f Bash

edit the path

"\Cxp": "PATH=${ PATHI\e\C-e\Ca\ef\Cf"

prepare to type a quoted word -- insert open and cl ose
doubl e quotes and nove to just after the open quote
"\Cx\"": "\"\"\Cb"

insert a backslash (testing backsl ash escapes in sequences
and nmacros)

"NCx\\ ot

Quote the current or previous word

"\C-xqg": "\eb\"\ef\""

Add a binding to refresh the line, which is unbound
"\CG-xr": redrawcurrent-1line

Edit variable on current |ine.

"\M\ACvVv": "\CGa\Gk$\Cy\M\Ce\Cal Cy="

$endi f

use a visible bell if one is avail abl e
set bell-style visible

don't strip characters to 7 bits when reading
set input-neta on

file:///Cl/gdb.html (295 of 352)19. 1. 2004 20:32:04

Debugging with GDB

allow iso-latinl characters to be inserted rather than converted to
prefix-nmeta sequences
set convert-neta off

display characters with the eighth bit set directly rather than
as neta-prefixed characters
set output-neta on

if there are nore than 150 possible conpletions for a word, ask the
user if he wants to see all of them
set conpl etion-query-itens 150

For FTP

$if Ftp

"\C-xg": "get \M?"
"\C-xt": "put \M?"
"\'M.": yank-last-arg
$endi f

Bindable Readline Commands

. Commands For Moving: Moving about the line.

. Commands For History: Getting at previous lines.

« Commands For Text: Commands for changing text.

. Commands For Killing: Commands for killing and yanking.

. Numeric Arguments: Specifying numeric arguments, repeat counts.

. Commands For Completion: Getting Readline to do the typing for you.
. Keyboard Macros. Saving and re-executing typed characters

. Miscellaneous Commands. Other miscellaneous commands.

This section describes Readline commands that may be bound to key sequences.

Command names without an accompanying key sequence are unbound by default. In the following
descriptions, point refers to the current cursor position, and mark refers to a cursor position saved by the
set - mar k command. The text between the point and mark is referred to as the region.

Commands For Moving

begi nni ng-of-l1ine (C a)
Move to the start of the current line.
end-of-line (Ce)

file:///Cl/gdb.html (296 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Move to the end of theline.
forward-char (C-f)

Move forward a character.
backwar d- char (C-b)

Move back a character.
forward-word (Mf)

Move forward to the end of the next word. Words are composed of |etters and digits.
backwar d-word (M b)

Move back to the start of the current or previous word. Words are composed of letters and digits.
clear-screen (C1)

Clear the screen and redraw the current line, leaving the current line at the top of the screen.
redrawcurrent-line ()

Refresh the current line. By default, thisis unbound.

Commands For Manipulating The History

accept-line (Newine, Return)
Accept the line regardless of where the cursor is. If thisline is non-empty, add it to the history
list. If thisline was a history line, then restore the history line to its original state.
previous-history (C p)
Move "up' through the history list.
next - history (C-n)
Move "down' through the history list.
begi nni ng-of -hi story (M<)
Move to thefirst line in the history.
end-of -history (M >)
Move to the end of the input history, i.e., the line currently being entered.
reverse-search-history (GCr)
Search backward starting at the current line and moving "up' through the history as necessary.
Thisisan incrementa search.
forward-search-history (GCs)
Search forward starting at the current line and moving “down' through the the history as
necessary. Thisis an incremental search.
non-i ncrenental -reverse-search-history (Mp)
Search backward starting at the current line and moving "up' through the history as necessary
using a non-incremental search for a string supplied by the user.
non-i ncrenent al - forward-search-history (Mn)
Search forward starting at the current line and moving “down' through the the history as
necessary using a non-incremental search for a string supplied by the user.
hi story-search-forward ()
Search forward through the history for the string of characters between the start of the current
line and the point. Thisis anon-incremental search. By default, this command is unbound.

file:///C/gdb.html (297 of 352)19. 1. 2004 20:32:04

Debugging with GDB

hi st ory-sear ch-backward ()
Search backward through the history for the string of characters between the start of the current
line and the point. Thisis anon-incremental search. By default, this command is unbound.

yank-nth-arg (M Cvy)
Insert the first argument to the previous command (usually the second word on the previous line).
With an argument n, insert the nth word from the previous command (the words in the previous
command begin with word 0). A negative argument inserts the nth word from the end of the
previous command.

yank-last-arg (M., M)
Insert last argument to the previous command (the last word of the previous history entry). With
an argument, behave exactly likeyank- nt h- ar g. Successive callsto yank- | ast - ar g move
back through the history list, inserting the last argument of each linein turn.

Commands For Changing Text

del ete-char (Cd)
Delete the character under the cursor. If the cursor is at the beginning of the line, there are no
charactersin the line, and the last character typed was not bound to del et e- char , then return
ECF.

backwar d- del et e-char (Rubout)
Delete the character behind the cursor. A numeric argument means to kill the characters instead
of deleting them.

f or war d- backwar d- del et e-char ()
Delete the character under the cursor, unless the cursor is at the end of the line, in which case the
character behind the cursor is deleted. By default, thisis not bound to a key.

guoted-insert (CGq, GCv)
Add the next character typed to the line verbatim. Thisis how to insert key sequenceslike C- q,
for example.

tab-insert (M TAB)
Insert atab character.

self-insert (a, b, A 1, !, ...)
Insert yourself.

transpose-chars (GCt)
Drag the character before the cursor forward over the character at the cursor, moving the cursor
forward aswell. If the insertion point is at the end of the line, then this transposes the last two
characters of the line. Negative arguments have no effect.

transpose-words (Mt)
Drag the word before point past the word after point, moving point past that word as well.

upcase-word (M u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous
word, but do not move the cursor.

downcase-word (M)
L owercase the current (or following) word. With a negative argument, lowercase the previous

file:///Cl/gdb.html (298 of 352)19. 1. 2004 20:32:04

Debugging with GDB

word, but do not move the cursor.

capitalize-word (Mc)
Capitalize the current (or following) word. With a negative argument, capitalize the previous
word, but do not move the cursor.

Killing And Yanking

Kill-line (C k)
Kill the text from point to the end of the line.
backward-kill-line (C x Rubout)
Kill backward to the beginning of theline.
uni x-1ine-discard (C-u)
Kill backward from the cursor to the beginning of the current line.
Kill-whole-line ()
Kill al characters on the current line, no matter point is. By default, thisis unbound.
Kill-word (Md)
Kill from point to the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same asf or war d- wor d.
backward- kil | -word (M DEL)
Kill the word behind point. Word boundaries are the same asbackwar d- wor d.
uni x-wor d-rubout (Cw
Kill the word behind point, using white space as aword boundary. The killed text is saved on the
kill-ring.
del et e- hori zont al - space ()
Delete all spaces and tabs around point. By default, this is unbound.
kKill-region ()
Kill the text in the current region. By default, this command is unbound.
copy-region-as-kill ()
Copy the text in the region to the kill buffer, so it can be yanked right away. By default, this
command is unbound.
copy- backward-word ()
Copy the word before point to the kill buffer. The word boundaries are the same asbackwar d-
wor d. By default, this command is unbound.
copy-forward-word ()
Copy the word following point to the kill buffer. The word boundaries are the same as
f or war d- wor d. By default, this command is unbound.
yank (Cvy)
Y ank the top of the kill ring into the buffer at the current cursor position.
yank-pop (My)
Rotate the kill-ring, and yank the new top. Y ou can only do thisif the prior command is yank or
yank-pop.

file:///Cl/gdb.html (299 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Specifying Numeric Arguments

digit-argunent (MO, M1, ... M-)
Add this digit to the argument already accumulating, or start a new argument. M - startsa
negative argument.

uni ver sal -argunent ()
Thisis another way to specify an argument. If this command is followed by one or more digits,
optionally with aleading minus sign, those digits define the argument. If the command is
followed by digits, executing uni ver sal - ar gunent again ends the numeric argument, but is
otherwise ignored. As a special casg, if thiscommand isimmediately followed by a character that
Is neither adigit or minus sign, the argument count for the next command is multiplied by four.
The argument count isinitially one, so executing this function the first time makes the argument
count four, a second time makes the argument count sixteen, and so on. By default, thisis not
bound to akey.

Letting Readline Type For You

conpl ete (TAB)
Attempt to do completion on the text before the cursor. Thisis application-specific. Generally, if
you are typing a filename argument, you can do filename completion; if you are typing a
command, you can do command completion; if you are typing in a symbol to GDB, you can do
symbol name completion; if you are typing in a variable to Bash, you can do variable name
completion, and so on.

possi bl e-conpl etions (M ?)
List the possible completions of the text before the cursor.

| nsert-conpletions (M*)
Insert all completions of the text before point that would have been generated by possi bl e-
conpl eti ons.

menu- conpl ete ()
Similar to conpl et e, but replaces the word to be completed with a single match from the list of
possible completions. Repeated execution of menu- conpl et e steps through the list of possible
completions, inserting each match in turn. At the end of the list of completions, the bell isrung
and the original text isrestored. An argument of n moves n positions forward in the list of
matches; a negative argument may be used to move backward through the list. This command is
intended to be bound to TAB, but is unbound by default.

del ete-char-or-list ()
Deletes the character under the cursor if not at the beginning or end of the line (like del et e-
char). If at the end of the line, behavesidentically to possi bl e- conpl eti ons. This
command is unbound by default.

Keyboard Macros

file:///Cl/gdb.html (300 of 352)19. 1. 2004 20:32:04

Debugging with GDB

start-kbd-macro (G x ()
Begin saving the characters typed into the current keyboard macro.
end- kbd-macro (G x))
Stop saving the characters typed into the current keyboard macro and save the definition.
cal |l -l ast-kbd-macro (G x e)
Re-execute the last keyboard macro defined, by making the charactersin the macro appear as if
typed at the keyboard.

Some Miscellaneous Commands

re-read-init-file (Gx GCr)
Read in the contents of the inputrc file, and incorporate any bindings or variable assignments
found there.

abort (C- Q)
Abort the current editing command and ring the terminal’s bell (subject to the setting of bel | -
styl e).

do- uppercase-version (Ma, Mb, MXx, ...)
If the metafied character x islowercase, run the command that is bound to the corresponding
uppercase character.

prefix-meta (ESC
Make the next character typed be metafied. Thisis for keyboards without a meta key. Typing
"ESC f' isequivaenttotyping M ' .

undo (G _, G x Cu)
Incremental undo, separately remembered for each line.

revert-line (Mr)
Undo all changes made to thisline. Thisislike executing the undo command enough timesto
get back to the beginning.

tilde-expand (M ~)
Perform tilde expansion on the current word.

set-mark (G @
Set the mark to the current point. If a numeric argument is supplied, the mark is set to that
position.

exchange- poi nt-and-mark (Cx G x)
Swap the point with the mark. The current cursor position is set to the saved position, and the old
cursor position is saved as the mark.

character-search (G])
A character isread and point is moved to the next occurrence of that character. A negative count
searches for previous occurrences.

char act er-search-backward (M C])
A character isread and point is moved to the previous occurrence of that character. A negative
count searches for subsequent occurrences.

| nsert-coment (M #)

file:///Cl/gdb.html (301 of 352)19. 1. 2004 20:32:04

Debugging with GDB

The value of the conmrent - begi n variable isinserted at the beginning of the current line, and
thelineis accepted asif a newline had been typed.

dunp-functions ()
Print all of the functions and their key bindings to the Readline output stream. If a numeric
argument is supplied, the output is formatted in such away that it can be made part of an inputrc
file. Thiscommand is unbound by default.

dunp-vari abl es ()
Print all of the settable variables and their values to the Readline output stream. If a numeric
argument is supplied, the output is formatted in such away that it can be made part of an inputrc
file. Thiscommand is unbound by default.

dunp- macros ()
Print all of the Readline key sequences bound to macros and the strings they ouput. If a numeric
argument is supplied, the output is formatted in such away that it can be made part of an inputrc
file. Thiscommand is unbound by default.

Readline vi Mode

While the Readline library does not have afull set of vi editing functions, it does contain enough to
allow ssimple editing of the line. The Readlinevi mode behaves as specified in the POSIX 1003.2
standard.

In order to switch interactively between enacs and vi editing modes, use the command M-C-j (toggle-
editing-mode). The Readline default isemacs mode.

When you enter alineinvi mode, you are already placed in “insertion' mode, asif you had typed an
"1 " . Pressing ESC switches you into "command' mode, where you can edit the text of the line with the
standard vi movement keys, move to previous history lineswith ™ k' and subsequent lineswith ™ j ',
and so forth.

Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user's standpoint. It
should be considered a user's guide.

. History Interaction: What it feels like using History as a user.

History Expansion

The History library provides a history expansion feature that is similar to the history expansion provided
by csh. This section describes the syntax used to manipulate the history information.

file:///Cl/gdb.html (302 of 352)19. 1. 2004 20:32:04

Debugging with GDB

History expansions introduce words from the history list into the input stream, making it easy to repeat
commands, insert the arguments to a previous command into the current input line, or fix errorsin
previous commands quickly.

History expansion takes place in two parts. Thefirst is to determine which line from the history list
should be used during substitution. The second isto select portions of that line for inclusion into the
current one. The line selected from the history is called the event, and the portions of that line that are
acted upon are called words. Various modifiers are available to manipulate the selected words. The line
Is broken into words in the same fashion that Bash does, so that several words surrounded by quotes are
considered one word. History expansions are introduced by the appearance of the history expansion
character, whichis™ !'' by default.

. Event Designators. How to specify which history line to use.
. Word Designators: Specifying which words are of interest.
. Modifiers: Modifying the results of substitution.

Event Designators

An event designator is areference to acommand line entry in the history list.

!
Start a history substitution, except when followed by a space, tab, the end of theline, " =" or "~

(.
I'n

Refer to command line n.
l-n

Refer to the command n lines back.
I

Refer to the previous command. Thisisasynonymfor " ! - 1" .
I'string

Refer to the most recent command starting with string.
I?2string[?]

Refer to the most recent command containing string. Thetrailing ™= ?' may be omitted if the
string is followed immediately by a newline.

Astringl”string2h
Quick Substitution. Repeat the last command, replacing stringl with string2. Equivalentto! ! :
s/stringl/string2/.

I #
The entire command line typed so far.

file:///Cl/gdb.html (303 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Word Designators

Word designators are used to select desired words from theevent. A ™ : ' separates the event
specification from the word designator. It may be omitted if the word designator beginswitha™ ' |~
$, *', -",o0r % .Wordsare numbered from the beginning of the line, with the first word being
denoted by 0 (zero). Words are inserted into the current line separated by single spaces.

For example,

I
designates the preceding command. When you type this, the preceding command is repeated in
toto.

designates the last argument of the preceding command. This may be shortenedto ! $.

fi:2
designates the second argument of the most recent command starting with the lettersf i .

Here are the word designators:

0 (zero)
The Oth word. For many applications, thisis the command word.
n
The nth word.
N
Thefirst argument; that is, word 1.
$
The last argument.
%
The word matched by the most recent ~ ?st ri ng?' search.
X-y
A range of words, * - y' abbreviates” 0-y' .
*
All of the words, except the Oth. Thisisasynonymfor ~ 1- $' . Itisnotanerrortouse ™ *' if
there isjust one word in the event; the empty string is returned in that case.
X*
Abbreviates ” x- $'
X_

Abbreviates x-$' like™ x*' , but omits the last word.

If aword designator is supplied without an event specification, the previous command is used as the
event.

file:///Cl/gdb.html (304 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Modifiers

After the optional word designator, you can add a sequence of one or more of the following modifiers,
each preceded by a™ : '

" Remove atrailing pathname component, leaving only the head.

t Remove all leading pathname components, leaving the tail.

f Remove atrailing suffix of theform ™. suf fi x' , leaving the basename.
° Remove al but the trailing suffix.

Y

Print the new command but do not execute it.

s/ ol d/ new
Substitute new for the first occurrence of old in the event line. Any delimiter may be used in
place of “ /' . The delimiter may be quoted in old and new with asingle backsash. If ~ &
appearsin new, it isreplaced by old. A single backslash will quotethe ™ & . Thefina delimiter is
optional if it isthe last character on the input line.

Repeat the previous substitution.

Cause changes to be applied over the entire event line. Used in conjunction with * s* , asings/
ol d/ new , or with” &' .

Formatting Documentation

The GDB 4 release includes an already-formatted reference card, ready for printing with PostScript or
Ghostscript, inthe " gdb' subdirectory of the main source directory(7). If you can use PostScript or
Ghostscript with your printer, you can print the reference card immediately with " r ef car d. ps' .
The release also includes the source for the reference card. Y ou can format it, using TeX, by typing:

make refcard. dvi

The GDB reference card is designed to print in landscape mode on US "letter” size paper; that is, on a
sheet 11 inches wide by 8.5 inches high. Y ou will need to specify thisform of printing as an option to
your DVI output program.

All the documentation for GDB comes as part of the machine-readable distribution. The documentation

file:///Cl/gdb.html (305 of 352)19. 1. 2004 20:32:04

Debugging with GDB

iswritten in Texinfo format, which is a documentation system that uses a single source file to produce
both on-line information and a printed manual. Y ou can use one of the Info formatting commands to
create the on-line version of the documentation and TeX (or t exi 2r of) to typeset the printed
version.

GDB includes an already formatted copy of the on-line Info version of this manual in the " gdb’
subdirectory. Themain Info fileis™ gdb- 5. 1. 1/ gdb/ gdb. i nf o' , and it refersto subordinate files
matching ~ gdb. i nf o*' inthe same directory. If necessary, you can print out these files, or read them
with any editor; but they are easier to read using the i nf o subsystem in GNU Emacs or the standalone
| nf o program, available as part of the GNU Texinfo distribution.

If you want to format these Info files yourself, you need one of the Info formatting programs, such as
t exi nf o-f or mat - buf f er or makei nf o.

If you have makei nf o installed, and are in the top level GDB source directory (" gdb-5. 1. 1' , inthe
case of version 5.1.1), you can make the Info file by typing:

cd gdb
make gdb.info

If you want to typeset and print copies of this manual, you need TeX, aprogram to print its DV output
files,and "t exi nf 0. t ex"' , the Texinfo definitionsfile.

TeX isatypesetting program; it does not print files directly, but produces output files called DV files.
To print atypeset document, you need a program to print DVI files. If your system has TeX installed,
chances are it has such a program. The precise command to use depends on your system; | pr -dis
common; another (for PostScript devices) isdvi ps. The DVI print command may require afile name
without any extensionora . dvi ' extension.

TeX aso requires amacro definitionsfilecalled " t exi nf o. t ex' . Thisfiletells TeX how to typeset a
document written in Texinfo format. On itsown, TeX cannot either read or typeset a Texinfo file.
“texinfo.tex' isdistributed with GDB and islocated inthe ™ gdb- ver si on- nunber/

t exi nf o' directory.

If you have TeX and aDVI printer program installed, you can typeset and print this manual. First switch
tothethe ™ gdb' subdirectory of the main source directory (for example, to " gdb- 5. 1. 1/ gdb') and
type:

make gdb. dvi

Then give” gdb. dvi ' toyour DVI printing program.

file:///Cl/gdb.html (306 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Installing GDB

GDB comeswith aconf i gur e script that automates the process of preparing GDB for installation,
you can then use make to build the gdb program. (8)

The GDB distribution includes all the source code you need for GDB in asingle directory, whose name
is usually composed by appending the version number to * gdb’ .

For example, the GDB version 5.1.1 distribution isinthe " gdb- 5. 1. 1' directory. That directory
contains:

gdb-5. 1.1/ configure (and supporting files)

script for configuring GDB and all its supporting libraries
gdb-5. 1. 1/ gdb

the source specific to GDB itself
gdb-5.1. 1/ bfd

source for the Binary File Descriptor library
gdb-5. 1. 1/i ncl ude

GNU includefiles
gdb-5.1.1/1i bi berty

sourceforthe™ - 1i berty" freesoftwarelibrary
gdb-5. 1. 1/ opcodes

source for the library of opcode tables and disassemblers
gdb-5. 1. 1/readl i ne

source for the GNU command-line interface
gdb-5.1. 1/ gl ob

source for the GNU filename pattern-matching subroutine
gdb-5. 1. 1/ nmal | oc

source for the GNU memory-mapped malloc package

The simplest way to configure and build GDB isto run conf i gur e fromthe " gdb- ver si on-
nunber ' source directory, which in thisexampleisthe ™ gdb-5. 1. 1' directory.

First switch to the " gdb- ver si on- nunber' source directory if you are not already in it; then run
confi gur e. Passtheidentifier for the platform on which GDB will run as an argument.

For example:

cd gdb-5.1.1
./ configure host
make

file:///Cl/gdb.html (307 of 352)19. 1. 2004 20:32:04

Debugging with GDB

where host isan identifier suchas ™ sun4' or " decst ati on', that identifies the platform where
GDB will run. (Y ou can often leave off host; conf i gur e triesto guess the correct value by examining
your system.)

Running * confi gure host' andthenrunning make buildsthe™ bfd' , readl i ne',
"mmal | oc' ,and " | i bi berty" libraries, then gdb itself. The configured source files, and the
binaries, are |eft in the corresponding source directories.

confi gur e isaBourne-shell (/ bi n/ sh) script; if your system does not recognize this automatically
when you run a different shell, you may need to run sh on it explicitly:

sh configure host

If you runconf i gur e from adirectory that contains source directories for multiple libraries or
programs, such asthe " gdb- 5. 1. 1' sourcedirectory for version 5.1.1, conf i gur e creates
configuration filesfor every directory level underneath (unlessyou tell it not to, with the ™ - -
nor ecur si on' option).

You can runtheconf i gur e script from any of the subordinate directoriesin the GDB distribution if
you only want to configure that subdirectory, but be sure to specify a path to it.

For example, with version 5.1.1, type the following to configure only the bf d subdirectory:

cd gdb-5.1.1/bfd
../ configure host

You can install gdb anywhere; it has no hardwired paths. However, you should make sure that the shell
on your path (named by the ” SHELL' environment variable) is publicly readable. Remember that GDB
uses the shell to start your program--some systems refuse to let GDB debug child processes whose
programs are not readable.

« Separate Objdir: Compiling GDB in another directory
« Config Names:. Specifying names for hosts and targets
. Configure Options: Summary of options for configure

Compiling GDB in another directory

If you want to run GDB versions for several host or target machines, you need a different gdb compiled
for each combination of host and target. conf i gur e is designed to make this easy by allowing you to
generate each configuration in a separate subdirectory, rather than in the source directory. If your make

file:///Cl/gdb.html (308 of 352)19. 1. 2004 20:32:04

Debugging with GDB

program handlesthe " VPATH feature (GNU nmake does), running make in each of these directories
builds the gdb program specified there.

To build gdb in a separate directory, run conf i gur e withthe " - - srcdi r' option to specify where
to find the source. (You also need to specify a path to find conf i gur e itself from your working
directory. If the path to conf i gur e would be the same asthe argumentto " - - srcdi r ' , you can
leaveout the ™ - - srcdi r' option; it isassumed.)

For example, with version 5.1.1, you can build GDB in a separate directory for a Sun 4 like this:

cd gdb-5.1.1

nkdir ../ gdb-sun4

cd ../ gdb-sun4

../ gdb-5.1. 1/ configure sun4
make

When conf i gur e builds a configuration using a remote source directory, it creates atree for the
binaries with the same structure (and using the same names) as the tree under the source directory. In the
example, you'd find the Sun 4 library " I i bi berty. a' inthedirectory " gdb- sun4/ | i bi berty",
and GDB itself in * gdb- sun4/ gdb' .

One popular reason to build several GDB configurations in separate directoriesisto configure GDB for
cross-compiling (where GDB runs on one machine--the host---while debugging programs that run on
another machine--the target). Y ou specify a cross-debugging target by giving the ™ - -

target =t arget' optiontoconfi gure.

When you run make to build a program or library, you must run it in a configured directory--whatever
directory you were in when you called conf i gur e (or one of its subdirectories).

The Makef i | e that conf i gur e generates in each source directory aso runs recursively. If you type
make inasourcedirectory suchas™ gdb-5. 1. 1' (or in aseparate configured directory configured
with " - - srcdi r =di rname/ gdb- 5. 1. 1'), you will build all the required libraries, and then build
GDB.

When you have multiple hosts or targets configured in separate directories, you can run make on them
in parallel (for example, if they are NFS-mounted on each of the hosts); they will not interfere with each
other.

Specifying names for hosts and targets

The specifications used for hosts and targetsin the conf i gur e script are based on a three-part naming

file:///Cl/gdb.html (309 of 352)19. 1. 2004 20:32:04

Debugging with GDB

scheme, but some short predefined aliases are also supported. The full naming scheme encodes three
pieces of information in the following pattern:

archi tecture-vendor - o0s

For example, you can use the alias sun4 as a host argument, or asthe valuefor target ina- -
t ar get =t ar get option. The equivalent full nameis” spar c- sun- sunos4' .

Theconf i gur e script accompanying GDB does not provide any query facility to list all supported
host and target names or aliases. conf i gur e callsthe Bourne shell script conf i g. sub to map
abbreviations to full names; you can read the script, if you wish, or you can use it to test your guesses on
abbreviations--for example:

% sh config.sub i386-I1inux
| 386- pc- | i nux-gnu

% sh config.sub al pha-1inux
al pha- unknown- | i nux- gnu

% sh config.sub hp9k700
hppal. 1- hp- hpux

% sh config.sub sun4
sparc-sun-sunos4.1.1

% sh config.sub sun3

n68k- sun-sunos4. 1.1

% sh config.sub i 986v
Invalid configuration "1986v': nmachine "i986v' not recogni zed

confi g. sub isaso distributed in the GDB source directory (" gdb-5. 1. 1' , for version 5.1.1).

conf i gur e options

Hereisasummary of the conf i gur e options and arguments that are most often useful for building
GDB. conf i gur e aso has several other options not listed here. See Info file "configure.info’, node
"What Configure Does|, for afull explanation of conf i gur e.

configure |
[--prefix=dir]
[--exec-prefix=dir]
[--srcdir=dirnane]
[--norecursion] [--rn
[--target=target]
host

file:///Cl/gdb.html (310 of 352)19. 1. 2004 20:32:04

Debugging with GDB

Y ou may introduce optionswith asingle ™ - ' rather than ™ - - ' if you prefer; but you may abbreviate
option namesif youuse " - -

--help
Display a quick summary of how to invoke conf i gur e.

--prefix=dir
Configure the source to install programs and files under directory " di r ' .

--exec-prefix=dir
Configure the source to install programs under directory " di r' .

--srcdir=di rnanme
Warning: using this option requires GNU make, or another make that implementsthe
VPATH feature.
Use this option to make configurations in directories separate from the GDB source directories.
Among other things, you can use thisto build (or maintain) several configurations
simultaneously, in separate directories. conf i gur e writes configuration specific filesin the
current directory, but arranges for them to use the source in the directory dirname. conf i gur e
creates directories under the working directory in parallel to the source directories below
dirname.

- - norecursion
Configure only the directory level where conf i gur e is executed; do not propagate
configuration to subdirectories.

--target =t arget
Configure GDB for cross-debugging programs running on the specified target. Without this
option, GDB is configured to debug programs that run on the same machine (host) as GDB itself.
There is no convenient way to generate alist of al available targets.

host ...
Configure GDB to run on the specified host. There is no convenient way to generate alist of all
available hosts.

There are many other options available as well, but they are generally needed for specia purposes only.

GNU Free Documentation License

Verson 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permtted to copy and distribute verbati m copies
of this license docunent, but changing it is not allowed.

file:///C|/gdb.html (311 of 352)19. 1. 2004 20:32:04

Debugging with GDB

1. PREAMBLE The purpose of this Licenseis to make a manual, textbook, or other written
document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher away to get credit for their work,
while not being considered responsible for modifications made by others. ThisLicenseisakind
of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software. We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: afree program should come with
manuals providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or whether it
Is published as a printed book. We recommend this License principally for works whose purpose
Isinstruction or reference.

2. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work that
contains a notice placed by the copyright holder saying it can be distributed under the terms of
this License. The "Document”, below, refers to any such manual or work. Any member of the
publicisalicensee, and is addressed as "you." A "Modified Version" of the Document means
any work containing the Document or a portion of it, either copied verbatim, or with
maodifications and/or translated into another language. A "Secondary Section™ is anamed
appendix or afront-matter section of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document's overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (For example, if
the Document isin part atextbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding
them. The "Invariant Sections' are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under this
License. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
"Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has
been designed to thwart or discourage subsequent modification by readersis not Transparent. A
copy that is not "Transparent” is called "Opaque." Examples of suitable formats for Transparent
copiesinclude plain ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using apublicly available DTD, and standard-conforming smple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only. The "Title Page" means, for a printed book, the

file:///C/gdb.html (312 of 352)19. 1. 2004 20:32:04

Debugging with GDB

title page itself, plus such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have any title page as
such, "Title Page" means the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

3. VERBATIM COPYING Y ou may copy and distribute the Document in any medium, either
commercialy or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those of this License. Y ou may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section 3. Y ou may also
lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY If you publish printed copies of the Document numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copiesin
coversthat carry, clearly and legibly, all these Cover Texts. Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words of the
title equally prominent and visible. Y ou may add other material on the coversin addition.
Copying with changes limited to the covers, aslong as they preserve thetitle of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects. If the required
texts for either cover are too voluminousto fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you
publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opague copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using
public has access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at |east one year after the last time you distribute an Opague
copy (directly or through your agents or retailers) of that edition to the public. It is requested, but
not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the
Document.

5. MODIFICATIONS Y ou may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these thingsin the Modified Version: A. Usein the Title Page (and on the
covers, if any) atitle distinct from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of the Document). Y ou may use
the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of

file:///Cl/gdb.html (313 of 352)19. 1. 2004 20:32:04

Debugging with GDB

the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, alicense notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

H. Include an unaltered copy of this License.

|. Preserve the section entitled "History", and itstitle, and add to it an item stating at |east the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
IS no section entitled "History" in the Document, create one stating thetitle, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. Y ou may omit a network
location for awork that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications’, preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements." Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as "Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections asinvariant. To do this, add their titles to the list of
Invariant Sectionsin the Modified Version's license notice. These titles must be distinct from any
other section titles. Y ou may add a section entitled "Endorsements’, provided it contains nothing
but endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of a
standard. Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of thelist of Cover Textsin the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting

file:///C|/gdb.html (314 of 352)19. 1. 2004 20:32:04

Debugging with GDB

on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one. The author(s) and publisher(s) of the
Document do not by this License give permission to use their names for publicity for or to assert
or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS Y ou may combine the Document with other documents released
under this License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else
aunique number. Make the same adjustment to the section titlesin the list of Invariant Sections
in the license notice of the combined work. In the combination, you must combine any sections
entitled "History" in the various original documents, forming one section entitled "History";
likewise combine any sections entitled " Acknowledgements', and any sections entitled
"Dedications." Y ou must delete all sections entitled "Endorsements.”

7. COLLECTIONS OF DOCUMENTS Y ou may make a collection consisting of the Document and
other documents released under this License, and replace the individual copies of thisLicensein
the various documents with a single copy that isincluded in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documentsin all other
respects. Y ou may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in al other respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its
derivatives with other separate and independent documents or works, in or on avolume of a
storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation
Is called an "aggregate”, and this License does not apply to the other self-contained works thus
compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document. If the Cover Text requirement of section 3 is applicableto
these copies of the Document, then if the Document is less than one quarter of the entire
aggregate, the Document's Cover Texts may be placed on coversthat surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

9. TRANSLATION Trandation is considered a kind of modification, so you may distribute
tranglations of the Document under the terms of section 4. Replacing Invariant Sections with
trandlations requires specia permission from their copyright holders, but you may include
trandlations of some or al Invariant Sections in addition to the original versions of these Invariant
Sections. Y ou may include atrandation of this License provided that you also include the
original English version of this License. In case of a disagreement between the trandation and the
original English version of this License, the original English version will prevail.

10. TERMINATION Y ou may not copy, modify, sublicense, or distribute the Document except as

file:///Cl/gdb.html (315 of 352)19. 1. 2004 20:32:04

Debugging with GDB

expressly provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

11. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new,
revised versions of the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/. Each version of the Licenseis given adistinguishing
version number. If the Document specifies that a particular numbered version of this License "or
any later version" appliesto it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify aversion number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To usethis License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (C) year your nane.

Perm ssion is granted to copy, distribute and/or nodify this docunent
under the ternms of the GNU Free Docunentation License, Version 1.1
or any |ater version published by the Free Software Foundati on;

with the Invariant Sections being list their titles, with the
Front - Cover Texts being list, and with the Back-Cover Texts being
list.

A copy of the license is included in the section entitled "G\U

Free Docunentation License."

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts' instead of "Front-Cover
Texts being list"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examplesin parallel under your choice of free software license, such as the GNU General Public
License, to permit their usein free software.

Index

file:///Cl/gdb.html (316 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. "No symbol "foo" in current context"

. # (acomment)
. #in Modula-2

3@

. $, convenience variable

. $ _andinfo breakpoints
. $ andinfo line

. $,%$,andvauehistory

. $, conveniencevariable

. $ exitcode, convenience variable
« $bpnum, convenience variable
. $cdir, convenience variable

. $cwdr, convenience variable

« $tpnum

. $trace file

. $trace frame

. $trace func

. $trace line

. S$tracepoint

. --annotate

. --async
. --batch
. --baud

file:///C|/gdb.html (317 of 352)19. 1. 2004 20:32:04

Debugging with GDB

- - conmand
--core
--directory
- - epoch

- - exec
--full name
--interpreter
- - mapped

- - noasync

- - nowi ndows
--nXx

- - qui et

- -readnow
--S€e
--Sil ent
--statistics
--synbol s

--Version

- - W ndows

--wite

-b

-break-after
-break-condition
-break-delete
-break-disable
-break-enable
-break-info

-break-insert

-break-list

-break-watch

-C

-d

-data-disassemble
-data-eval uate-expression
-data-list-changed-reqgisters
-data-list-register-names

file:///Cl/gdb.html (318 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. -datalist-register-values
. -data-read-memory

. -display-delete

. -display-disable

. -display-enable

. -display-insert

. -display-list

« -€

. -environment-cd

. -environment-directory
. -environment-path

. -environment-pwd

. -exec-abort

. -eXec-arguments

. -exec-continue

. -exec-finish

. -exec-interrupt

. -exec-next

. -exec-next-instruction
« -exec-return

. -eXec-run
. -exec-show-arguments
° -eXGC-StQQ

. -Exec-step-instruction

. -exec-until

. -f

. -file-exec-and-symbols
. -file-execfile

. -file-list-exec-sections
. -file-list-exec-source-files
. -file-list-shared-libraries
. -file-list-symbol-files

. -file-symbol-file

. -gdb-exit

. -gdb-set

« -gdb-show

« -gdb-version

.« -M

file:///Cl/gdb.html (319 of 352)19. 1. 2004 20:32:04

Debugging with GDB

S
S

=

r
)

. -Stack-info-depth

. -Stack-info-frame

. -Stack-list-arguments

. -Stack-list-frames

. -Stack-list-locals

. -Stack-select-frame

. -Ssymbol-info-address

. -symbol-info-file

. -symbol-info-function

. -symbol-info-line

. -Symbol-info-symbol

. -symbol-list-functions

. -Ssymbol-list-types

. -symbol-list-variables

. -symbol-locate

. -Symbol-type

. -t

. -target-attach

. -target-compare-sections
. -target-detach

. -target-download

. -target-exec-status

. -target-list-available-targets
. -target-list-current-targets
. -target-list-parameters

. -target-select

. -thread-info

. -thread-list-all-threads
. -thread-list-ids

. -thread-select

. -var-assign

. -var-create

. -var-delete

file:///Cl/gdb.html (320 of 352)19. 1. 2004 20:32:04

Debugging with GDB

-var-evaluate-expression
-var-info-expression
-var-info-num-children
-var-info-type
-var-list-children
-var-set-format
-var-show-attributes
-var-show-format
-var-update

- W

- X

., Modula-2 scope operator

~.esqgdbinit'
.gdbinit'

. 0s68gdbinit’

. vxgdbini t'

/proc

. 1, context for variables/functions
.2, in Modula-2

@, referencing memory as an array

“done
error

file:///C|/gdb.html (321 of 352)19. 1. 2004 20:32:04

Debugging with GDB

« running

. aout and C++

. abbreviation

. abort (C-q)

. accept-line (Newline, Return)

. acknowledgment, for GDB remote
. actions

. activetargets

. add-shared-symbol-file

. add-symbol-file

. address of asymbol

. Alphastack

. AMD 29K register stack

. AMD EB29K

. AMD29K viaUDI

. annotations

. annotations for breakpoints

. annotations for display

. annotations for errors, warnings and interrupts
. annotations for frames

. annotations for invalidation messages
. annotations for prompts

. annotations for running programs
. annotations for source display

. annotations for values

« adPropos

. arg-name-end

. arg-value

. arguments (to your program)

. array-section-end

. artificial array

. assembly instructions, assembly instructions

. assignment

file:///C|/gdb.html (322 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. async output in GDB/MI

. AT&T disassembly flavor
. attach, attach

. automatic display

. automatic thread selection
. awatch

. b(break)

. backtrace

. backtraces

. backward-char (C-b)

. backward-delete-char (Rubout)

. backward-kill-line (C-x Rubout)

. backward-kill-word (M-DEL)

. backward-word (M-b)

. beginning-of-history (M-<)

« beginning-of-line (C-a)

. bell-style

. break

. break ... thread threadno

. break in overloaded functions

. breakpoint

« breakpoint commands

. breakpoint commands for GDB/MI
. breakpoint conditions

« breakpoint numbers

. breakpoint on events

. breakpoint on memory address

. breakpoint on variable modification
. breakpoint ranges

. breakpoi nt subroutine, remote
. breakpoints

. breakpoints and threads

. breakpoints-headers

. breakpoints-invalid

. breakpoints-table

file:///Cl/gdb.html (323 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. breakpoints-table-end
. bt (backtrace)
. bug criteria

. bug reports
. bugsin GDB

. c(continue)

. CandC++

. Cand C++ checks

. Cand C++ constants

. Cand C++ defaults

. Cand C++ operators

. C++

. C++ and object formats

. C++ exception handling

. C++ scope resolution

. C++ support, not in COFF
. C++ symbol decoding style
« C++ symbol display

- CL

. Cx1

. C-x2

-X A

O

O
X
®

O
X

-X C-a

. cal

. cal overloaded functions
. cal stack

. cal-last-kbd-macro (C-x €)
. caling functions

. cdling make

. capitalize-word (M-c)

. Casts, to view memory

. catch

. catch caich

. catch exceptions, list active handlers

file:///C|/gdb.html (324 of 352)19. 1. 2004 20:32:04

Debugging with GDB

catch exec

catch fork

catch load

catch throw

catch unload

catch vfork

catchpoints

catchpoints, setting

cd

cdir

character-search (C-])
character-search-backward (M-C-])
checks, range

checks, type

checksum, for GDB remote

Chill

choosing target byte order

clear

clear-screen (C-l)

clearing breakpoints, watchpoints, catchpoints
COFF versus C++

collect (tracepoints)

collected data discarded

colon, doubled as scope operator
colon-colon, context for variables/functions
command editing

command files

command hooks

command line editing

commands, commands
commands for C++

commands to STDBUG (ST2000)
comment

comment-begin

compatibility, GDB/MI and CLI
compilation directory

compiling, on Sparclet

complete

file:///Cl/gdb.html (325 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. complete (TAB)

. completion

. completion of quoted strings
. completion-query-items

. condition

. conditional breakpoints

. configuring GDB

. confirmation

. connect (to STDBUG)

. console output in GDB/MI
. continue

« continuing

. continuing threads

. control C, and remote debugging
. controlling terminal

. convenience variables

. convenience variables for tracepoints
. convert-meta

. copy-backward-word ()

. copy-forward-word ()

. copy-region-as-kill ()

. core

. coredumpfile

. core-file

. crash of debugger

« Ccurrent directory

. current stack frame

. current thread

. cwd

. d(del ete)

. datamanipulation, in GDB/MI
. debugger crash

. debugging optimized code

. debugging stub, example

. debugging target

file:///Cl/gdb.html (326 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. define

. delete

. delete breakpoints

. deletedisplay

. delete mem

. delete tracepoint

. delete-char (C-d)

. delete-char-or-list ()

. delete-horizontal -space ()

. deleting breakpoints, watchpoints, catchpoints
. demangling

. descriptor tables display

. detach

. device

. digit-argument (M-0, M-1, ... M--)

. dir

. direct memory access (DMA) on MS-DOS
. directoriesfor sourcefiles

. directory

. directory, compilation

. directory, current

. dis(di sabl e)

. disable

. disable breakpoints, disable breakpoints
. disabledisplay

. disable mem

. disable tracepoint

. disable-completion

. disassemble

. display

. display of expressions
. display-begin

. display-end

. display-expression

. display-expression-end
. display-format

. display-number-end

. display-value

file:///C|/gdb.html (327 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. DJGPP debugging

. do (down)

. do-uppercase-version (M-a, M-b, M-x, ...)
. document

. documentation

. Down

. down

. down-slently

. downcase-word (M-I)

. download to H8/300 or H8/500

. download to Hitachi SH

. download to Nindy-960

. download to Sparclet

. download to VxWorks

. dump all data collected at tracepoint
« dump-functions ()

« dump-macros ()

. dump-variables ()

. dynamic linking

. _eb.log',alogfilefor EB29K
. EB29K board

. EBMON

. echo

. ECOFF and C++

. editing

. editing command lines
. editing-mode

. ELF/DWARF and C++
. ELF/stabsand C++

. else

. et

. elt-rep
. €t-rep-end
. Emacs
. enable

file:///Cl/gdb.html (328 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. enable breakpoints, enable breakpoints
. enable display

. enable mem

. enable tracepoint

. enable-keypad

. end

. end-kbd-macro (C-x))

. end-of-history (M->)

. end-of-line (C-g)

. entering numbers

. environment (of your program)
.« €Efror

. error on valid input

. error-begin

. event designators

. event handling

. examining data

. examining memory

. exception handlers

. exception handlers, how to list
. exceptionHandler

. exchange-point-and-mark (C-x C-x)
. execfile

. executablefile

. exited

. exiting GDB

. expand-tilde

. expressions

. expressionsin C or C++

. expressionsin C++

. expressionsin Modula-2

. f(franme)
. fatal signa

. fatal signals
. fg (resume foreground execution)

file:///Cl/gdb.html (329 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. field

. field-begin

. fied-end

. field-name-end

. field-value

. file

. find trace snapshot

. finish

. flinching

. floating point

. floating point registers

. floating point, MIPS remote
. flush i cache

. focus

. focus of debugging

. foo

. fork, debugging programs which call

. format options

. formatted output

. Fortran

. forward-backward-delete-char ()
. forward-char (C-f)

. forward-search

. forward-search-history (C-s)
. forward-word (M-f)

. frame number

. frame pointer

. frame, command

. frame, definition

. frame, selecting

. frame-address

. frame-address-end

. frame-args

. frame-begin
. frame-end

. frame-function-name
. frame-source-begin
. frame-source-end

file:///Cl/gdb.html (330 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. frame-source-file

. frame-source-file-end

. frame-source-line

. frame-where

. frameless execution

. frames-invalid

. freememory information (MS-DOS)

. Fujitsu

. function-call

. functions without line info, and stepping

. g++, GNU C++ compiler

. garbled pointers

. GDB bugs, reporting

. GDB reference card

. ~gdb.ini'

. GDB/MI, breakpoint commands
. GDB/MI, compatibility with CLI
. GDB/MI, data manipulation
. GDB/MI, input syntax

. GDB/MI, its purpose

. GDB/MI, out-of-band records
. GDB/MI, output syntax

. GDB/MI, result records

. GDB/MI, simple examples

. GDB/MI, stream records

. GDBHISTFILE

. gdbserve.nim

« Qdbserver

- GDT

. getDebugChar

. GNU C++

. GNU Emacs

file:///Cl/gdb.html (331 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. h(hel p)

. H8/300 or H8/500 download
. handle

. handle exception

. handling signals

. hardware watchpoints

« hbreak

- help

. help target

. help user-defined

. heuristic-fence-post (Alpha, MIPS)
. history events

. history expansion, history expansion
. history file

. history number

. history save

. history size

. history substitution

. history-search-backward ()

. history-search-forward ()

. Hitachi

. Hitachi SH download

- hook

. hook-

« hookpost

« hookpost-
. hooks, for commands

. hooks, post-command
. hooks, pre-command
. horizontal-scroll-mode

. 1(info)

. 386
. 1386-stub.c'
. 1960

file:///Cl/gdb.html (332 of 352)19. 1. 2004 20:32:04

Debugging with GDB

IDT
if

ignore
ignore count (of breakpoint)

INCLUDE RDB

info

info address

info all-registers

info args

info breakpoints

info catch

info display

info dos

info extensions

inffof (info frane)
info files

info float

info frame

info frame, show the source language
info functions

info line

info locals

info mem

info proc

info procid

info proc mappings
info proc status

info proc times

info program

info registers

infos(i nfo st ack)

info scope
info set

info share

info sharedlibrary

info signals

info source

info source, show the source language

file:///Cl/gdb.html (333 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. Info sources
. Info stack

. info symboal

. infotarget
. Info termind

. infothreads, info threads

. info tracepoints

. Infotypes

. infovariables

. info watchpoints

. information about tracepoints
. inheritance

. initfile

. init file name

. initia frame

. initiaization file, readline

. innermost frame

. input syntax for GDB/MI

. Input-meta

. insert-comment (M-#)

. insert-completions (M-*)

. inspect

. instalation

. ingtructions, assembly, instructions, assembly
. Intel

. Intel disassembly flavor

. Interaction, readline

. internal GDB breakpoints

. Interrupt

. interrupting remote programs
. interrupting remote targets

. Invalidinput

. isearch-terminators

file:///Cl/gdb.html (334 of 352)19. 1. 2004 20:32:04

Debugging with GDB

K

. kernel object

. kernel object display
. keymap

. kill

« Kkill ring

« Kkill-line (C-k)

. Kkill-region ()

. kill-whole-line ()

. kill-word (M-d)

. killing text
. KOD

. I(list)

. languages

. last tracepoint number
. latest breakpoint

. layout asm
. layout next
. layout prev
. layout regs
. layout split

. layout src
. LDT

. leaving GDB

. Left

. linespec

. list

. list output in GDB/MI
. listing machine instructions, listing machine instructions
. load filename

. local variables

. locate address

. logfilefor EB29K

. log output in GDB/MI

file:///Cl/gdb.html (335 of 352)19. 1. 2004 20:32:04

Debugging with GDB

m

. m680x0

. _nb8k-stub. c'

. machine instructions, machine instructions
. maint info breakpoints

« Mmaint print psymbols

. maint print symbols

. Mmake

. mapped

. mark-modified-lines

- mem

. member functions

. memory models, H8/500

. memory region attributes

. memory tracing

. memory, viewing as typed object
. memory-mapped symbol file
. memset

. menu-complete ()

. metaflag

. MIPS boards

. MIPS remote floating point

. MIPSr enot edebug protocol
. MIPS stack

. Modula-2

. Modula-2 built-ins

. Modula-2 checks

. Modula-2 constants

. Modula-2 defaults

. Modula-2 operators

. Modula-2, deviations from

. Modula-2, GDB support

. Motorola 680x0

. MSDOS system info

. MS-DOS-specific commands
. multiple processes

. multiple targets

file:///Cl/gdb.html (336 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. multiple threads

. n(next)

. names of symbols

. hamespacein C++

. hative DJGPP debugging

. hegative breakpoint numbers

. New systag message

. New systag message, on HP-UX

. hext

. hext-history (C-n)

. hexti

« hi(nexti)

. Nindy

. nhon-incremental-forward-search-history (M-n)
. non-incremental-reverse-search-history (M-p)
. hotation, readline

. hotational conventions, for GDB/MI

. notify output in GDB/MI

. humber representation

. nhumbers for breakpoints

. object formats and C++

. online documentation

. optimized code, debugging

. out-of-band recordsin GDB/MI
. outermost frame

. output

. output formats

. output syntax of GDB/MI

. Output-meta

. overload-choice

. overloaded functions, calling

. overloaded functions, overload resolution

file:///Cl/gdb.html (337 of 352)19. 1. 2004 20:32:04

Debugging with GDB

overloading
overloading in C++

packets, reporting on stdout
page tables display (MS-DOS)
partial symbol dump

Pascal

passcount

patching binaries

path

pauses in output

PgDn

PgUp

physical address from linear address

PIPES

pointer, finding referent
possi ble-completions (M-?)
post-commands
post-overload-choice
post-prompt
post-prompt-for-continue
post-query

pre-commands
pre-overload-choice

pre-prompt
pre-prompt-for-continue

pre-query
prefix-meta (ESC)
previous-history (C-p)
print

print settings

printf

printing data

process image
processes, multiple
prompt, prompt

file:///Cl/gdb.html (338 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. prompt-for-continue
. protocol, GDB remote serial

. ptype
. putDebugChar

- bwd

- g(quit)

-« Query

. quit

. qQuit [expression]

. quoted-insert (C-qg, C-v)
. guotesin commands

« Quoting names

. I'(run)

. raise exceptions

. range checking

. ranges of breakpoints

. rbreak

. reread-init-file (C-x C-r)
. reading symbolsimmediately
. readline

. readnow

. recent tracepoint number
. record

. redirection

. redraw-current-line ()

. reference card

. reference declarations

. refresh

. register stack, AMD29K
. registers

. regular expression

. reloading symbols

file:///Cl/gdb.html (339 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. remote connection without stubs

. remote debugging

. remote programs, interrupting

. remote serial debugging summary
. remote serial debugging, overview
. remote serial protocol

. remote serial stub

. remote serial stub list

. remote serial stub, initialization

. remote serial stub, main routine

. remote stub, example

. remote stub, support routines

. renot edebug, MIPS protocol

. remotetimeout

. remove actions from atracepoint
. repeating commands

. reporting bugsin GDB

. reset

. responsetime, MIPS debugging

. result recordsin GDB/MI

. resuming execution

. RET (repeat last command)

. retransmt-ti meout, MIPS protocol

. return

. returning from afunction

. reverse-search

. reverse-search-history (C-r)
. revert-line (M-r)

- Right

« un

« running

. running 29K programs

« running and debugging Sparclet programs
« running VxWorks tasks

. running, on Sparclet

. rwatch

file:///Cl/gdb.html (340 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. s(step)

. Save tracepoints for future sessions
. Save-tracepoints

. Saving symbol table

- SCOpe

. search

. Searching

. Section

. Segment descriptor tables

. Select trace snapshot

. Select-frame

. Selected frame

. Selecting frame silently

. sdf-insert(a, b, A, 1,!,..)

. Sequence-id, for GDB remote
. Seria connections, debugging
. Seria device, Hitachi micros
. seria line speed, Hitachi micros
. seriadline target renote
. Seria protocol, GDB remote
. Server prefix for annotations
. Ssat

. Setargs
. Set auto-solib-add

. Set check range

. Set check type

. Set check, range

. Set check, type

. Set complaints

. Set confirm

. Set debug arch

. Set debug event

. Set debug expression
. Set debug overload
. Set debug remote

. Set debug serial

. Set debug target

. Set debug varobj

file:///Cl/gdb.html (341 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. Set demangle-style

. Set disassembly-flavor

. Set editing

. Set endian auto

. Set endian big

. Set endian little

. Set environment

. Set extension-language

. Set follow-fork-mode

. Set gnutarget

. Set height

. Set history expansion

. Set history filename

. Set history save

. Set history size

. Setinput-radix

. Setlanguage

. Setlistsize

. Set machine

. Set memory mod

« Set mipsfpu

. Set opague-type-resolution
. Set output-radix

. Set overload-resolution

. Set print address

. Set print array

. Set print asm-demangle
. Set print demangle

. Set print elements

« Set print max-symbolic-offset
. Set print null-stop

. Set print object

. Set print pretty

. Set print sevenbit-strings
. Set print static-members
« Set print symbol-filename
« Set print union

. Set print vtbl

file:///Cl/gdb.html (342 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. Set processor args

. Set prompt
. Set remotedebug, MIPS protocol

. Set retransmit-timeout
. Setrstack high address
. Set step-mode

. Set symbol-reloading
. Set timeout

. Set tracepoint

. Set tui active-border-mode
. Set tui border-kind

. Set tui border-mode

. Setvariable

. Set verbose

. Setwidth

. Setwrite

. Set-mark (C-@)

. Set debug traps

. Setting variables

. Setting watchpoints
. SH

« _Sh-stub.c'

. share

. shared libraries

. Sharedlibrary

. shell

. shell escape
. Show

. show args

. show auto-solib-add
. show check range

. show check type

. show complaints

. show confirm

. show convenience

. show copying

. show debug arch

. show debug event

file:///Cl/gdb.html (343 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. show debug expression

. show debug overload

. show debug remote

. show debug serid

. show debug target

. show debug varobj

. show demangle-style

. show directories

. show editing

. show environment

. show gnutarget

. show height

. show history

. show input-radix

. show language

. show listsize

. show machine

« show mipsfpu

. show opaque-type-resolution
. show output-radix

. show paths

. show print address

. show print array

. show print asm-demangle

. show print demangle

. show print e ements

. show print max-symbolic-offset
. show print object

. show print pretty

. show print sevenbit-strings
. show print static-members

. show print symbol-filename
. show print union

. show print vtbl

. show processor

. show prompt

. show remotedebug, MIPS protocol

. Show retransmit-timeout

file:///Cl/gdb.html (344 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. show rstack high address
. show symbol-reloading
. show timeout

. show user

. show vaues

. show verbose

. show version

. show warranty

. show width

. show write

. show-all-if-ambiguous
. shows

. Si(stepi)

. signal, signal

. sSigna-handler-caller
. Signal-name

. signal-name-end

. sSignal-string

. signal-string-end

. signalled

. sSignals

. slent

. sm

. Simulator, Z8000

. Size of screen

. software watchpoints
. source, source

. source path

. Sparc

« _Sparc-stub.c’
. _sparcl-stub.c'
. Sparclet

. SparcLite

. speed

. ST2000 auxiliary commands
. St2000 cmd

. Stack frame

. sStack on Alpha

file:///Cl/gdb.html (345 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. Stack on MIPS

. Stack traces

. Stacking targets

. Start anew trace experiment

. start-kbd-macro (C-x ()

. Starting, starting

. Status of trace data collection

. Status output in GDB/MI

. STDBUG commands (ST2000)
. Step

. Stepi

. stepping

. stepping into functions with no lineinfo
. Stop arunning trace experiment
. stop, a pseudo-command

. Stopped threads

. Stopping

. stream recordsin GDB/MI

. Stub example, remote debugging
. Stupid questions

. Switching threads

. Switching threads automatically
. symbol decoding style, C++

. Symbol dump

. Symbol from address

. Symbol names

. symbol overloading

. Symbol table

. symbol-file

. symboals, reading immediately
. sysinfo

. tab-insert (M-TAB)
. target

. target abug

. target adapt

file:///Cl/gdb.html (346 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. target amd-eb

. target array
. target bug
. target byte order

. target core
. target cpu32bug

. target dbug

. target ddb port

. target dink32

. target €7000, with H8/300

. target €7000, with Hitachi ICE
. target 7000, with Hitachi SH
. target es1800

. target est

. target exec
. target hms, and serial protocol

. target hms, with H8/300

. target hms, with Hitachi SH
. target s port

. target m32r

. target mips port

. target mon960

. target nindy

. target nrom

. target opS0n
. target output in GDB/MI

. target pmon port
. target ppcbug

. target ppcbugl
. target r3900

. target rdi

. target rdp
. target remote

. target rom68k

. target rombug

. target sds

. target sh3, with H8/300
. target sh3, with SH

file:///Cl/gdb.html (347 of 352)19. 1. 2004 20:32:04

Debugging with GDB

target sh3e, with H8/300

target sh3e, with SH

target sim

target ssim, with Z8000

target sparclite

target vxworks

target w89k

tbreak

TCPport,t arget renote
tdump

terminal

tfind

thbreak

this, inside C++ member functions
thread apply

thread breakpoints

thread identifier (GDB), thread identifier (GDB)

thread identifier (system)
thread identifier (system), on HP-UX
thread number, thread number
thread threadno

threads and watchpoints
threads of execution

threads, automatic switching
threads, continuing

threads, stopped

tilde-expand (M-~)

t i meout , MIPS protocol
trace

trace experiment, status of
tracebacks

tracepoint actions

tracepoint data, display
tracepoint deletion

tracepoint number

tracepoint pass count
tracepoint variables

tracepoints

file:///Cl/gdb.html (348 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. transpose-chars (C-t)

. transpose-words (M-t)
. lstart

. tStatus

. lstop

. lty

. TUI

. TUI commands

. TUI configuration variables
. TUI key bindings

. type casting memory

. type checking

. typeconversionsin C++

« u(until)
. UDI
. udi

. undisplay

. undo (C- , C-x C-u)

. universal-argument ()
« unix-line-discard (C-u)
« unix-word-rubout (C-w)
. unknown address, locating
. unset environment

. until

. Up

- Up

. up-silently

. upcase-word (M-u)

. Update

. user-defined command

. vaue history
. value-begin

file:///Cl/gdb.html (349 of 352)19. 1. 2004 20:32:04

Debugging with GDB

. vaue-end

. vaue-history-begin

. vaue-history-end

. vaue-history-value

. variable name conflict
. variable objectsin GDB/MI
. Variable values, wrong
. Vvariables, setting

. version number

. visble-stats

. VxWorks

. vxworks-timeout

. watch

« watchpoint

. watchpoints
. watchpoints and threads

. whatis

. Where

. While

. while-stepping (tracepoints)
. wild pointer, interpreting

. winheight

. word completion

. working directory

. working directory (of your program)
. working language

. writing into corefiles

. Writing into executables

. wrong values

. X (examine memory)
. X(examine), and info line
. XCOFF and C++

file:///Cl/gdb.html (350 of 352)19. 1. 2004 20:32:04

Debugging with GDB

y

. yank (C-y)

. yank-last-arg (M-., M-)
. vank-nth-arg (M-C-y)

. yank-pop (M-y)

. yanking text

. 28000
. Zilog Z8000 simulator

. {type}

@contents

Foothotes

()

GDB built with DJGPP tools for MS-DOS/M S-Windows supports this mode of operation, but the event
loop is suspended when the debuggee runs.

(2)

“b' cannot be used because these format letters are also used with the x command, where ™ b' stands
for "byte"; see section Examining memory.

3

Thisisaway of removing one word from the stack, on machines where stacks grow downward in
memory (most machines, nowadays). This assumes that the innermost stack frame is selected; setting

file:///Cl/gdb.html (351 of 352)19. 1. 2004 20:32:04

Debugging with GDB

$sp isnot allowed when other stack frames are selected. To pop entire frames off the stack, regardless
of machine architecture, user et ur n; see section Returning from a function.

4)

If aprocedure call is used for instance in an expression, then this procedure is called with all its side
effects. This can lead to confusing resultsif used carelesdly.

©)

If you choose a port number that conflicts with another service, gdbser ver printsan error message
and exits.

(6)

On DOS/Windows systems, the home directory is the one pointed to by the HOVE environment variable.

()

In" gdb-5. 1. 1/ gdb/ ref card. ps' of theversion5.1.1 release.

8)

If you have amore recent version of GDB than 5.1.1, look at the " READIVE' file in the sources, we may
have improved the installation procedures since publishing this manual.

This document was generated on 14 February 2002 using texi2html 1.56Kk.

file:///Cl/gdb.html (352 of 352)19. 1. 2004 20:32:04

http://wwwinfo.cern.ch/dis/texi2html/

	Local Disk
	Debugging with GDB

