
1 z 157

Thinking in Patterns by Bruce Eckel

Revision 0.9, 5-20-2003 (This version contains the material that will
be used in the Crested Butte seminar; see
http://www.mindview.net/Seminars/ThinkingInPatterns/)

Please note this document is under development and incomplete.
Updates to this document can be found at http://www.Mindview.net

Best viewed with Mozilla! (free at www.Mozilla.org) (Even though this
document was created with MS Word, IE6 garbles lines with
superscripts on them. Mozilla seems to do a much better job).

Note: This document requires the installation of the fonts Georgia, Verdana and Andale
Mono (code font) for proper viewing. These can be found at:
http://sourceforge.net/project/showfiles.php?group_id=34153&release_id=105355

Modifications in Revision 0.9:
• Prose has still had little/no work. My current goal is to get the structure and examples

worked out so that the seminar works well. Once it has been proven in the seminars,
then I will spend time on the prose.

• Added proxy:PoolManager.java to make a more generic/customizeable Pool Manager,
and modified proxy:ConnectionPoolProxyDemo.java accordingly [[Still need to
decide what to return when you run out of objects in the pool]]

• Changed PoolManager.java to use an ArrayList (and thus does not require a fixed size
at initialization)

• Added KissingPrincess.java to State description, as a motivational example for the
pattern

• Added a simple Flyweight example

• Simplified the enumeration in PaperScissorsRock.java

Modifications in Revision 0.8:
• Changed Bridge example to improve clarity.

• Removed superscripts for better viewing with IE (see note above)

Modifications in Revision 0.7:
• NOTE primary changes have been made to structure of book and code

examples, but not to prose. Prose can be considered to be mostly a mess in
this revision.

• Complete reorganization under headings that attempt to describe the problems you
are trying to solve with a pattern.

• Addition of placeholders for the remainder of the GoF patterns

• Addition of “Simplifying Idioms” section and examples

• Addition of Builder section and examples

• Removed unit-testing chapter; replaced with reference to “new” JUnit (which uses
reflection)

• (4-30-2003) Added Ant build.xml files, and support files from TIJ necessary to do a
full standalone build. You should be able to type “ant” from the code root directory

2 z 157

yp y
and get a successful build.

• Dramatically simplified chainofresponsibility:FindMinima.java

• Added object pool/connection pool examples

• Refactored small things in many examples

• Some exercises may have been left behind when patterns were moved.

• For simplicity, saved from Word into a single HTML document, using “filtered”
version to remove Office stuff. Seems to work pretty well; checked it with both IE and
Mozilla (actually seems to work better on Mozilla than on IE!).

TODO:

• Reconfigure for new backtalk system

• Replace references to TIJ2 with TIJ3

Thinking
in

Patterns
Problem-Solving Techniques

using Java

Bruce Eckel
President, MindView, Inc.

Contents
Preface

3 z 157

Introduction
The Y2K syndrome
Context and composition
A word about checked exceptions

The pattern concept
What is a pattern?
Pattern taxonomy
Design principles
Classifying patterns
The development challenge
Unit testing

Location of test code

Simplifying Idioms
Messenger
Collecting Parameter

Object quantity
Singleton

Exercises

Object pool
Exercises

Object decoupling
Proxy: fronting for another object

The PoolManager using Proxy

Dynamic Proxies

State: changing object behavior
Iterators: decoupling algorithms from containers

Type-safe iterators

Exercises

Factoring commonality
Strategy: choosing the algorithm at run-time
Policy: generalized strategy
Template method

Exercises

Encapsulating creation
Simple Factory method
Polymorphic factories
Abstract factories
Exercises

Specialized creation
Prototype
Builder
Exercises

Too many
Flyweight: too many objects
Decorator: too many classes

Basic decorator structure

A coffee example

Class for each combination

The decorator approach

Compromise

Other considerations

Exercises

4 z 157

Connecting different types
Adapter
Bridge
Exercises

Flexible structure
Composite

System decoupling
Observer

Observing flowers

A visual example of observers

Mediator
Exercises

Reducing interface complexity
Façade

Package as a variation of Façade

Algorithmic partitioning
Command: choosing the operation at run-time

Exercises

Chain of responsibility
Exercises

Externalizing object state
Memento

Complex interactions
Multiple dispatching
Visitor, a type of multiple dispatching
Exercises

Multiple languages
Interpreter motivation
Python overview

Built-in containers

Functions

Strings

Classes

Creating a language
Controlling the interpreter

Putting data in

Getting data out

Multiple interpreters

Controlling Java from Jython
Inner Classes

Using Java libraries
Inheriting from Java library classes

Creating Java classes with Jython
Building the Java classes from the Python code

The Java-Python Extension (JPE)
Summary
Exercises

Complex system states
StateMachine

Exercises

Table-Driven State Machine
The State class

Conditions for transition

5 z 157

Transition actions

The table

The basic machine

Simple vending machine

Testing the machine

Tools
Table-driven code: configuration flexibility

Table-driven code using anonymous inner classes

Exercises

Pattern refactoring
Simulating the trash recycler
Improving the design

“Make more objects”

A pattern for prototyping creation
Trash subclasses

Parsing Trash from an external file

Recycling with prototyping

Abstracting usage
Multiple dispatching

Implementing the double dispatch

The Visitor pattern
A Reflective Decorator

More coupling?

RTTI considered harmful?
Summary
Exercises

Projects
Rats & Mazes

Other maze resources

XML Decorator

A: Tools
Ant extensions
Array utilities

Preface
The material in this book has been developed in conjunction with a
seminar that I have given for several years, mostly with Bill Venners. Bill
and I have given many iterations of this seminar and we’ve changed it
many times over the years as we both have learned more about patterns
and about giving the seminar.

In the process we’ve both produced more than enough information for us each to have our
own seminars, an urge that we’ve both strongly resisted because we have so much fun giving
the seminar together. We’ve given the seminar in numerous places in the US, as well as in
Prague (where we try to have a mini-conference every Spring together with a number of other
seminars). We’ve also given it as an on-site seminar.

A great deal of appreciation goes to the people who have participated in these seminars over
the years, as they have helped me work through these ideas and to refine them. I hope to be
able to continue to form and develop these kinds of ideas through this book and seminar for
many years to come.

This book will not stop here, either. After much pondering, I’ve realized that I want Thinking

6 z 157

p p g g
in Python to be, initially, a translation of this book rather than an introduction to Python
(there are already plenty of fine introductions to that superb language). I find this prospect to
be much more exciting than the idea of struggling through another language tutorial (my
apologies to those who were hoping for that).

Introduction
This is a book about design that I have been working on for years,
basically ever since I first started trying to read Design Patterns (Gamma,
Helm, Johnson & Vlissides, Addison-Wesley, 1995), commonly referred

to as the Gang of Four[1] or just GoF).

There is a chapter on design patterns in the first edition of Thinking in C++, which has
evolved in Volume 2 of the second edition of Thinking in C++, and you’ll also find a chapter
on patterns in the first edition of Thinking in Java (I took it out of the second edition because
that book was getting too big, and also because I had decided to write this book).

This is not an introductory book. I am assuming that you have worked your way through
Thinking in Java or an equivalent text before coming to this book.

In addition, I assume you have more than just a grasp of the syntax of Java. You should have
a good understanding of objects and what they’re about, including polymorphism. Again,
these are topics covered in Thinking in Java.

On the other hand, by going through this book you’re going to learn a lot about object-
oriented programming by seeing objects used in many different situations. If your knowledge
of objects is rudimentary, it will get much stronger in the process of understanding the
designs in this book.

The Y2K syndrome
In a book that has “problem-solving techniques” in its subtitle, it’s worth mentioning one of
the biggest pitfalls in programming: premature optimization. Every time I bring this concept
forward, virtually everyone agrees to it. Also, everyone seems to reserve in their own mind a
special case “except for this thing that I happen to know is a particular problem.”

The reason I call this the Y2K syndrome has to do with that special knowledge. Computers are
a mystery to most people, so when someone announced that those silly computer
programmers had forgotten to put in enough digits to hold dates past the year 1999, then
suddenly everyone became a computer expert – “these things aren’t so difficult after all, if I
can see such an obvious problem.” For example, my background was originally in computer
engineering, and I started out by programming embedded systems. As a result, I know that
many embedded systems have no idea what the date or time is, and even if they do that data
often isn’t used in any important calculations. And yet I was told in no uncertain terms that
all the embedded systems were going to crash on January 1, 2000. As far as I can tell the only
memory that was lost on that particular date was that of the people who were predicting
doom – it’s as if they had never said any of that stuff.

The point is that it’s very easy to fall into a habit of thinking that the particular algorithm or
piece of code that you happen to partly or thoroughly understand is naturally going to be the
bottleneck in your system, simply because you can imagine what’s going on in that piece of
code and so you think that it must somehow be much less efficient than all the other pieces of
code that you don’t know about. But unless you’ve run actual tests, typically with a profiler,
you can’t really know what’s going on. And even if you are right, that a piece of code is very
inefficient, remember that most programs spend something like 90% of their time in less than
10% of the code in the program, so unless the piece of code you’re thinking about happens to

7 z 157

p g p y g pp
fall into that 10% it isn’t going to be important.

“We should forget about small efficiencies, say about 97% of the time: Premature
optimization is the root of all evil.”—Donald Knuth

Context and composition
One of the terms you will see used over and over in design patterns literature is context. In
fact, one common definition of a design pattern is “a solution to a problem in a context.” The
GoF patterns often have a “context object” that the client programmer interacts with. At one
point it occurred to me that such objects seemed to dominate the landscape of many patterns,
and so I began asking what they were about.

The context object often acts as a little façade to hide the complexity of the rest of the pattern,
and in addition it will often be the controller that manages the operation of the pattern.
Initially, it seemed to me that these were not really essential to the implementation, use and
understanding of the pattern. However, I remembered one of the more dramatic statements
made in the GoF: “prefer composition to inheritance.” The context object allows you to use
the pattern in a composition, and that may be it’s primary value.

A word about checked
exceptions

1) The great value of exceptions is the unification of error reporting: a standard mechanism
by which to report errors, rather than the popourri of ignorable approaches that we had in C
(and thus, C++, which only adds exceptions to the mix, and doesn't make it the exclusive
approach). The big advantage Java has over C++ is that exceptions are the only way to report
errors.

2) "Ignorable" in the previous paragraph is the other issue. The theory is that if the compiler
forces the programmer to either handle the exception or pass it on in an exception
specification, then the programmer's attention will always be brought back to the possibility
of errors and they will thus properly take care of them. I think the problem is that this is an
untested assumption we're making as language designers that falls into the field of
psychology. My theory is that when someone is trying to do something and you are constantly
prodding them with annoyances, they will use the quickest device available to make those
annoyances go away so they can get their thing done, perhaps assuming they'll go back and
take out the device later. I discovered I had done this in the first edition of Thinking in Java:

...
} catch (SomeKindOfException e) {}

And then more or less forgot it until the rewrite. How many people thought this was a good
example and followed it? Martin Fowler began seeing the same kind of code, and realized
people were stubbing out exceptions and then they were disappearing. The overhead of
checked exceptions was having the opposite effect of what was intended, something that can
happen when you experiment (and I now believe that checked exceptions were an experiment
based on what someone thought was a good idea, and which I believed was a good idea until
recently).

When I started using Python, all the exceptions appeared, none were accidentally
"disappeared." If you *want* to catch an exception, you can, but you aren't forced to write
reams of code all the time just to be passing the exceptions around. They go up to where you
want to catch them, or they go all the way out if you forget (and thus they remind you) but
they don't vanish, which is the worst of all possible cases. I now believe that checked
exceptions encourage people to make them vanish. Plus they make much less readable code.

In the end, I think we must realize the experimental nature of exceptions and look at them

8 z 157

p p
carefully before assuming that everything about exceptions in Java are good. I believe that
having a single mechanism for handling errors is excellent, and I believe that using a separate
channel (the exception handling mechanism) for moving the exceptions around is good. But I
do remember one of the early arguments for exception handling in C++ was that it would
allow the programmer to separate the sections of code where you just wanted to get work
done from the sections where you handled errors, and it seems to me that checked exceptions
do not do this; instead, they tend to intrude (a lot) into your "normal working code" and thus
are a step backwards. My experience with Python exceptions supports this, and unless I get
turned around on this issue I intend to put a lot more RuntimeExceptions into my Java
code.

The pattern concept
“Design patterns help you learn from others' successes instead of your

own failures[2].”

Probably the most important step forward in object-oriented design is the “design patterns”
movement, chronicled in Design Patterns (ibid)[3]. That book shows 23 different solutions to
particular classes of problems. In this book, the basic concepts of design patterns will be
introduced along with examples. This should whet your appetite to read Design Patterns by
Gamma, et. al., a source of what has now become an essential, almost mandatory, vocabulary
for OOP programmers.

The latter part of this book contains an example of the design evolution process, starting with
an initial solution and moving through the logic and process of evolving the solution to more
appropriate designs. The program shown (a trash sorting simulation) has evolved over time,
and you can look at that evolution as a prototype for the way your own design can start as an
adequate solution to a particular problem and evolve into a flexible approach to a class of
problems.

What is a pattern?
Initially, you can think of a pattern as an especially clever and insightful way of solving a
particular class of problems. That is, it looks like a lot of people have worked out all the angles
of a problem and have come up with the most general, flexible solution for it. The problem
could be one you have seen and solved before, but your solution probably didn’t have the kind
of completeness you’ll see embodied in a pattern.

Although they’re called “design patterns,” they really aren’t tied to the realm of design. A
pattern seems to stand apart from the traditional way of thinking about analysis, design, and
implementation. Instead, a pattern embodies a complete idea within a program, and thus it
can sometimes appear at the analysis phase or high-level design phase. This is interesting
because a pattern has a direct implementation in code and so you might not expect it to show
up before low-level design or implementation (and in fact you might not realize that you need
a particular pattern until you get to those phases).

The basic concept of a pattern can also be seen as the basic concept of program design: adding
a layer of abstraction. Whenever you abstract something you’re isolating particular details,
and one of the most compelling motivations behind this is to separate things that change
from things that stay the same. Another way to put this is that once you find some part of
your program that’s likely to change for one reason or another, you’ll want to keep those
changes from propagating other changes throughout your code. Not only does this make the
code much cheaper to maintain, but it also turns out that it is usually simpler to understand
(which results in lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-maintain design is in
discovering what I call “the vector of change.” (Here, “vector” refers to the maximum gradient

9 z 157

g g g
and not a container class.) This means finding the most important thing that changes in your
system, or put another way, discovering where your greatest cost is. Once you discover the
vector of change, you have the focal point around which to structure your design.

So the goal of design patterns is to isolate changes in your code. If you look at it this way,
you’ve been seeing some design patterns already in this book. For example, inheritance can be
thought of as a design pattern (albeit one implemented by the compiler). It allows you to
express differences in behavior (that’s the thing that changes) in objects that all have the
same interface (that’s what stays the same). Composition can also be considered a pattern,
since it allows you to change—dynamically or statically—the objects that implement your
class, and thus the way that class works.

You’ve also already seen another pattern that appears in Design Patterns: the iterator (Java
1.0 and 1.1 capriciously calls it the Enumeration; Java 2 containers use “iterator”). This
hides the particular implementation of the container as you’re stepping through and selecting
the elements one by one. The iterator allows you to write generic code that performs an
operation on all of the elements in a sequence without regard to the way that sequence is
built. Thus your generic code can be used with any container that can produce an iterator.

Pattern taxonomy
One of the events that’s occurred with the rise of design patterns is what could be thought of
as the “pollution” of the term – people have begun to use the term to mean just about
anything synonymous with “good.” After some pondering, I’ve come up with a sort of
hierarchy describing a succession of different types of categories:

1. Idiom: how we write code in a particular language to do this particular type of thing.
This could be something as common as the way that you code the process of stepping
through an array in C (and not running off the end).

2. Specific Design: the solution that we came up with to solve this particular problem.
This might be a clever design, but it makes no attempt to be general.

3. Standard Design: a way to solve this kind of problem. A design that has become
more general, typically through reuse.

4. Design Pattern: how to solve an entire class of similar problem. This usually only
appears after applying a standard design a number of times, and then seeing a
common pattern throughout these applications.

I feel this helps put things in perspective, and to show where something might fit. However, it
doesn’t say that one is better than another. It doesn’t make sense to try to take every problem
solution and generalize it to a design pattern – it’s not a good use of your time, and you can’t
force the discovery of patterns that way; they tend to be subtle and appear over time.

One could also argue for the inclusion of Analysis Pattern and Architectural Pattern in this
taxonomy.

Design principles
(Update from slides to here)

When I put out a call for ideas in my newsletter[4], a number of suggestions came back which
turned out to be very useful, but different than the above classification, and I realized that a
list of design principles is at least as important as design structures, but for a different reason:
these allow you to ask questions about your proposed design, to apply tests for quality.

• Principle of least astonishment (don’t be astonishing).

• Make common things easy, and rare things possible

• Consistency. One thing has become very clear to me, especially because of Python:

10 z 157

y g y , p y y
the more random rules you pile onto the programmer, rules that have nothing to do
with solving the problem at hand, the slower the programmer can produce. And this
does not appear to be a linear factor, but an exponential one.

• Law of Demeter: a.k.a. “Don’t talk to strangers.” An object should only reference
itself, its attributes, and the arguments of its methods.

• Subtraction: a design is finished when you cannot take anything else away.

• Simplicity before generality[5]. (A variation of Occam’s Razor, which says “the
simplest solution is the best”). A common problem we find in frameworks is that they
are designed to be general purpose without reference to actual systems. This leads to a
dizzying array of options that are often unused, misused or just not useful. However,
most developers work on specific systems, and the quest for generality does not
always serve them well. The best route to generality is through understanding well-
defined specific examples. So, this principle acts as the tie breaker between otherwise
equally viable design alternatives. Of course, it is entirely possible that the simpler
solution is the more general one.

• Reflexivity (my suggested term). One abstraction per class, one class per
abstraction. Might also be called Isomorphism.

• Independence or Orthogonality. Express independent ideas independently. This
complements Separation, Encapsulation and Variation, and is part of the Low-
Coupling-High-Cohesion message.

• Once and once only: Avoid duplication of logic and structure where the duplication
is not accidental, ie where both pieces of code express the same intent for the same
reason.

In the process of brainstorming this idea, I hope to come up with a small handful of
fundamental ideas that can be held in your head while you analyze a problem. However, other
ideas that come from this list may end up being useful as a checklist while walking through
and analyzing your design.

Classifying patterns
The Design Patterns book discusses 23 different patterns, classified under three purposes (all
of which revolve around the particular aspect that can vary). The three purposes are:

1. Creational: how an object can be created. This often involves isolating the details of
object creation so your code isn’t dependent on what types of objects there are and thus
doesn’t have to be changed when you add a new type of object. The aforementioned
Singleton is classified as a creational pattern, and later in this book you’ll see examples
of Factory Method and Prototype.

2. Structural: designing objects to satisfy particular project constraints. These work
with the way objects are connected with other objects to ensure that changes in the
system don’t require changes to those connections.

3. Behavioral: objects that handle particular types of actions within a program. These
encapsulate processes that you want to perform, such as interpreting a language,
fulfilling a request, moving through a sequence (as in an iterator), or implementing an
algorithm. This book contains examples of the Observer and the Visitor patterns.

The Design Patterns book has a section on each of its 23 patterns along with one or more
examples for each, typically in C++ (rather restricted C++, at that) but sometimes in
Smalltalk. (You’ll find that this doesn’t matter too much since you can easily translate the
concepts from either language into Java.) This book will revisit many of the patterns shown in
Design Patterns but with a Java orientation, since the language changes the expression and

11 z 157

g g g g p
understanding of the patterns. However, the GoF examples will not be repeated here, since I
believe that it’s possible to produce more illuminating examples given some effort. The goal is
to provide you with a decent feel for what patterns are about and why they are so important.

After years of looking at these things, it began to occur to me that the patterns themselves use
basic principles of organization, other than (and more fundamental than) those described in
Design Patterns. These principles are based on the structure of the implementations, which is
where I have seen great similarities between patterns (more than those expressed in Design
Patterns). Although we generally try to avoid implementation in favor of interface, for awhile
I thought that it was easier to understand the patterns in terms of these structural principles,
and tried reorganizing the book around the patterns based on their structure instead of the
categories presented in Design Patterns.

However, a later insight made me realize that it’s more useful to organize the patterns in
terms of the problems they solve. I believe this is a subtle but important distinction from the
way Metsker organizes the patterns by intent in Design Patterns Java Workshop (Addison-
Wesley 2002), because I hope that you will then be able to recognize your problem and search
for a solution, if the patterns are organized this way.

In the process of doing all this “book refactoring” I realized that if I changed it once, I would
probably change it again (there’s definitely a design maxim in there), so I removed all
references to chapter numbers in order to facilitate this change (the little-known “numberless
chapter” pattern ☺).

The development challenge
Issues of development, the UML process, Extreme Programming.

Is evaluation valuable? The Capability Immaturity Model:

Wiki Page: http://c2.com/cgi-bin/wiki?CapabilityImMaturityModel
Article: http://www.embedded.com/98/9807br.htm

Pair programming research:

http://collaboration.csc.ncsu.edu/laurie/

Unit testing
In an earlier version of this book I decided that unit testing was essential (for all of my books)
and that JUnit was too verbose and clunky to consider. At that time I wrote my own unit
testing framework using Java reflection to simplify the syntax necessary to achieve unit
testing. For the third edition of Thinking in Java, we developed another unit testing
framework for that book which would test the output of examples.

In the meantime, JUnit has changed to add a syntax remarkably similar to the one that I used
in an earlier version of this book. I don’t know how much influence I may have had on that
change, but I’m simply happy that it has happened, because I no longer feel the need to
support my own system (which you can still find <some URL here>) and can simply
recommend the defacto standard.

I have introduced and described the style of JUnit coding that I consider a “best
practice” (primarily because of simplicity), in Thinking in Java, 3rd edition, chapter 15. That
section provides an adequate introduction to any of the unit testing you will see associated
with this book (however, the unit testing code will not normally be included in the text of this
book). When you download the code for this book, you will find (4/9/2003: Eventually, not
yet) unit tests along with the code examples whenever possible.

Location of test code
(From Bill):

12 z 157

Public: in test subdirectory; different package (don’t include in jar).

Package access: same package, subdirectory path underneath library code (don’t include in
jar)

Private access: (white box testing). Nested class, strip out, or Junit addons.

Simplifying Idioms
Before getting into more complex techniques, it’s helpful to look at some basic ways to keep
code simple and straightforward.

Messenger
The most trivial of these is the messenger, which simply packages information into an object
to be passed around, instead of passing all the pieces around separately. Note that without the
messenger, the code for translate() would be much more confusing to read:

//: simplifying:MessengerDemo.java
package simplifying;
import junit.framework.*;

class Point { // A messenger
 public int x, y, z; // Since it's just a carrier
 public Point(int x, int y, int z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }
 public Point(Point p) { // Copy-constructor
 this.x = p.x;
 this.y = p.y;
 this.z = p.z;
 }
 public String toString() {
 return "x: " + x + " y: " + y + " z: " + z;
 }
}

class Vector {
 public int magnitude, direction;
 public Vector(int magnitude, int direction) {
 this.magnitude = magnitude;
 this.direction = direction;
 }
}

class Space {
 public static Point translate(Point p, Vector v) {
 p = new Point(p); // Don't modify the original
 // Perform calculation using v. Dummy calculation:
 p.x = p.x + 1;
 p.y = p.y + 1;
 p.z = p.z + 1;
 return p;
 }
}

13 z 157

public class MessengerDemo extends TestCase {
 public void test() {
 Point p1 = new Point(1, 2, 3);
 Point p2 = Space.translate(p1, new Vector(11, 47));
 String result = "p1: " + p1 + " p2: " + p2;
 System.out.println(result);
 assertEquals(result,
 "p1: x: 1 y: 2 z: 3 p2: x: 2 y: 3 z: 4");
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(MessengerDemo.class);
 }
} ///:~

Since the goal of a messenger is only to carry data, that data is made public for easy access.
However, you may also have reasons to make the fields private.

Collecting Parameter
Messenger’s big brother is the collecting parameter, whose job is to capture information from
the method to which it is passed. Generally, this is used when the collecting parameter is
passed to multiple methods, so it’s like a bee collecting pollen.

A container makes an especially useful collecting parameter, since it is already set up to
dynamically add objects:

//: simplifying:CollectingParameterDemo.java
package simplifying;
import java.util.*;
import junit.framework.*;

class CollectingParameter extends ArrayList {}

class Filler {
 public void f(CollectingParameter cp) {
 cp.add("accumulating");
 }
 public void g(CollectingParameter cp) {
 cp.add("items");
 }
 public void h(CollectingParameter cp) {
 cp.add("as we go");
 }
}

public class CollectingParameterDemo extends TestCase {
 public void test() {
 Filler filler = new Filler();
 CollectingParameter cp = new CollectingParameter();
 filler.f(cp);
 filler.g(cp);
 filler.h(cp);
 String result = "" + cp;
 System.out.println(cp);
 assertEquals(result,"[accumulating, items, as we go]");
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(

14 z 157

 CollectingParameterDemo.class);
 }
} ///:~

The collecting parameter must have some way to set or insert values. Note that by this
definition, a messenger could be used as a collecting parameter. The key is that a collecting
parameter is passed about and modified by the methods it is passed to.

Object quantity
The two patterns described here are solely used to control the quantity of
objects.

Singleton could actually be thought of as a special case of Object Pool, but the applications of
the Object Pool tend to be uniqe enough from Singleton that it’s worth treating the two
separately.

Singleton
Possibly the simplest design pattern is the singleton, which is a way to provide one and only
one object of a particular type. An important aspect of Singleton is that you provide a global
access point, so singletons are often a solution for what you would have used a global variable
for in C. In addition, a singleton often has the characteristics of a registry or lookup service –
it’s a place you go to find references to other objects.

Singletons can be found in the Java libraries, but here’s a more direct example:

//: singleton:SingletonPattern.java
// The Singleton design pattern: you can
// never instantiate more than one.
package singleton;
import junit.framework.*;

// Since this isn't inherited from a Cloneable
// base class and cloneability isn't added,
// making it final prevents cloneability from
// being added through inheritance:

final class Singleton {
 private static Singleton s = new Singleton(47);
 private int i;
 private Singleton(int x) { i = x; }
 public static Singleton getReference() {
 return s;
 }
 public int getValue() { return i; }
 public void setValue(int x) { i = x; }
}

public class SingletonPattern extends TestCase {
 public void test() {
 Singleton s = Singleton.getReference();
 String result = "" + s.getValue();
 System.out.println(result);
 assertEquals(result, "47");
 Singleton s2 = Singleton.getReference();

15 z 157

 s2.setValue(9);
 result = "" + s.getValue();
 System.out.println(result);
 assertEquals(result, "9");
 try {
 // Can't do this: compile-time error.
 // Singleton s3 = (Singleton)s2.clone();
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(SingletonPattern.class);
 }
} ///:~

The key to creating a singleton is to prevent the client programmer from having any way to
create an object except the ways you provide. You must make all constructors private, and
you must create at least one constructor to prevent the compiler from synthesizing a default
constructor for you (which it will create using package access).

At this point, you decide how you’re going to create your object. Here, it’s created statically,
but you can also wait until the client programmer asks for one and create it on demand. In
any case, the object should be stored privately. You provide access through public methods.
Here, getReference() produces the reference to the Singleton object. The rest of the
interface (getValue() and setValue()) is the regular class interface.

Java also allows the creation of objects through cloning. In this example, making the class
final prevents cloning. Since Singleton is inherited directly from Object, the clone()
method remains protected so it cannot be used (doing so produces a compile-time error).
However, if you’re inheriting from a class hierarchy that has already overridden clone() as
public and implemented Cloneable, the way to prevent cloning is to override clone() and
throw a CloneNotSupportedException as described in Appendix A of Thinking in Java,
2nd edition. (You could also override clone() and simply return this, but that would be
deceiving since the client programmer would think they were cloning the object, but would
instead still be dealing with the original.) Actually, this isn’t precisely true, because even in
the above situation someone could still use reflection to invoke clone() [[is this true? clone
() is still protected so I’m not so sure. If it is true, you’d have to throw
CloneNotSupportedException as the only way to guarantee un-cloneability]]

Exercises
 1. SingletonPattern.java always creates an object, even if it’s never used. Modify this

program to use lazy initialization, so the singleton object is only created the first time
that it is needed.

 2. Create a registry/lookup service that accepts a Java interface and produces a
reference to an object that implements that interface.

Object pool
Note that you aren’t restricted to creating only one object. This is also a technique to create a
limited pool of objects. In that situation, however, you can be confronted with the problem of
sharing objects in the pool. If this is an issue, you can create a solution involving a check-out
and check-in of the shared objects.

As an example, consider a database. Commercial databases often restrict the number of
connections that you can use at any one time. Here is an implementation that uses an object
pool to manage the connections. First, the basic concept of managing a pool of objects is

16 z 157

p g p g g p j
implemented as a separate class:

//: singleton:PoolManager.java
package singleton;
import java.util.*;

public class PoolManager {
 private static class PoolItem {
 boolean inUse = false;
 Object item;
 PoolItem(Object item) { this.item = item; }
 }
 private ArrayList items = new ArrayList();
 public void add(Object item) {
 items.add(new PoolItem(item));
 }
 static class EmptyPoolException extends Exception {}
 public Object get() throws EmptyPoolException {
 for(int i = 0; i < items.size(); i++) {
 PoolItem pitem = (PoolItem)items.get(i);
 if(pitem.inUse == false) {
 pitem.inUse = true;
 return pitem.item;
 }
 }
 // Fail early:
 throw new EmptyPoolException();
 // return null; // Delayed failure
 }
 public void release(Object item) {
 for(int i = 0; i < items.size(); i++) {
 PoolItem pitem = (PoolItem)items.get(i);
 if(item == pitem.item) {
 pitem.inUse = false;
 return;
 }
 }
 throw new RuntimeException(item + " not found");
 }
} ///:~

//: singleton:ConnectionPoolDemo.java
package singleton;
import junit.framework.*;

interface Connection {
 Object get();
 void set(Object x);
}

class ConnectionImplementation implements Connection {
 public Object get() { return null; }
 public void set(Object s) {}
}

class ConnectionPool { // A singleton
 private static PoolManager pool = new PoolManager();
 public static void addConnections(int number) {

17 z 157

 for(int i = 0; i < number; i++)
 pool.add(new ConnectionImplementation());
 }
 public static Connection getConnection()
 throws PoolManager.EmptyPoolException {
 return (Connection)pool.get();
 }
 public static void releaseConnection(Connection c) {
 pool.release(c);
 }
}

public class ConnectionPoolDemo extends TestCase {
 static {
 ConnectionPool.addConnections(5);
 }
 public void test() {
 Connection c = null;
 try {
 c = ConnectionPool.getConnection();
 } catch (PoolManager.EmptyPoolException e) {
 throw new RuntimeException(e);
 }
 c.set(new Object());
 c.get();
 ConnectionPool.releaseConnection(c);
 }
 public void test2() {
 Connection c = null;
 try {
 c = ConnectionPool.getConnection();
 } catch (PoolManager.EmptyPoolException e) {
 throw new RuntimeException(e);
 }
 c.set(new Object());
 c.get();
 ConnectionPool.releaseConnection(c);
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(ConnectionPoolDemo.class);
 }
} ///:~

Exercises
 1. Add unit tests to ConnectionPoolDemo.java to demonstrate the problem that the

client may release the connection but still continue to use it.

Object decoupling
Both Proxy and State provide a surrogate class that you use in your code; the real class that
does the work is hidden behind this surrogate class. When you call a method in the surrogate,
it simply turns around and calls the method in the implementing class. These two patterns are
so similar that the Proxy is simply a special case of State. One is tempted to just lump the two

18 z 157

y p y p p j p
together into a pattern called Surrogate, but the term “proxy” has a long-standing and
specialized meaning, which probably explains the reason for the two different patterns.

The basic idea is simple: from a base class, the surrogate is derived along with the class or
classes that provide the actual implementation:

When a surrogate object is created, it is given an implementation to which to send all of the
method calls.

Structurally, the difference between Proxy and State is simple: a Proxy has only one
implementation, while State has more than one. The application of the patterns is considered
(in Design Patterns) to be distinct: Proxy is used to control access to its implementation,
while State allows you to change the implementation dynamically. However, if you expand
your notion of “controlling access to implementation” then the two fit neatly together.

Proxy: fronting for another
object

If we implement Proxy by following the above diagram, it looks like this:

//: proxy:ProxyDemo.java
// Simple demonstration of the Proxy pattern.
package proxy;
import junit.framework.*;

interface ProxyBase {
 void f();
 void g();
 void h();
}

class Proxy implements ProxyBase {
 private ProxyBase implementation;
 public Proxy() {
 implementation = new Implementation();
 }
 // Pass method calls to the implementation:
 public void f() { implementation.f(); }
 public void g() { implementation.g(); }
 public void h() { implementation.h(); }
}

class Implementation implements ProxyBase {
 public void f() {
 System.out.println("Implementation.f()");
 }
 public void g() {

19 z 157

 System.out.println("Implementation.g()");
 }
 public void h() {
 System.out.println("Implementation.h()");
 }
}

public class ProxyDemo extends TestCase {
 Proxy p = new Proxy();
 public void test() {
 // This just makes sure it will complete
 // without throwing an exception.
 p.f();
 p.g();
 p.h();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(ProxyDemo.class);
 }
} ///:~

Of course, it isn’t necessary that Implementation have the same interface as Proxy; as long
as Proxy is somehow “speaking for” the class that it is referring method calls to then the
basic idea is satisfied (note that this statement is at odds with the definition for Proxy in
GoF). However, it is convenient to have a common interface so that Implementation is
forced to fulfill all the methods that Proxy needs to call.

The PoolManager using Proxy
//: proxy:PoolManager.java
package proxy;
import java.util.*;

public class PoolManager {
 private static class PoolItem {
 boolean inUse = false;
 Object item;
 PoolItem(Object item) { this.item = item; }
 }
 public class ReleasableReference { // Used to build the proxy
 private PoolItem reference;
 private boolean released = false;
 public ReleasableReference(PoolItem reference) {
 this.reference = reference;
 }
 public Object getReference() {
 if(released)
 throw new RuntimeException(
 "Tried to use reference after it was released");
 return reference.item;
 }
 public void release() {
 released = true;
 reference.inUse = false;
 }
 }
 private ArrayList items = new ArrayList();
 public void add(Object item) {
 items.add(new PoolItem(item));
 }
 // Different (better?) approach to running out of items:

20 z 157

 public static class EmptyPoolItem {}
 public ReleasableReference get() {
 for(int i = 0; i < items.size(); i++) {
 PoolItem pitem = (PoolItem)items.get(i);
 if(pitem.inUse == false) {
 pitem.inUse = true;
 return new ReleasableReference(pitem);
 }
 }
 // Fail as soon as you try to cast it:
 // return new EmptyPoolItem();
 return null; // temporary
 }
} ///:~

//: proxy:ConnectionPoolProxyDemo.java
package proxy;
import junit.framework.*;

interface Connection {
 Object get();
 void set(Object x);
 void release();
}

class ConnectionImplementation implements Connection {
 public Object get() { return null; }
 public void set(Object s) {}
 public void release() {} // Never called directly
}

class ConnectionPool { // A singleton
 private static PoolManager pool = new PoolManager();
 private ConnectionPool() {} // Prevent synthesized constructor
 public static void addConnections(int number) {
 for(int i = 0; i < number; i++)
 pool.add(new ConnectionImplementation());
 }
 public static Connection getConnection() {
 PoolManager.ReleasableReference rr =
 (PoolManager.ReleasableReference)pool.get();
 if(rr == null) return null;
 return new ConnectionProxy(rr);
 }
 // The proxy as a nested class:
 private static
 class ConnectionProxy implements Connection {
 private PoolManager.ReleasableReference implementation;
 public
 ConnectionProxy(PoolManager.ReleasableReference rr) {
 implementation = rr;
 }
 public Object get() {
 return
 ((Connection)implementation.getReference()).get();
 }
 public void set(Object x) {
 ((Connection)implementation.getReference()).set(x);
 }

21 z 157

 public void release() { implementation.release(); }
 }
}

public class ConnectionPoolProxyDemo extends TestCase {
 static {
 ConnectionPool.addConnections(5);
 }
 public void test() {
 Connection c = ConnectionPool.getConnection();
 c.set(new Object());
 c.get();
 c.release();
 }
 public void testDisable() {
 Connection c = ConnectionPool.getConnection();
 String s = null;
 c.set(new Object());
 c.get();
 c.release();
 try {
 c.get();
 } catch(Exception e) {
 s = e.getMessage();
 System.out.println(s);
 }
 assertEquals(s,
 "Tried to use reference after it was released");
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(
 ConnectionPoolProxyDemo.class);
 }
} ///:~

Dynamic Proxies
In JDK 1.3, the Dynamic Proxy was introduced. Although a little complex at first, this is an
intruiging tool.

Here's an interesting little starting example, which works and proves that yes, indeed, the
invocation handler is being called so the proxying etc. is actually working. So it's pretty cool,
and it's in my head now, but I still have to figure out something reasonable to do with the
invocation handler to come up with a useful example...

// proxy:DynamicProxyDemo.java
// Broken in JDK 1.4.1_01
package proxy;
import java.lang.reflect.*;

interface Foo {
 void f(String s);
 void g(int i);
 String h(int i, String s);
}

public class DynamicProxyDemo {
 public static void main(String[] clargs) {

22 z 157

 Foo prox = (Foo)Proxy.newProxyInstance(
 Foo.class.getClassLoader(),
 new Class[]{ Foo.class },
 new InvocationHandler() {
 public Object invoke(
 Object proxy, Method method,
 Object[] args) {
 System.out.println(
 "InvocationHandler called:" +
 "\n\tMethod = " + method);
 if (args != null) {
 System.out.println("\targs = ");
 for (int i = 0; i < args.length; i++)
 System.out.println("\t\t" + args[i]);
 }
 return null;
 }
 });
 prox.f("hello");
 prox.g(47);
 prox.h(47, "hello");
 }
} ///:~

Exercise: Use the Java dynamic proxy to create an object that acts as a front end for a simple
configuration file. For example, in good_stuff.txt you can have entries like this:

a=1
b=2
c="Hello World"

A client programmer of this NeatPropertyBundle could then write:

NeatPropertyBundle p =
 new NeatPropertyBundle("good_stuff");
System.out.println(p.a);
System.out.println(p.b);
System.out.println(p.c);

The contents of the configuration file can contain anything, with any variable names. The
dynamic proxy will either map to the name or tell you it doesn’t exist somehow (probably by
returning null). If you set a property and it doesn’t already exist, the dynamic proxy will
create the new entry. The toString() method should display all the current entries.

Exercise: similar to the previous exercise, use the Java dynamic proxy to make a connection
to the DOS Autoexec.bat file.

Exercise: Accept an SQL query which returns data, then read the DB metadata. Now, for
each record, provide an object which has attributes corresponding to the column names and
of appropriate data types.

Exercise: Create a simple server and client that uses XML-RPC. Each object the client
returns should use the dynamic proxy concept to exercise the remote methods.

Andrea writes:

I'm not sure about the exercises you suggest, except for the last one. The thing is that I like
to think at invocation handler as somthing providing features that are orthogonal to the
ones provided by the object being "proxied".

23 z 157

p y j g p

In other words: the implementation of the invocation handler is completely independent
from the interface(s) of the object that the dynamically-generated proxy represent. Which
means that once you have implemented an invocation handler, you can use for any class
that exposes interfaces, even for classes and interfaces that were not present when the
handler was implemented.

That's why I say the the handler provides services that are orthogonal to the ones
provided by the proxied object. Rickard has a few handlers in his SmartWorld example,
and they one I like the best is a call-retry handler. It basically makes a call into the actual
object, and if the call generates an exception if waits for a while, then makes the same call
again for a total of three times. If all three calls fails, it returns an exception. And you can
use such a handler on _any_ class.

The implementation is way too complex for what you are trying to demonstrate. I'm using
this example just to explain what I mean by orthogonal services.

In your list of exercises, the only one that, in my opinion, makes sense to implement using
dynamic proxies is the last one, the one using XML-RPC to communicate with an object.
And that's because the mechanism you use to dispatch the message (XML-RPC) is
orthogonal to the services provided by the object you want to reach.

State: changing object behavior
An object that appears to change its class.

Indications: conditional code in most or all methods.

The State pattern switches from one implementation to another during the lifetime of the
surrogate, in order to produce different behavior from the same method call(s). It’s a way to
improve the implementation of your code when you seem to be doing a lot of testing inside
each of your methods before deciding what to do for that method. For example, the fairy tale
of the frog-prince contains an object (the creature) that behaves differently depending on
what state it’s in. You could implement this using a boolean that you test:

//: state:KissingPrincess.java
package state;
import junit.framework.*;

class Creature {
 private boolean isFrog = true;
 public void greet() {
 if(isFrog)
 System.out.println("Ribbet!");
 else
 System.out.println("Darling!");
 }
 public void kiss() { isFrog = false; }
}

public class KissingPrincess extends TestCase {
 Creature creature = new Creature();
 public void test() {
 creature.greet();
 creature.kiss();
 creature.greet();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(KissingPrincess.class);
 }
} ///:~

24 z 157

However, the greet() method, and any other methods that must test isFrog before they
perform their operations, ends up with awkward code. By delegating the operations to a State
object that can be changed, this code is simplified.

//: state:KissingPrincess2.java
package state;
import junit.framework.*;

class Creature {
 private interface State {
 String response();
 }
 private class Frog implements State {
 public String response() { return "Ribbet!"; }
 }
 private class Prince implements State {
 public String response() { return "Darling!"; }
 }
 private State state = new Frog();
 public void greet() {
 System.out.println(state.response());
 }
 public void kiss() { state = new Prince(); }
}

public class KissingPrincess2 extends TestCase {
 Creature creature = new Creature();
 public void test() {
 creature.greet();
 creature.kiss();
 creature.greet();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(KissingPrincess2.class);
 }
} ///:~

In addition, changes to the State are automatically propagated throughout, rather than
requiring an edit across the class methods in order to effect changes.

Here’s the basic structure of State:

//: state:StateDemo.java
// Simple demonstration of the State pattern.
package state;
import junit.framework.*;

interface State {
 void operation1();
 void operation2();
 void operation3();
}

class ServiceProvider {
 private State state;
 public ServiceProvider(State state) {
 this.state = state;
 }
 public void changeState(State newState) {
 state = newState;
 }
 // Pass method calls to the implementation:

25 z 157

 public void service1() {
 // ...
 state.operation1();
 // ...
 state.operation3();
 }
 public void service2() {
 // ...
 state.operation1();
 // ...
 state.operation2();
 }
 public void service3() {
 // ...
 state.operation3();
 // ...
 state.operation2();
 }
}

class Implementation1 implements State {
 public void operation1() {
 System.out.println("Implementation1.operation1()");
 }
 public void operation2() {
 System.out.println("Implementation1.operation2()");
 }
 public void operation3() {
 System.out.println("Implementation1.operation3()");
 }
}

class Implementation2 implements State {
 public void operation1() {
 System.out.println("Implementation2.operation1()");
 }
 public void operation2() {
 System.out.println("Implementation2.operation2()");
 }
 public void operation3() {
 System.out.println("Implementation2.operation3()");
 }
}

public class StateDemo extends TestCase {
 static void run(ServiceProvider sp) {
 sp.service1();
 sp.service2();
 sp.service3();
 }
 ServiceProvider sp =
 new ServiceProvider(new Implementation1());
 public void test() {
 run(sp);
 sp.changeState(new Implementation2());
 run(sp);
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(StateDemo.class);
 }
} ///:~

26 z 157

In main(), you can see that the first implementation is used for a bit, then the second
implementation is swapped in and that is used.

There are a number of details that are choices that you must make according to the needs of
your own implementation, such as whether the fact that you are using State is exposed to the
client, and how the changes to State are made. Sometimes (as in the Swing LayoutManager)
the client may pass in the object directly, but in KissingPrincess2.java the fact that State is
used is invisible to the client. In addition, the mechanism for changing state may be simple or
complex – in State Machine, described later in this book, larger sets of states and different
mechanisms for changing are explored.

The Swing LayoutManager example mentioned above is an interesting example because it
show behavior of both Strategy and State.

The difference between Proxy and State is in the problems that are solved. The common uses
for Proxy as described in Design Patterns are:

1. Remote proxy. This proxies for an object in a different address space. A remote
proxy is created for you automatically by the RMI compiler rmic as it creates stubs
and skeletons.

2. Virtual proxy. This provides “lazy initialization” to create expensive objects on
demand.

3. Protection proxy. Used when you don’t want the client programmer to have full
access to the proxied object.

4. Smart reference. To add additional actions when the proxied object is accessed. For
example, or to keep track of the number of references that are held for a particular
object, in order to implement the copy-on-write idiom and prevent object aliasing. A
simpler example is keeping track of the number of calls to a particular method.

You could look at a Java reference as a kind of protection proxy, since it controls access to the
actual object on the heap (and ensures, for example, that you don’t use a null reference).

[[Rewrite this: In Design Patterns, Proxy and State are not seen as related to each other
because the two are given (what I consider arbitrarily) different structures. State, in
particular, uses a separate implementation hierarchy but this seems to me to be unnecessary
unless you have decided that the implementation is not under your control (certainly a
possibility, but if you own all the code there seems to be no reason not to benefit from the
elegance and helpfulness of the single base class). In addition, Proxy need not use the same
base class for its implementation, as long as the proxy object is controlling access to the object
it “fronting” for. Regardless of the specifics, in both Proxy and State a surrogate is passing
method calls through to an implementation object.]]]

State can be found everywhere because it’s such a fundamental idea. For example, in Builder,
the “Director” uses a backend Builder object to produce different behaviors.

Iterators: decoupling algorithms
from containers

Alexander Stepanov thought for years about the problem of generic
programming techniques before creating the STL (along with Dave
Musser). He came to the conclusion that all algorithms are defined on
algebraic structures – what we would call containers.

27 z 157

In the process, he realized that iterators are central to the use of algorithms, because they
decouple the algorithms from the specific type of container that the algorithm might currently
be working with. This means that you can describe the algorithm without worrying about the
particular sequence it is operating on. More generally, any code that you write using iterators
is decoupled from the data structure that the code is manipulating, and thus your code is
more general and reusable.

The use of iterators also extends your code into the realm of functional programming, whose
objective is to describe what a program is doing at every step rather than how it is doing it.
That is, you say “sort” rather than describing the sort. The objective of the C++ STL was to
provide this generic programming approach for C++ (how successful this approach will
actually be remains to be seen).

If you’ve used containers in Java (and it’s hard to write code without using them), you’ve used
iterators – in the form of the Enumeration in Java 1.0/1.1 and the Iterator in Java 2. So
you should already be familiar with their general use. If not, see Chapter 9, Holding Your
Objects, under Iterators in Thinking in Java, 2nd edition (freely downloadable from
www.BruceEckel.com).

Because the Java 2 containers rely heavily on iterators they become excellent candidates for
generic/functional programming techniques. This chapter will explore these techniques by
converting the STL algorithms to Java, for use with the Java 2 container library.

Type-safe iterators
In Thinking in Java, 2nd edition, I show the creation of a type-safe container that will only
accept a particular type of object. A reader, Linda Pazzaglia, asked for the other obvious type-
safe component, an iterator that would work with the basic java.util containers, but impose
the constraint that the type of objects that it iterates over be of a particular type.

If Java ever includes a template mechanism, this kind of iterator will have the added
advantage of being able to return a specific type of object, but without templates you are
forced to return generic Objects, or to require a bit of hand-coding for every type that you
want to iterate through. I will take the former approach.

A second design decision involves the time that the type of object is determined. One
approach is to take the type of the first object that the iterator encounters, but this is
problematic because the containers may rearrange the objects according to an internal
ordering mechanism (such as a hash table) and thus you may get different results from one
iteration to the next. The safe approach is to require the user to establish the type during
construction of the iterator.

Lastly, how do we build the iterator? We cannot rewrite the existing Java library classes that
already produce Enumerations and Iterators. However, we can use the Decorator design
pattern, and create a class that simply wraps the Enumeration or Iterator that is
produced, generating a new object that has the iteration behavior that we want (which is, in
this case, to throw a RuntimeException if an incorrect type is encountered) but with the
same interface as the original Enumeration or Iterator, so that it can be used in the same
places (you may argue that this is actually a Proxy pattern, but it’s more likely Decorator
because of its intent). Here is the code:

//: com:bruceeckel:util:TypedIterator.java
package com.bruceeckel.util;
import java.util.*;

public class TypedIterator implements Iterator {
 private Iterator imp;
 private Class type;
 public TypedIterator(Iterator it, Class type) {
 imp = it;
 this.type = type;
 }

28 z 157

 public boolean hasNext() {
 return imp.hasNext();
 }
 public void remove() { imp.remove(); }
 public Object next() {
 Object obj = imp.next();
 if(!type.isInstance(obj))
 throw new ClassCastException(
 "TypedIterator for type " + type +
 " encountered type: " + obj.getClass());
 return obj;
 }
} ///:~

Exercises
 1. Create an example of the “virtual proxy.”

 2. Create an example of the “Smart reference” proxy where you keep count of the
number of method calls to a particular object.

 3. Create a program similar to certain DBMS systems that only allow a certain number
of connections at any time. To implement this, use a singleton-like system that
controls the number of “connection” objects that it creates. When a user is finished
with a connection, the system must be informed so that it can check that connection
back in to be reused. To guarantee this, provide a proxy object instead of a reference to
the actual connection, and design the proxy so that it will cause the connection to be
released back to the system.

 4. Using the State pattern, make a class called UnpredictablePerson which changes
the kind of response to its hello() method depending on what kind of Mood it’s in.
Add an additional kind of Mood called Prozac.

 5. Create a simple copy-on write implementation.

 6. The java.util.Map has no way to automatically load a two-dimensional array of
objects into a Map as key-value pairs. Create an adapter class that does this.

 7. Create an Adapter Factory that dynamically finds and produces the adapter that you
need to connect a given object to a desired interface.

 8. Solve the above exercise using the dynamic proxy that’s part of the Java standard
library.

 9. Modify the Object Pool solution so that the objects are returned to the pool
automatically after a certain amount of time.

 10. Modify the above solution to use “leasing” so that the client can renew the lease on
the object to prevent it from being automatically released by the timer.

 11. Modify the Object Pool system to take threading issues into account.

29 z 157

Factoring commonality
Applying the “once and only once” principle produces the most basic
pattern of putting code that changes into a method.

This can be expressed two ways:

Strategy: choosing the algorithm
at run-time

Strategy also adds a “Context” which can be a surrogate class that controls the selection and
use of the particular strategy object—just like State! Here’s what it looks like:

//: strategy:StrategyPattern.java
package strategy;
import com.bruceeckel.util.*; // Arrays2.toString()
import junit.framework.*;

// The strategy interface:
interface FindMinima {
 // Line is a sequence of points:
 double[] algorithm(double[] line);
}

// The various strategies:
class LeastSquares implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 1.1, 2.2 }; // Dummy
 }
}

class NewtonsMethod implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 3.3, 4.4 }; // Dummy
 }
}

class Bisection implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 5.5, 6.6 }; // Dummy
 }
}

class ConjugateGradient implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 3.3, 4.4 }; // Dummy
 }
}

// The "Context" controls the strategy:
class MinimaSolver {
 private FindMinima strategy;
 public MinimaSolver(FindMinima strat) {
 strategy = strat;

30 z 157

 }
 double[] minima(double[] line) {
 return strategy.algorithm(line);
 }
 void changeAlgorithm(FindMinima newAlgorithm) {
 strategy = newAlgorithm;
 }
}

public class StrategyPattern extends TestCase {
 MinimaSolver solver =
 new MinimaSolver(new LeastSquares());
 double[] line = {
 1.0, 2.0, 1.0, 2.0, -1.0,
 3.0, 4.0, 5.0, 4.0 };
 public void test() {
 System.out.println(
 Arrays2.toString(solver.minima(line)));
 solver.changeAlgorithm(new Bisection());
 System.out.println(
 Arrays2.toString(solver.minima(line)));
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(StrategyPattern.class);
 }
} ///:~

Note similarity with template method – TM claims distinction that it has more than one
method to call, does things piecewise. However, it’s not unlikely that strategy object would
have more than one method call; consider Shalloway’s order fulfullment system with country
information in each strategy.

Strategy example from JDK: comparator objects.

Policy: generalized strategy
Although GoF says that Policy is just another name for strategy, their use of Strategy
implicitly assumes a single method in the strategy object – that you’ve broken out your
changing algorithm as a single piece of code.

Others[6] use Policy to mean an object that has multiple methods that may vary
independently from class to class. This gives more flexibility than being restricted to a single
method.

For example, a shipping policy for a product can be used to describe shipping issues for
sending a package to various different countries. This may include the available methods of
shipping, how to calculate postage or shipping cost, customs requirements and fees, and
special handling costs. All these things may vary independently of each other, and more
importantly you may need the information from each at different points in the shipping
process.

It also seems generally useful to distinguish Strategies with single methods from Policies with
multiple methods.

Template method
An application framework allows you to inherit from a class or set of classes and create a new
application, reusing most of the code in the existing classes and overriding one or more
methods in order to customize the application to your needs. A fundamental concept in the
application framework is the Template Method which is typically hidden beneath the covers
and drives the application by calling the various methods in the base class (some of which you

31 z 157

pp y g y
have overridden in order to create the application).

For example, whenever you create an applet you’re using an application framework: you
inherit from JApplet and then override init(). The applet mechanism (which is a Template
Method) does the rest by drawing the screen, handling the event loop, resizing, etc.

An important characteristic of the Template Method is that it is defined in the base class and
cannot be changed. It’s sometimes a private method but it’s virtually always final. It calls
other base-class methods (the ones you override) in order to do its job, but it is usually called
only as part of an initialization process (and thus the client programmer isn’t necessarily able
to call it directly).

//: templatemethod:TemplateMethod.java
// Simple demonstration of Template Method.
package templatemethod;
import junit.framework.*;

abstract class ApplicationFramework {
 public ApplicationFramework() {
 templateMethod(); // Dangerous!
 }
 abstract void customize1();
 abstract void customize2();
 final void templateMethod() {
 for(int i = 0; i < 5; i++) {
 customize1();
 customize2();
 }
 }
}

// Create a new "application":
class MyApp extends ApplicationFramework {
 void customize1() {
 System.out.print("Hello ");
 }
 void customize2() {
 System.out.println("World!");
 }
}

public class TemplateMethod extends TestCase {
 MyApp app = new MyApp();
 public void test() {
 // The MyApp constructor does all the work.
 // This just makes sure it will complete
 // without throwing an exception.
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(TemplateMethod.class);
 }
} ///:~

The base-class constructor is responsible for performing the necessary initialization and then
starting the “engine” (the template method) that runs the application (in a GUI application,
this “engine” would be the main event loop). The client programmer simply provides
definitions for customize1() and customize2() and the “application” is ready to run.

Exercises
 1. Create a framework that takes a list of file names on the command line. It opens each

32 z 157

file except the last for reading, and the last for writing. The framework will process
each input file using an undetermined policy and write the output to the last file.
Inherit to customize this framework to create two separate applications:
1) Converts all the letters in each file to uppercase.
2) Searches the files for words given in the first file.

Encapsulating creation
When you discover that you need to add new types to a system, the most sensible first step is
to use polymorphism to create a common interface to those new types. This separates the rest
of the code in your system from the knowledge of the specific types that you are adding. New
types may be added without disturbing existing code … or so it seems. At first it would appear
that the only place you need to change the code in such a design is the place where you inherit
a new type, but this is not quite true. You must still create an object of your new type, and at
the point of creation you must specify the exact constructor to use. Thus, if the code that
creates objects is distributed throughout your application, you have the same problem when
adding new types—you must still chase down all the points of your code where type matters.
It happens to be the creation of the type that matters in this case rather than the use of the
type (which is taken care of by polymorphism), but the effect is the same: adding a new type
can cause problems.

The solution is to force the creation of objects to occur through a common factory rather than
to allow the creational code to be spread throughout your system. If all the code in your
program must go through this factory whenever it needs to create one of your objects, then all
you must do when you add a new object is to modify the factory.

Since every object-oriented program creates objects, and since it’s very likely you will extend
your program by adding new types, I suspect that factories may be the most universally useful
kinds of design patterns.

Although only the Simple Factory Method is a true singleton, you’ll find that each specify
factory class in the more general types of factories will only have a single instance.

Simple Factory method
As an example, let’s revisit the Shape system.

One approach is to make the factory a static method of the base class:

//: factory:shapefact1:ShapeFactory1.java
// A simple static factory method.
package factory.shapefact1;
import java.util.*;
import junit.framework.*;

abstract class Shape {
 public abstract void draw();
 public abstract void erase();
 public static Shape factory(String type) {
 if(type.equals("Circle")) return new Circle();
 if(type.equals("Square")) return new Square();
 throw new RuntimeException(
 "Bad shape creation: " + type);
 }
}

class Circle extends Shape {

33 z 157

 Circle() {} // Package-access constructor
 public void draw() {
 System.out.println("Circle.draw");
 }
 public void erase() {
 System.out.println("Circle.erase");
 }
}

class Square extends Shape {
 Square() {} // Package-access constructor
 public void draw() {
 System.out.println("Square.draw");
 }
 public void erase() {
 System.out.println("Square.erase");
 }
}

public class ShapeFactory1 extends TestCase {
 String shlist[] = { "Circle", "Square",
 "Square", "Circle", "Circle", "Square" };
 List shapes = new ArrayList();
 public void test() {
 Iterator it = Arrays.asList(shlist).iterator();
 while(it.hasNext())
 shapes.add(Shape.factory((String)it.next()));
 it = shapes.iterator();
 while(it.hasNext()) {
 Shape s = (Shape)it.next();
 s.draw();
 s.erase();
 }
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(ShapeFactory1.class);
 }
} ///:~

The factory() takes an argument that allows it to determine what type of Shape to create;
it happens to be a String in this case but it could be any set of data. The factory() is now
the only other code in the system that needs to be changed when a new type of Shape is
added (the initialization data for the objects will presumably come from somewhere outside
the system, and not be a hard-coded array as in the above example).

To encourage creation to only happen in the factory(), the constructors for the specific
types of Shape are give package access, so factory() has access to the constructors but they
are not available outside the package.

Polymorphic factories
The static factory() method in the previous example forces all the creation operations to be
focused in one spot, so that’s the only place you need to change the code. This is certainly a
reasonable solution, as it throws a box around the process of creating objects. However, the
Design Patterns book emphasizes that the reason for the Factory Method pattern is so that
different types of factories can be subclassed from the basic factory (the above design is
mentioned as a special case). However, the book does not provide an example, but instead
just repeats the example used for the Abstract Factory (you’ll see an example of this in the
next section). Here is ShapeFactory1.java modified so the factory methods are in a

34 z 157

p y j y
separate class as virtual functions. Notice also that the specific Shape classes are dynamically
loaded on demand:

//: factory:shapefact2:ShapeFactory2.java
// Polymorphic factory methods.
package factory.shapefact2;
import java.util.*;
import junit.framework.*;

interface Shape {
 void draw();
 void erase();
}

abstract class ShapeFactory {
 protected abstract Shape create();
 private static Map factories = new HashMap();
 public static void
 addFactory(String id, ShapeFactory f) {
 factories.put(id, f);
 }
 // A Template Method:
 public static final
 Shape createShape(String id) {
 if(!factories.containsKey(id)) {
 try {
 // Load dynamically
 Class.forName("factory.shapefact2." + id);
 } catch(ClassNotFoundException e) {
 throw new RuntimeException(
 "Bad shape creation: " + id);
 }
 // See if it was put in:
 if(!factories.containsKey(id))
 throw new RuntimeException(
 "Bad shape creation: " + id);
 }
 return
 ((ShapeFactory)factories.get(id)).create();
 }
}

class Circle implements Shape {
 private Circle() {}
 public void draw() {
 System.out.println("Circle.draw");
 }
 public void erase() {
 System.out.println("Circle.erase");
 }
 private static class Factory
 extends ShapeFactory {
 protected Shape create() {
 return new Circle();
 }
 }
 static {
 ShapeFactory.addFactory(
 "Circle", new Factory());
 }
}

35 z 157

class Square implements Shape {
 private Square() {}
 public void draw() {
 System.out.println("Square.draw");
 }
 public void erase() {
 System.out.println("Square.erase");
 }
 private static class Factory
 extends ShapeFactory {
 protected Shape create() {
 return new Square();
 }
 }
 static {
 ShapeFactory.addFactory(
 "Square", new Factory());
 }
}

public class ShapeFactory2 extends TestCase {
 String shlist[] = { "Circle", "Square",
 "Square", "Circle", "Circle", "Square" };
 List shapes = new ArrayList();
 public void test() {
 // This just makes sure it will complete
 // without throwing an exception.
 Iterator it = Arrays.asList(shlist).iterator();
 while(it.hasNext())
 shapes.add(
 ShapeFactory.createShape((String)it.next()));
 it = shapes.iterator();
 while(it.hasNext()) {
 Shape s = (Shape)it.next();
 s.draw();
 s.erase();
 }
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(ShapeFactory2.class);
 }
} ///:~

Now the factory method appears in its own class, ShapeFactory, as the create() method.
This is a protected method which means it cannot be called directly, but it can be
overridden. The subclasses of Shape must each create their own subclasses of
ShapeFactory and override the create() method to create an object of their own type. The
actual creation of shapes is performed by calling ShapeFactory.createShape(), which is a
static method that uses the Map in ShapeFactory to find the appropriate factory object
based on an identifier that you pass it. The factory is immediately used to create the shape
object, but you could imagine a more complex problem where the appropriate factory object
is returned and then used by the caller to create an object in a more sophisticated way.
However, it seems that much of the time you don’t need the intricacies of the polymorphic
factory method, and a single static method in the base class (as shown in
ShapeFactory1.java) will work fine.

Notice that the ShapeFactory must be initialized by loading its Map with factory objects,
which takes place in the static initialization clause of each of the Shape implementations. So
to add a new type to this design you must inherit the type, create a factory, and add the static

36 z 157

yp g y yp y
initialization clause to load the Map. This extra complexity again suggests the use of a static
factory method if you don’t need to create individual factory objects.

Abstract factories
The Abstract Factory pattern looks like the factory objects we’ve seen previously, with not
one but several factory methods. Each of the factory methods creates a different kind of
object. The idea is that at the point of creation of the factory object, you decide how all the
objects created by that factory will be used. The example given in Design Patterns
implements portability across various graphical user interfaces (GUIs): you create a factory
object appropriate to the GUI that you’re working with, and from then on when you ask it for
a menu, button, slider, etc. it will automatically create the appropriate version of that item for
the GUI. Thus you’re able to isolate, in one place, the effect of changing from one GUI to
another.

As another example suppose you are creating a general-purpose gaming environment and you
want to be able to support different types of games. Here’s how it might look using an abstract
factory:

//: factory:Games.java
// An example of the Abstract Factory pattern.
package factory;
import junit.framework.*;

interface Obstacle {
 void action();
}

interface Player {
 void interactWith(Obstacle o);
}

class Kitty implements Player {
 public void interactWith(Obstacle ob) {
 System.out.print("Kitty has encountered a ");
 ob.action();
 }
}

class KungFuGuy implements Player {
 public void interactWith(Obstacle ob) {
 System.out.print("KungFuGuy now battles a ");
 ob.action();
 }
}

class Puzzle implements Obstacle {
 public void action() {
 System.out.println("Puzzle");
 }
}

class NastyWeapon implements Obstacle {
 public void action() {
 System.out.println("NastyWeapon");
 }
}

// The Abstract Factory:
interface GameElementFactory {

37 z 157

 Player makePlayer();
 Obstacle makeObstacle();
}

// Concrete factories:
class KittiesAndPuzzles
implements GameElementFactory {
 public Player makePlayer() {
 return new Kitty();
 }
 public Obstacle makeObstacle() {
 return new Puzzle();
 }
}

class KillAndDismember
implements GameElementFactory {
 public Player makePlayer() {
 return new KungFuGuy();
 }
 public Obstacle makeObstacle() {
 return new NastyWeapon();
 }
}

class GameEnvironment {
 private GameElementFactory gef;
 private Player p;
 private Obstacle ob;
 public GameEnvironment(
 GameElementFactory factory) {
 gef = factory;
 p = factory.makePlayer();
 ob = factory.makeObstacle();
 }
 public void play() { p.interactWith(ob); }
}

public class Games extends TestCase {
 GameElementFactory
 kp = new KittiesAndPuzzles(),
 kd = new KillAndDismember();
 GameEnvironment
 g1 = new GameEnvironment(kp),
 g2 = new GameEnvironment(kd);
 // These just ensure no exceptions are thrown:
 public void test1() { g1.play(); }
 public void test2() { g2.play(); }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(Games.class);
 }
} ///:~

In this environment, Player objects interact with Obstacle objects, but there are different
types of players and obstacles depending on what kind of game you’re playing. You determine
the kind of game by choosing a particular GameElementFactory, and then the
GameEnvironment controls the setup and play of the game. In this example, the setup and
play is very simple, but those activities (the initial conditions and the state change) can
determine much of the game’s outcome. Here, GameEnvironment is not designed to be
inherited, although it could very possibly make sense to do that.

38 z 157

g y p y

This also contains examples of Double Dispatching and the Factory Method, both of which
will be explained later.

Exercises
 1. Add a class Triangle to ShapeFactory1.java

 2. Add a class Triangle to ShapeFactory2.java

 3. Add a new type of GameEnvironment called GnomesAndFairies to
Games.java

 4. Modify ShapeFactory2.java so that it uses an Abstract Factory to create different
sets of shapes (for example, one particular type of factory object creates “thick
shapes,” another creates “thin shapes,” but each factory object can create all the
shapes: circles, squares, triangles etc.).

Specialized creation
Prototype

Objects are created by cloning a prototypical instance. An example of this appears in the
“Pattern Refactoring” chapter.

Builder
The goal of builder is to separate the construction from the “representation,” to allow multiple
different representations. The construction process stays the same, but the resulting object
has different possible representations. GoF points out that the main difference with Abstract
Factory is that a Builder creates the object step-by-step, so the fact that the creation process is
spread out in time seems to be important. In addition, it seems that the “director” gets a
stream of pieces that it passes to the Builder, and each piece is used to perform one of the
steps in the build process.

One example given in GoF is that of a text format converter. The incoming format is RTF, and
once it is parsed the directives are passed to the text converter, which may be implemented in
different ways depending on whether the resulting format is ASCII, TeX, or a “GUI Text
Widget.” Although the resulting “object” (the entire converted text file) is created over time, if
you consider the conversion of each RTF directive to be an object, this feels to me a little more
like Bridge, because the specific types of converters extend the interface of the base class.
Also, the general solution to the problem would allow multiple readers on the “front end” and
multiple converters on the “back end,” which is a primary characteristic of Bridge.

To me, the fact that Builder has multiple steps in creating an object, and those steps are
accessed externally to the Builder object, is the essence of what distinguishes it (structurally,
anyway) from a regular factory. However, GoF emphasizes that you’re able to create different
representations using the same process. They never define exactly what they mean by
representation. (Does the “representation” involve an object that is too large? Would the need
for Builder vanish if the representation was broken into smaller objects?)

The other example in GoF creates a maze object and adds rooms within the maze and doors
within the rooms. Thus it is a multistep process, but alas, the different “representations” are
the “Standard” and “Complex” mazes – not really different kinds of mazes, but instead
different complexity. I think I would have tried to create one maze builder that could handle

39 z 157

p y
arbitrarily complex mazes. The final variation of the maze builder is something that doesn’t
create mazes at all, but instead counts the rooms in an existing maze.

Neither the RTF converter nor the Mazebuilder example makes an overwhelmingly
compelling case for Builder. Readers have suggested that the output of the Sax XML parser,
and standard compiler parsers, might naturally be fed into a Builder.

Here’s an example that may be a little more compelling, or at least give more of an idea of
what Builder is trying to do. Media may be constructed into different representations, in this
case books, magazines and web sites. The example argues that the steps involved are the
same, and so can be abstracted into the director class.

//: builder:BuildMedia.java
// Example of the Builder pattern
package builder;
import java.util.*;
import junit.framework.*;

// Different "representations" of media:
class Media extends ArrayList {}
class Book extends Media {}
class Magazine extends Media {}
class WebSite extends Media {}

// ... contain different kinds of media items:
class MediaItem {
 private String s;
 public MediaItem(String s) { this.s = s; }
 public String toString() { return s; }
}
class Chapter extends MediaItem {
 public Chapter(String s) { super(s); }
}
class Article extends MediaItem {
 public Article(String s) { super(s); }
}
class WebItem extends MediaItem {
 public WebItem(String s) { super(s); }
}

// ... but use the same basic construction steps:
class MediaBuilder {
 public void buildBase() {}
 public void addMediaItem(MediaItem item) {}
 public Media getFinishedMedia() { return null; }
}

class BookBuilder extends MediaBuilder {
 private Book b;
 public void buildBase() {
 System.out.println("Building book framework");
 b = new Book();
 }
 public void addMediaItem(MediaItem chapter) {
 System.out.println("Adding chapter " + chapter);
 b.add(chapter);
 }
 public Media getFinishedMedia() { return b; }
}

class MagazineBuilder extends MediaBuilder {

40 z 157

 private Magazine m;
 public void buildBase() {
 System.out.println("Building magazine framework");
 m = new Magazine();
 }
 public void addMediaItem(MediaItem article) {
 System.out.println("Adding article " + article);
 m.add(article);
 }
 public Media getFinishedMedia() { return m; }
}

class WebSiteBuilder extends MediaBuilder {
 private WebSite w;
 public void buildBase() {
 System.out.println("Building web site framework");
 w = new WebSite();
 }
 public void addMediaItem(MediaItem webItem) {
 System.out.println("Adding web item " + webItem);
 w.add(webItem);
 }
 public Media getFinishedMedia() { return w; }
}

class MediaDirector { // a.k.a. "Context"
 private MediaBuilder mb;
 public MediaDirector(MediaBuilder mb) {
 this.mb = mb; // Strategy-ish
 }
 public Media produceMedia(List input) {
 mb.buildBase();
 for(Iterator it = input.iterator(); it.hasNext();)
 mb.addMediaItem((MediaItem)it.next());
 return mb.getFinishedMedia();
 }
};

public class BuildMedia extends TestCase {
 private List input = Arrays.asList(new MediaItem[] {
 new MediaItem("item1"), new MediaItem("item2"),
 new MediaItem("item3"), new MediaItem("item4"),
 });
 public void testBook() {
 MediaDirector buildBook =
 new MediaDirector(new BookBuilder());
 Media book = buildBook.produceMedia(input);
 String result = "book: " + book;
 System.out.println(result);
 assertEquals(result,
 "book: [item1, item2, item3, item4]");
 }
 public void testMagazine() {
 MediaDirector buildMagazine =
 new MediaDirector(new MagazineBuilder());
 Media magazine = buildMagazine.produceMedia(input);
 String result = "magazine: " + magazine;
 System.out.println(result);
 assertEquals(result,
 "magazine: [item1, item2, item3, item4]");
 }

41 z 157

 public void testWebSite() {
 MediaDirector buildWebSite =
 new MediaDirector(new WebSiteBuilder());
 Media webSite = buildWebSite.produceMedia(input);
 String result = "web site: " + webSite;
 System.out.println(result);
 assertEquals(result,
 "web site: [item1, item2, item3, item4]");
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(BuildMedia.class);
 }
} ///:~

Note that in some ways this could be seen as a more complicated State pattern, since the
behavior of the director depends on what type of builder you use. Instead of simply
forwarding the requests through to the underlying State object, however, the director has a
sequence of operations to perform, and it uses the State object as a Policy to fulfill its job.
Thus, Builder could be described as using a Policy to create objects.

Exercises
 1. Break a text file up into an input stream of words (consider using regular expressions

for this). Create one Builder that puts the words into a java.util.TreeSet, and
another that produces a java.util.HashMap containing words and occurrences of
those words (that is, it does a word count).

Too many
Flyweight: too many objects

The odd thing about flyweight, in the company of the other design patterns, is that it’s a
performance hack. It’s generally ideal to simply make an object for every item in your system,
but some problems generate a prohibitive number of objects, which may result in excessive
slowness or running out of memory.

Flyweight solves this problem by reducing the number of objects. To do this, you externalize
some of the data in an object, so that you can pretend that you have more objects than you
really do. However, this adds complexity to the interface for using such objects, because you
must pass in additional information to method calls in order to tell the method how to find
the externalized information.

As a very simple example, consider a DataPoint object that holds an int, a float, and an id
that carries the object number. Suppose you need to create a million of these objects, and
then manipulate them, like so:

//: flyweight:ManyObjects.java

class DataPoint {
 private static int count = 0;
 private int id = count++;
 private int i;
 private float f;
 public int getI() { return i; }
 public void setI(int i) { this.i = i; }

42 z 157

 public float getF() { return f; }
 public void setF(float f) { this.f = f; }
 public String toString() {
 return "id: " + id + ", i = " + i + ", f = " + f;
 }
}

public class ManyObjects {
 static final int size = 1000000;
 public static void main(String[] args) {
 DataPoint[] array = new DataPoint[size];
 for(int i = 0; i < array.length; i++)
 array[i] = new DataPoint();
 for(int i = 0; i < array.length; i++) {
 DataPoint dp = array[i];
 dp.setI(dp.getI() + 1);
 dp.setF(47.0f);
 }
 System.out.println(array[size -1]);
 }
} ///:~

Depending on your computer, this program may take several seconds to run. More complex
objects and more involved operations may cause the overhead to become untenable. To solve
the problem the DataPoint can be reduced from a million objects to one object by
externalizing the data held in the DataPoint:

//: flyweight:FlyWeightObjects.java

class ExternalizedData {
 static final int size = 5000000;
 static int[] id = new int[size];
 static int[] i = new int[size];
 static float[] f = new float[size];
 static {
 for(int i = 0; i < size; i++)
 id[i] = i;
 }
}

class FlyPoint {
 private FlyPoint() {}
 public static int getI(int obnum) {
 return ExternalizedData.i[obnum];
 }
 public static void setI(int obnum, int i) {
 ExternalizedData.i[obnum] = i;
 }
 public static float getF(int obnum) {
 return ExternalizedData.f[obnum];
 }
 public static void setF(int obnum, float f) {
 ExternalizedData.f[obnum] = f;
 }
 public static String str(int obnum) {
 return "id: " +
 ExternalizedData.id[obnum] +
 ", i = " +
 ExternalizedData.i[obnum] +
 ", f = " +
 ExternalizedData.f[obnum];

43 z 157

 }
}

public class FlyWeightObjects {
 public static void main(String[] args) {
 for(int i = 0; i < ExternalizedData.size; i++) {
 FlyPoint.setI(i, FlyPoint.getI(i) + 1);
 FlyPoint.setF(i, 47.0f);
 }
 System.out.println(
 FlyPoint.str(ExternalizedData.size -1));
 }
} ///:~

Since all the data is now in ExternalizedData, each call to a FlyPoint method must include
the index into ExternalizedData. For consistency, and to remind the reader of the
similarity with the implicit this pointer in method calls, the “this index” is passed in as the
first argument.

Naturally, it’s worth repeating admonishments against premature optimization. “First make it
work, then make it fast – if you have to.” Also, a profiler is the tool to use for discovering
performance bottlenecks, not guesswork.

Decorator: too many classes
The use of layered objects to dynamically and transparently add
responsibilities to individual objects is referred to as the decorator
pattern.

Used when subclassing creates too many (& inflexible) classes

All decorators that wrap around the original object must have the same basic interface

Dynamic proxy/surrogate?

This accounts for the odd inheritance structure

Tradeoff: coding is more complicated when using decorators

Basic decorator structure

A coffee example
Consider going down to the local coffee shop, BeanMeUp, for a coffee. There are typically

44 z 157

g g p p yp y
many different drinks on offer -- espressos, lattes, teas, iced coffees, hot chocolate to name a
few, as well as a number of extras (which cost extra too) such as whipped cream or an extra
shot of espresso. You can also make certain changes to your drink at no extra cost, such as
asking for decaf coffee instead of regular coffee.

Quite clearly if we are going to model all these drinks and combinations, there will be sizeable
class diagrams. So for clarity we will only consider a subset of the coffees: Espresso, Espresso
Con Panna, Café Late, Cappuccino and Café Mocha. We'll include 2 extras - whipped cream
("whipped") and an extra shot of espresso; and three changes - decaf, steamed milk ("wet")
and foamed milk ("dry").

Class for each combination
One solution is to create an individual class for every combination. Each class describes the
drink and is responsible for the cost etc. The resulting menu is huge, and a part of the class
diagram would look something like this:

Here is one of the combinations, a simple implementation of a Cappuccino:

class Cappuccino {
 private float cost = 1;
 private String description = "Cappucino";
 public float getCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}

The key to using this method is to find the particular combination you want. So, once you've
found the drink you would like, here is how you would use it, as shown in the CoffeeShop
class in the following code:

//: decorator:nodecorators:CoffeeShop.java
// Coffee example with no decorators
package decorator.nodecorators;
import junit.framework.*;

class Espresso {}
class DoubleEspresso {}
class EspressoConPanna {}

class Cappuccino {
 private float cost = 1;

45 z 157

 private String description = "Cappucino";
 public float getCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}
class CappuccinoDecaf {}
class CappuccinoDecafWhipped {}
class CappuccinoDry {}
class CappuccinoDryWhipped {}
class CappuccinoExtraEspresso {}
class CappuccinoExtraEspressoWhipped {}
class CappuccinoWhipped {}

class CafeMocha {}
class CafeMochaDecaf {}
class CafeMochaDecafWhipped {
 private float cost = 1.25f;
 private String description =
 "Cafe Mocha decaf whipped cream";
 public float getCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}
class CafeMochaExtraEspresso {}
class CafeMochaExtraEspressoWhipped {}
class CafeMochaWet {}
class CafeMochaWetWhipped {}
class CafeMochaWhipped {}

class CafeLatte {}
class CafeLatteDecaf {}
class CafeLatteDecafWhipped {}
class CafeLatteExtraEspresso {}
class CafeLatteExtraEspressoWhipped {}
class CafeLatteWet {}
class CafeLatteWetWhipped {}
class CafeLatteWhipped {}

public class CoffeeShop extends TestCase {
 public void testCappuccino() {
 // This just makes sure it will complete
 // without throwing an exception.
 // Create a plain cappuccino
 Cappuccino cappuccino = new Cappuccino();
 System.out.println(cappuccino.getDescription()
 + ": $" + cappuccino.getCost());
 }
 public void testCafeMocha() {
 // This just makes sure it will complete
 // without throwing an exception.
 // Create a decaf cafe mocha with whipped
 // cream
 CafeMochaDecafWhipped cafeMocha =
 new CafeMochaDecafWhipped();
 System.out.println(cafeMocha.getDescription()

46 z 157

 + ": $" + cafeMocha.getCost());
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(CoffeeShop.class);
 }
} ///:~

And here is the corresponding output:

Cappucino: $1.0
Cafe Mocha decaf whipped cream: $1.25

You can see that creating the particular combination you want is easy, since you are just
creating an instance of a class. However, there are a number of problems with this approach.
Firstly, the combinations are fixed statically so that any combination a customer may wish to
order needs to be created up front. Secondly, the resulting menu is so huge that finding your
particular combination is difficult and time consuming.

The decorator approach
Another approach would be to break the drinks down into the various components such as
espresso and foamed milk, and then let the customer combine the components to describe a
particular coffee.

In order to do this programmatically, we use the Decorator pattern. A Decorator adds
responsibility to a component by wrapping it, but the Decorator conforms to the interface of
the component it encloses, so the wrapping is transparent. Decorators can also be nested
without the loss of this transparency.

Methods invoked on the Decorator can in turn invoke methods in the component, and can of
course perform processing before or after the invocation.

So if we added getTotalCost() and getDescription() methods to the DrinkComponent
interface, an Espresso looks like this:

class Espresso extends Decorator {
 private float cost = 0.75f;
 private String description = " espresso";
 public Espresso(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return component.getTotalCost() + cost;
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

You combine the components to create a drink as follows, as shown in the code below:

47 z 157

p

//: decorator:alldecorators:CoffeeShop2.java
// Coffee example using decorators
package decorator.alldecorators;
import junit.framework.*;

interface DrinkComponent {
 String getDescription();
 float getTotalCost();
}

class Mug implements DrinkComponent {
 public String getDescription() {
 return "mug";
 }
 public float getTotalCost() {
 return 0;
 }
}

abstract class Decorator implements DrinkComponent
{
 protected DrinkComponent component;
 Decorator(DrinkComponent component) {
 this.component = component;
 }
 public float getTotalCost() {
 return component.getTotalCost();
 }
 public abstract String getDescription();
}

class Espresso extends Decorator {
 private float cost = 0.75f;
 private String description = " espresso";
 public Espresso(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return component.getTotalCost() + cost;
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

class Decaf extends Decorator {
 private String description = " decaf";
 public Decaf(DrinkComponent component) {
 super(component);
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

class FoamedMilk extends Decorator {
 private float cost = 0.25f;
 private String description = " foamed milk";

48 z 157

 public FoamedMilk(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return component.getTotalCost() + cost;
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

class SteamedMilk extends Decorator {
 private float cost = 0.25f;
 private String description = " steamed milk";
 public SteamedMilk(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return component.getTotalCost() + cost;
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

class Whipped extends Decorator {
 private float cost = 0.25f;
 private String description = " whipped cream";
 public Whipped(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return component.getTotalCost() + cost;
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

class Chocolate extends Decorator {
 private float cost = 0.25f;
 private String description = " chocolate";
 public Chocolate(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return component.getTotalCost() + cost;
 }
 public String getDescription() {
 return component.getDescription() +
 description;
 }
}

public class CoffeeShop2 extends TestCase {
 public void testCappuccino() {
 // This just makes sure it will complete
 // without throwing an exception.

49 z 157

 // Create a plain cappucino
 DrinkComponent cappuccino = new Espresso(
 new FoamedMilk(new Mug()));
 System.out.println(cappuccino.
 getDescription().trim() + ": $" +
 cappuccino.getTotalCost());
 }
 public void testCafeMocha() {
 // This just makes sure it will complete
 // without throwing an exception.
 // Create a decaf cafe mocha with whipped
 // cream
 DrinkComponent cafeMocha = new Espresso(
 new SteamedMilk(new Chocolate(new Whipped(
 new Decaf(new Mug())))));
 System.out.println(cafeMocha.getDescription().
 trim() + ": $" + cafeMocha.getTotalCost());
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(CoffeeShop2.class);
 }
} ///:~

This approach would certainly provide the most flexibility and the smallest menu. You have a
small number of components to choose from, but assembling the description of the coffee
then becomes rather arduous.

If you want to describe a plain cappuccino, you create it with

new Espresso(new FoamedMilk(new Mug()))
Creating a decaf Café Mocha with whipped cream requires an even longer description.

Compromise
The previous approach takes too long to describe a coffee. There will also be certain
combinations that you will describe regularly, and it would be convenient to have a quick way
of describing them.

The 3rd approach is a mixture of the first 2 approaches, and combines flexibility with ease of
use. This compromise is achieved by creating a reasonably sized menu of basic selections,
which would often work exactly as they are, but if you wanted to decorate them (whipped
cream, decaf etc.) then you would use decorators to make the modifications. This is the type
of menu you are presented with in most coffee shops.

Here is how to create a basic selection, as well as a decorated selection:

//: decorator:compromise:CoffeeShop3.java
// Coffee example with a compromise of basic
// combinations and decorators

50 z 157

package decorator.compromise;
import junit.framework.*;

interface DrinkComponent {
 float getTotalCost();
 String getDescription();
}

class Espresso implements DrinkComponent {
 private String description = "Espresso";
 private float cost = 0.75f;
 public float getTotalCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}

class EspressoConPanna implements DrinkComponent {
 private String description = "EspressoConPare";
 private float cost = 1;
 public float getTotalCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}

class Cappuccino implements DrinkComponent {
 private float cost = 1;
 private String description = "Cappuccino";
 public float getTotalCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}

class CafeLatte implements DrinkComponent {
 private float cost = 1;
 private String description = "Cafe Late";
 public float getTotalCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }
}

class CafeMocha implements DrinkComponent {
 private float cost = 1.25f;
 private String description = "Cafe Mocha";
 public float getTotalCost() {
 return cost;
 }
 public String getDescription() {
 return description;
 }

51 z 157

}

abstract class Decorator implements DrinkComponent {
 protected DrinkComponent component;
 public Decorator(DrinkComponent component) {
 this.component = component;
 }
 public float getTotalCost() {
 return component.getTotalCost();
 }
 public String getDescription() {
 return component.getDescription();
 }
}

class ExtraEspresso extends Decorator {
 private float cost = 0.75f;
 public ExtraEspresso(DrinkComponent component) {
 super(component);
 }
 public String getDescription() {
 return component.getDescription() +
 " extra espresso";
 }
 public float getTotalCost() {
 return cost + component.getTotalCost();
 }
}

class Whipped extends Decorator {
 private float cost = 0.50f;
 public Whipped(DrinkComponent component) {
 super(component);
 }
 public float getTotalCost() {
 return cost + component.getTotalCost();
 }
 public String getDescription() {
 return component.getDescription() +
 " whipped cream";
 }
}

class Decaf extends Decorator{
 public Decaf(DrinkComponent component) {
 super(component);
 }
 public String getDescription() {
 return component.getDescription() + " decaf";
 }
}

class Dry extends Decorator {
 public Dry(DrinkComponent component) {
 super(component);
 }
 public String getDescription() {
 return component.getDescription() +
 " extra foamed milk";
 }
}

52 z 157

class Wet extends Decorator {
 public Wet(DrinkComponent component) {
 super(component);
 }
 public String getDescription() {
 return component.getDescription() +
 " extra steamed milk";
 }
}

public class CoffeeShop3 extends TestCase {
 public void testCappuccino() {
 // This just makes sure it will complete
 // without throwing an exception.
 // Create a plain cappucino
 DrinkComponent cappuccino = new Cappuccino();
 System.out.println(cappuccino.getDescription()
 + ": $" + cappuccino.getTotalCost());
 }
 public void testCafeMocha() {
 // This just makes sure it will complete
 // without throwing an exception.
 // Create a decaf cafe mocha with whipped
 // cream
 DrinkComponent cafeMocha = new Whipped(
 new Decaf(new CafeMocha()));
 System.out.println(cafeMocha.getDescription()
 + ": $" + cafeMocha.getTotalCost());
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(CoffeeShop3.class);
 }
} ///:~

You can see that creating a basic selection is quick and easy, which makes sense since they
will be described regularly. Describing a decorated drink is more work than when using a
class per combination, but clearly less work than when only using decorators.

The final result is not too many classes, but not too many decorators either. Most of the time
it's possible to get away without using any decorators at all, so we have the benefits of both
approaches.

Other considerations
What happens if we decide to change the menu at a later stage, such as by adding a new type
of drink? If we had used the class per combination approach, the effect of adding an extra
such as syrup would be an exponential growth in the number of classes. However, the
implications to the all decorator or compromise approaches are the same - one extra class is
created.

How about the effect of changing the cost of steamed milk and foamed milk, when the price of
milk goes up? Having a class for each combination means that you need to change a method
in each class, and thus maintain many classes. By using decorators, maintenance is reduced
by defining the logic in one place.

Exercises
 1. Add a Syrup class to the decorator approach described above. Then create a Café

Latte (you'll need to use steamed milk with an espresso) with syrup.

53 z 157

 2. Repeat Exercise 1 for the compromise approach.

 3. Create a simple decorator system that models the fact that some birds fly and some
don’t, some swim and some don’t, and some do both.

 4. Implement the decorator pattern to create a Pizza restaurant, which has a set menu
of choices as well as the option to design your own pizza. Follow the compromise
approach to create a menu consisting of a Margherita, Hawaiian, Regina, and
Vegetarian pizzas, with toppings (decorators) of Garlic, Olives, Spinach, Avocado, Feta
and Pepperdews. Create a Hawaiian pizza, as well as a Margherita decorated with
Spinach, Feta, Pepperdews and Olives.

 5. About Decorator, the Design Patterns book states: “With decorators, responsibilities
can be added and removed at run-time simply by attaching and detaching them.”
Implement the coffee decoration system to allow this “simple” detaching of a
responsibility from the middle of the list of decorators of a complex coffee beverage.

Connecting different
types

Adapter
Adapter takes one type and produces an interface to some other type. When you’ve got this,
and you need that, Adapter solves the problem. The only requirement is to produce a that,
and there are a number of ways you can accomplish this adaptation.

//: adapter:SimpleAdapter.java
// "Object Adapter" from GoF diagram
package adapter;
import junit.framework.*;

class Target {
 public void request() {}
}

class Adaptee {
 public void specificRequest() {
 System.out.println("Adaptee: SpecificRequest");
 }
}

class Adapter extends Target {
 private Adaptee adaptee;
 public Adapter(Adaptee a) {
 adaptee = a;
 }
 public void request() {
 adaptee.specificRequest();
 }
}

54 z 157

public class SimpleAdapter extends TestCase {
 Adaptee a = new Adaptee();
 Target t = new Adapter(a);
 public void test() {
 t.request();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(SimpleAdapter.class);
 }
} ///:~

//: adapter:AdapterVariations.java
// Variations on the Adapter pattern.
package adapter;
import junit.framework.*;

class WhatIHave {
 public void g() {}
 public void h() {}
}

interface WhatIWant {
 void f();
}

class SurrogateAdapter implements WhatIWant {
 WhatIHave whatIHave;
 public SurrogateAdapter(WhatIHave wih) {
 whatIHave = wih;
 }
 public void f() {
 // Implement behavior using
 // methods in WhatIHave:
 whatIHave.g();
 whatIHave.h();
 }
}

class WhatIUse {
 public void op(WhatIWant wiw) {
 wiw.f();
 }
}

// Approach 2: build adapter use into op():
class WhatIUse2 extends WhatIUse {
 public void op(WhatIHave wih) {
 new SurrogateAdapter(wih).f();
 }
}

// Approach 3: build adapter into WhatIHave:
class WhatIHave2 extends WhatIHave
implements WhatIWant {
 public void f() {
 g();
 h();
 }
}

55 z 157

// Approach 4: use an inner class:
class WhatIHave3 extends WhatIHave {
 private class InnerAdapter implements WhatIWant{
 public void f() {
 g();
 h();
 }
 }
 public WhatIWant whatIWant() {
 return new InnerAdapter();
 }
}

public class AdapterVariations extends TestCase {
 WhatIUse whatIUse = new WhatIUse();
 WhatIHave whatIHave = new WhatIHave();
 WhatIWant adapt= new SurrogateAdapter(whatIHave);
 WhatIUse2 whatIUse2 = new WhatIUse2();
 WhatIHave2 whatIHave2 = new WhatIHave2();
 WhatIHave3 whatIHave3 = new WhatIHave3();
 public void test() {
 whatIUse.op(adapt);
 // Approach 2:
 whatIUse2.op(whatIHave);
 // Approach 3:
 whatIUse.op(whatIHave2);
 // Approach 4:
 whatIUse.op(whatIHave3.whatIWant());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(AdapterVariations.class);
 }
} ///:~

I’m taking liberties with the term “proxy” here, because in Design Patterns they assert that a
proxy must have an identical interface with the object that it is a surrogate for. However, if
you have the two words together: “proxy adapter,” it is perhaps more reasonable.

Bridge
While researching Bridge, I discovered that it appears to be the most poorly-described
pattern in the GoF. I began to come to this conclusion when reading Alan Shalloway’s chapter
on Bridge in his book Design Patterns Explained – he begins by pointing out that the
description in GoF left him quite unenlightened.

At a conference, I talked to two people who had written about and were giving talks on design
patterns, including Bridge. In two separate discussions I got completely different perspectives
on the structure of Bridge.

Armed with misinformation, I delved back into the GoF and realized that neither of the above
perspectives agreed with the book. I also found that the book did a miserable job of describing
Bridge, except in one place – not the general structure chart describing the pattern, which
wasn’t helpful, but in the structure chart describing their specific example. Only if you stare at
that for a bit does Bridge begin to make sense.

An important feature to understand when looking at Bridge is that it is often a construct that
is used to help you write code. You may choose the objects you use for a particular situation
at compile-time or runtime, but the goal of Bridge is to allow you to structure your code so
that you can easily add new kinds of front-end objects which are implemented with
functionality in new kinds of back-end objects. Thus, both front-end and back-end can vary
independently of each other.

56 z 157

p y

The front-end classes can have completely different interfaces from each other, and typically
do. What they have in common is that they can implement their functionality using facilities
from any number of different back-end objects. The back-end objects also don’t have the
same interface. The only thing the back-end objects must have in common is that they
implement the same kind of functionality – for example, a group of different ways to
implement a graphics library or a set of different data-storage solutions.

Bridge is really a code-organization tool that allows you to add in any number of new front-
end services that implement their operations by delegating to any number of back-end
options. Using Bridge, you can accomplish this without the normal combinatorial explosion
of possibilities that would otherwise occur. But keep in mind that the vector of change with
Bridge is typically happening at coding time: it keeps your code organized when you are
dealing with an increasing number of options for implementing functionality.

Here’s an example whose sole purpose is to demonstrate the structure of Bridge (it
implements the above diagram):

//: bridge:BridgeStructure.java
// A demonstration of the structure and operation
// of the Bridge Pattern.
package bridge;
import junit.framework.*;

class Abstraction {
 private Implementation implementation;
 public Abstraction(Implementation imp) {
 implementation = imp;
 }
 // Abstraction used by the various front-end
 // objects in order to implement their
 // different interfaces.
 public void service1() {
 // Implement this feature using some
 // combination of back-end implementation:
 implementation.facility1();
 implementation.facility2();
 }
 public void service2() {
 // Implement this feature using some other
 // combination of back-end implementation:
 implementation.facility2();
 implementation.facility3();
 }

57 z 157

 public void service3() {
 // Implement this feature using some other
 // combination of back-end implementation:
 implementation.facility1();
 implementation.facility2();
 implementation.facility4();
 }
 // For use by subclasses:
 protected Implementation getImplementation() {
 return implementation;
 }
}

class ClientService1 extends Abstraction {
 public ClientService1(Implementation imp) { super(imp); }
 public void serviceA() {
 service1();
 service2();
 }
 public void serviceB() {
 service3();
 }
}

class ClientService2 extends Abstraction {
 public ClientService2(Implementation imp) { super(imp); }
 public void serviceC() {
 service2();
 service3();
 }
 public void serviceD() {
 service1();
 service3();
 }
 public void serviceE() {
 getImplementation().facility3();
 }
}

interface Implementation {
 // The common implementation provided by the
 // back-end objects, each in their own way.
 void facility1();
 void facility2();
 void facility3();
 void facility4();
}

class Library1 {
 public void method1() {
 System.out.println("Library1.method1()");
 }
 public void method2() {
 System.out.println("Library1.method2()");
 }
}

class Library2 {
 public void operation1() {
 System.out.println("Library2.operation1()");
 }

58 z 157

 public void operation2() {
 System.out.println("Library2.operation2()");
 }
 public void operation3() {
 System.out.println("Library2.operation3()");
 }
}

class Implementation1 implements Implementation {
 // Each facility delegates to a different library
 // in order to fulfill the obligations.
 private Library1 delegate = new Library1();
 public void facility1() {
 System.out.println("Implementation1.facility1");
 delegate.method1();
 }
 public void facility2() {
 System.out.println("Implementation1.facility2");
 delegate.method2();
 }
 public void facility3() {
 System.out.println("Implementation1.facility3");
 delegate.method2();
 delegate.method1();
 }
 public void facility4() {
 System.out.println("Implementation1.facility4");
 delegate.method1();
 }
}

class Implementation2 implements Implementation {
 private Library2 delegate = new Library2();
 public void facility1() {
 System.out.println("Implementation2.facility1");
 delegate.operation1();
 }
 public void facility2() {
 System.out.println("Implementation2.facility2");
 delegate.operation2();
 }
 public void facility3() {
 System.out.println("Implementation2.facility3");
 delegate.operation3();
 }
 public void facility4() {
 System.out.println("Implementation2.facility4");
 delegate.operation1();
 }
}

public class BridgeStructure extends TestCase {
 public void test1() {
 // Here, the implementation is determined by
 // the client at creation time:
 ClientService1 cs1 =
 new ClientService1(new Implementation1());
 cs1.serviceA();
 cs1.serviceB();
 }
 public void test2() {

59 z 157

 ClientService1 cs1 =
 new ClientService1(new Implementation2());
 cs1.serviceA();
 cs1.serviceB();
 }
 public void test3() {
 ClientService2 cs2 =
 new ClientService2(new Implementation1());
 cs2.serviceC();
 cs2.serviceD();
 cs2.serviceE();
 }
 public void test4() {
 ClientService2 cs2 =
 new ClientService2(new Implementation2());
 cs2.serviceC();
 cs2.serviceD();
 cs2.serviceE();
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(BridgeStructure.class);
 }
} ///:~

The front-end base class provides the operations used to fulfill the front-end derived classes,
in terms of the methods of the back-end base class. Thus, any back-end derived class can be
used to perform the operations needed by the front-end class. Notice that the bridging
happens in this sequence of steps, each of which is providing a layer of abstraction. Here,
Implementation is defined as an interface to emphasize that all the functionality is
implemented in the back-end derived classes, and none in the back-end base.

The back-end derived classes perform the operations defined in the base class by delegating
to objects (of class Library1 and Library2, in this case) that typically have radically
different interfaces, but somehow provide the same functionality (this is one of the important
objectives of Bridge). Effectively, each of the back-end implementations is an adapter to a
different library or tool used to implement the desired functionality in a different way.

Exercises
 1. Modify BridgeStructure.java so that the implementations are chosen using a

factory.

 2. Modify BridgeStructure.java to use delegation instead of inheritance on the front
end. What benefits and drawbacks do you see by using delegation rather than
inheritance?

 3. Create an example of Bridge with an abstraction that is an associative array. This
allows you to fetch elements by passing in a key Object. The constructor provides an
initial set of key-value pairs which are placed in an array. As long as you only fetch
elements, the array is used, but as soon as you set a new key-value pair, the
implementation is switched to a map.

 4. Use a bridge along with the collections in java.util.collections to create stack and
queue classes using an ArrayList. After you get the system working, add a double-
ended queue class. Now add a LinkedList as an implementation. These steps will
demonstrate how Bridge allows you to add new front-end classes and new back-end
classes in your code, with minimal impact.

60 z 157

 5. Create a Bridge that provides a connection between various kinds of bookkeeping
programs (along with their interfaces and data formats) and different banks (which
provide different kinds of services and interfaces).

Flexible structure
Composite
The important thing here is that all elements in the part-whole have operations, and that
performing an operation on a node/composite also performs that operation on any children
of that node/composite. GoF includes implementation details of containment and visitation
of children in the interface of the base class, but this doesn’t seem necessary. In the following
example, the Composite class simply inherits ArrayList in order to gain its containment
abilities.

//: composite:CompositeStructure.java
package composite;
import java.util.*;
import junit.framework.*;

interface Component {
 void operation();
}

class Leaf implements Component {
 private String name;
 public Leaf(String name) { this.name = name; }
 public String toString() { return name; }
 public void operation() {
 System.out.println(this);
 }
}

class Node extends ArrayList implements Component {
 private String name;
 public Node(String name) { this.name = name; }
 public String toString() { return name; }
 public void operation() {
 System.out.println(this);
 for(Iterator it = iterator(); it.hasNext();)
 ((Component)it.next()).operation();
 }
}

public class CompositeStructure extends TestCase {
 public void test() {
 Node root = new Node("root");
 root.add(new Leaf("Leaf1"));
 Node c2 = new Node("Node1");
 c2.add(new Leaf("Leaf2"));
 c2.add(new Leaf("Leaf3"));
 root.add(c2);
 c2 = new Node("Node2");
 c2.add(new Leaf("Leaf4"));
 c2.add(new Leaf("Leaf5"));

61 z 157

 root.add(c2);
 root.operation();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(CompositeStructure.class);
 }
} ///:~

While this approach seems to be “the simplest thing that could possibly work,” it’s possible
that in a larger system problems could arise. However, it’s probably best to start with the
simplest approach and change it only if the situation demands.

System decoupling
Observer

Like the other forms of callback, this contains a hook point where you can change code. The
difference is in the observer’s completely dynamic nature. It is often used for the specific case
of changes based on other object’s change of state, but is also the basis of event management.
Anytime you want to decouple the source of the call from the called code in a completely
dynamic way.

The observer pattern solves a fairly common problem: What if a group of objects needs to
update themselves when some object changes state? This can be seen in the “model-view”
aspect of Smalltalk’s MVC (model-view-controller), or the almost-equivalent “Document-
View Architecture.” Suppose that you have some data (the “document”) and more than one
view, say a plot and a textual view. When you change the data, the two views must know to
update themselves, and that’s what the observer facilitates. It’s a common enough problem
that its solution has been made a part of the standard java.util library.

There are two types of objects used to implement the observer pattern in Java. The
Observable class keeps track of everybody who wants to be informed when a change
happens, whether the “state” has changed or not. When someone says “OK, everybody should
check and potentially update themselves,” the Observable class performs this task by calling
the notifyObservers() method for each one on the list. The notifyObservers() method
is part of the base class Observable.

There are actually two “things that change” in the observer pattern: the quantity of observing
objects and the way an update occurs. That is, the observer pattern allows you to modify both
of these without affecting the surrounding code.

Observer is an “interface” class that only has one member function, update(). This
function is called by the object that’s being observed, when that object decides its time to
update all its observers. The arguments are optional; you could have an update() with no
arguments and that would still fit the observer pattern; however this is more general—it
allows the observed object to pass the object that caused the update (since an Observer may
be registered with more than one observed object) and any extra information if that’s helpful,
rather than forcing the Observer object to hunt around to see who is updating and to fetch
any other information it needs.

The “observed object” that decides when and how to do the updating will be called the
Observable.

Observable has a flag to indicate whether it’s been changed. In a simpler design, there
would be no flag; if something happened, everyone would be notified. The flag allows you to
wait, and only notify the Observers when you decide the time is right. Notice, however, that
the control of the flag’s state is protected, so that only an inheritor can decide what

62 z 157

g p y
constitutes a change, and not the end user of the resulting derived Observer class.

Most of the work is done in notifyObservers(). If the changed flag has not been set, this
does nothing. Otherwise, it first clears the changed flag so repeated calls to
notifyObservers() won’t waste time. This is done before notifying the observers in case the
calls to update() do anything that causes a change back to this Observable object. Then it
moves through the set and calls back to the update() member function of each Observer.

At first it may appear that you can use an ordinary Observable object to manage the
updates. But this doesn’t work; to get an effect, you must inherit from Observable and
somewhere in your derived-class code call setChanged(). This is the member function that
sets the “changed” flag, which means that when you call notifyObservers() all of the
observers will, in fact, get notified. Where you call setChanged() depends on the logic of
your program.

Observing flowers
Here is an example of the observer pattern:

//: observer:ObservedFlower.java
// Demonstration of "observer" pattern.
package observer;
import java.util.*;
import junit.framework.*;

class Flower {
 private boolean isOpen;
 private OpenNotifier oNotify =
 new OpenNotifier();
 private CloseNotifier cNotify =
 new CloseNotifier();
 public Flower() { isOpen = false; }
 public void open() { // Opens its petals
 isOpen = true;
 oNotify.notifyObservers();
 cNotify.open();
 }
 public void close() { // Closes its petals
 isOpen = false;
 cNotify.notifyObservers();
 oNotify.close();
 }
 public Observable opening() { return oNotify; }
 public Observable closing() { return cNotify; }
 private class OpenNotifier extends Observable {
 private boolean alreadyOpen = false;
 public void notifyObservers() {
 if(isOpen && !alreadyOpen) {
 setChanged();
 super.notifyObservers();
 alreadyOpen = true;
 }
 }
 public void close() { alreadyOpen = false; }
 }
 private class CloseNotifier extends Observable{
 private boolean alreadyClosed = false;
 public void notifyObservers() {
 if(!isOpen && !alreadyClosed) {
 setChanged();
 super.notifyObservers();

63 z 157

 alreadyClosed = true;
 }
 }
 public void open() { alreadyClosed = false; }
 }
}

class Bee {
 private String name;
 private OpenObserver openObsrv =
 new OpenObserver();
 private CloseObserver closeObsrv =
 new CloseObserver();
 public Bee(String nm) { name = nm; }
 // An inner class for observing openings:
 private class OpenObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Bee " + name
 + "'s breakfast time!");
 }
 }
 // Another inner class for closings:
 private class CloseObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Bee " + name
 + "'s bed time!");
 }
 }
 public Observer openObserver() {
 return openObsrv;
 }
 public Observer closeObserver() {
 return closeObsrv;
 }
}

class Hummingbird {
 private String name;
 private OpenObserver openObsrv =
 new OpenObserver();
 private CloseObserver closeObsrv =
 new CloseObserver();
 public Hummingbird(String nm) { name = nm; }
 private class OpenObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Hummingbird " + name
 + "'s breakfast time!");
 }
 }
 private class CloseObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Hummingbird " + name
 + "'s bed time!");
 }
 }
 public Observer openObserver() {
 return openObsrv;
 }
 public Observer closeObserver() {
 return closeObsrv;
 }

64 z 157

}

public class ObservedFlower extends TestCase {
 Flower f = new Flower();
 Bee
 ba = new Bee("A"),
 bb = new Bee("B");
 Hummingbird
 ha = new Hummingbird("A"),
 hb = new Hummingbird("B");
 public void test() {
 f.opening().addObserver(ha.openObserver());
 f.opening().addObserver(hb.openObserver());
 f.opening().addObserver(ba.openObserver());
 f.opening().addObserver(bb.openObserver());
 f.closing().addObserver(ha.closeObserver());
 f.closing().addObserver(hb.closeObserver());
 f.closing().addObserver(ba.closeObserver());
 f.closing().addObserver(bb.closeObserver());
 // Hummingbird B decides to sleep in:
 f.opening().deleteObserver(
 hb.openObserver());
 // A change that interests observers:
 f.open();
 f.open(); // It's already open, no change.
 // Bee A doesn't want to go to bed:
 f.closing().deleteObserver(
 ba.closeObserver());
 f.close();
 f.close(); // It's already closed; no change
 f.opening().deleteObservers();
 f.open();
 f.close();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(ObservedFlower.class);
 }
} ///:~

The events of interest are that a Flower can open or close. Because of the use of the inner
class idiom, both these events can be separately observable phenomena. OpenNotifier and
CloseNotifier both inherit Observable, so they have access to setChanged() and can be
handed to anything that needs an Observable.

The inner class idiom also comes in handy to define more than one kind of Observer, in Bee
and Hummingbird, since both those classes may want to independently observe Flower
openings and closings. Notice how the inner class idiom provides something that has most of
the benefits of inheritance (the ability to access the private data in the outer class, for
example) without the same restrictions.

In main(), you can see one of the prime benefits of the observer pattern: the ability to
change behavior at run time by dynamically registering and un-registering Observers with
Observables.

If you study the code above you’ll see that OpenNotifier and CloseNotifier use the basic
Observable interface. This means that you could inherit other completely different
Observer classes; the only connection the Observers have with Flowers is the Observer
interface.

A visual example of observers

65 z 157

The following example is similar to the ColorBoxes example from Chapter 14 in Thinking in
Java, 2nd Edition. Boxes are placed in a grid on the screen and each one is initialized to a
random color. In addition, each box implements the Observer interface and is registered
with an Observable object. When you click on a box, all of the other boxes are notified that a
change has been made because the Observable object automatically calls each Observer
object’s update() method. Inside this method, the box checks to see if it’s adjacent to the
one that was clicked, and if so it changes its color to match the clicked box.

//: observer:BoxObserver.java
// Demonstration of Observer pattern using
// Java's built-in observer classes.
package observer;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

// You must inherit a new type of Observable:
class BoxObservable extends Observable {
 public void notifyObservers(Object b) {
 // Otherwise it won't propagate changes:
 setChanged();
 super.notifyObservers(b);
 }
}

public class BoxObserver extends JFrame {
 Observable notifier = new BoxObservable();
 public BoxObserver(int grid) {
 setTitle("Demonstrates Observer pattern");
 Container cp = getContentPane();
 cp.setLayout(new GridLayout(grid, grid));
 for(int x = 0; x < grid; x++)
 for(int y = 0; y < grid; y++)
 cp.add(new OCBox(x, y, notifier));
 }
 public static void main(String[] args) {
 int grid = 8;
 if(args.length > 0)
 grid = Integer.parseInt(args[0]);
 JFrame f = new BoxObserver(grid);
 f.setSize(500, 400);
 f.setVisible(true);
 f.setDefaultCloseOperation(EXIT_ON_CLOSE);
 }
}

class OCBox extends JPanel implements Observer {
 Observable notifier;
 int x, y; // Locations in grid
 Color cColor = newColor();
 static final Color[] colors = {
 Color.BLACK, Color.BLUE, Color.CYAN,
 Color.DARK_GRAY, Color.GRAY, Color.GREEN,
 Color.LIGHT_GRAY, Color.MAGENTA,
 Color.ORANGE, Color.PINK, Color.RED,
 Color.WHITE, Color.YELLOW
 };
 static Random rand = new Random();
 static final Color newColor() {
 return colors[rand.nextInt(colors.length)];

66 z 157

 }
 OCBox(int x, int y, Observable notifier) {
 this.x = x;
 this.y = y;
 notifier.addObserver(this);
 this.notifier = notifier;
 addMouseListener(new ML());
 }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(cColor);
 Dimension s = getSize();
 g.fillRect(0, 0, s.width, s.height);
 }
 class ML extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 notifier.notifyObservers(OCBox.this);
 }
 }
 public void update(Observable o, Object arg) {
 OCBox clicked = (OCBox)arg;
 if(nextTo(clicked)) {
 cColor = clicked.cColor;
 repaint();
 }
 }
 private final boolean nextTo(OCBox b) {
 return Math.abs(x - b.x) <= 1 &&
 Math.abs(y - b.y) <= 1;
 }
} ///:~

When you first look at the online documentation for Observable, it’s a bit confusing because
it appears that you can use an ordinary Observable object to manage the updates. But this
doesn’t work; try it—inside BoxObserver, create an Observable object instead of a
BoxObservable object and see what happens: nothing. To get an effect, you must inherit
from Observable and somewhere in your derived-class code call setChanged(). This is the
method that sets the “changed” flag, which means that when you call notifyObservers() all
of the observers will, in fact, get notified. In the example above setChanged() is simply
called within notifyObservers(), but you could use any criterion you want to decide when
to call setChanged().

BoxObserver contains a single Observable object called notifier, and every time an
OCBox object is created, it is tied to notifier. In OCBox, whenever you click the mouse the
notifyObservers() method is called, passing the clicked object in as an argument so that all
the boxes receiving the message (in their update() method) know who was clicked and can
decide whether to change themselves or not. Using a combination of code in
notifyObservers() and update() you can work out some fairly complex schemes.

It might appear that the way the observers are notified must be frozen at compile time in the
notifyObservers() method. However, if you look more closely at the code above you’ll see
that the only place in BoxObserver or OCBox where you're aware that you’re working with
a BoxObservable is at the point of creation of the Observable object—from then on
everything uses the basic Observable interface. This means that you could inherit other
Observable classes and swap them at run time if you want to change notification behavior
then.

Mediator
Sweep coupling under the rug, how is this different from MVC?

67 z 157

p p g g

MVC has distinct model and view; mediator could be anything. MVC a flavor of mediator

Exercises
 1. Create a minimal Observer-Observable design in two classes. Just create the bare

minimum in the two classes, then demonstrate your design by creating one
Observable and many Observers, and cause the Observable to update the
Observers.

 2. Create a minimal Observer system using java.util.Timer inside your
Observable, to generate events that are reported to the Observers. Create several
different Observers using anonymous inner classes, register these with the
Observable, and show that they are called when the Timer events occur.

 3. Modify BoxObserver.java to turn it into a simple game. If any of the squares
surrounding the one you clicked is part of a contiguous patch of the same color, then
all the squares in that patch are changed to the color you clicked on. You can configure
the game for competition between players or to keep track of the number of clicks that
a single player uses to turn the field into a single color. You may also want to restrict a
player's color to the first one that was chosen.

Reducing interface
complexity

Sometimes the problem that you’re solving is as simple as “I don’t have the interface that I
want.” Façade creates an interface to a set of classes, simply to provide a more comfortable
way to deal with a library or bundle of resources.

Façade
A general principle that I apply when I’m casting about trying to mold requirements into a
first-cut object is “If something is ugly, hide it inside an object.” This is basically what Façade
accomplishes. If you have a rather confusing collection of classes and interactions that the
client programmer doesn’t really need to see, then you can create an interface that is useful
for the client programmer and that only presents what’s necessary.

Façade is often implemented as singleton abstract factory. Of course, you can easily get this
effect by creating a class containing static factory methods:

//: facade:Facade.java
package facade;
import junit.framework.*;

class A { public A(int x) {} }
class B { public B(long x) {} }
class C { public C(double x) {} }

// Other classes that aren't exposed
// by the facade go here ...

68 z 157

public class Facade extends TestCase {
 static A makeA(int x) { return new A(x); }
 static B makeB(long x) { return new B(x); }
 static C makeC(double x) { return new C(x); }
 public void test() {
 // The client programmer gets the objects
 // by calling the static methods:
 A a = Facade.makeA(1);
 B b = Facade.makeB(1);
 C c = Facade.makeC(1.0);
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(Facade.class);
 }
} ///:~

The example given in Design Patterns is just a class that uses the other classes.

A tax adviser is a Façade between you and the tax code, and a mediator between you and the
tax system.

Package as a variation of Façade
To me, the Façade has a rather “procedural” (non-object-oriented) feel to it: you are just
calling some functions to give you objects. And how different is it, really, from Abstract
Factory? The point of Façade is to hide part of a library of classes (and their interactions)
from the client programmer, to make the interface to that group of classes more digestible
and easier to understand.

However, this is precisely what the packaging features in Java accomplish: outside of the
library, you can only create and use public classes; all the non-public classes are only
accessible within the package. It’s as if Façade is a built-in feature of Java.

To be fair, Design Patterns is written primarily for a C++ audience. Although C++ has
namespaces to prevent clashes of globals and class names, this does not provide the class
hiding mechanism that you get with non-public classes in Java. The majority of the time I
think that Java packages will solve the Façade problem.

Algorithmic partitioning

Command: choosing the
operation at run-time

In Advanced C++:Programming Styles And Idioms (Addison-Wesley, 1992), Jim Coplien
coins the term functor which is an object whose sole purpose is to encapsulate a function
(since “functor” has a meaning in mathematics, in this book I shall use the more explicit term
function object). The point is to decouple the choice of function to be called from the site
where that function is called.

This term is mentioned but not used in Design Patterns. However, the theme of the function
object is repeated in a number of patterns in that book.

A Command is a function object in its purest sense: a method that’s an object[7]. By wrapping
a method in an object, you can pass it to other methods or objects as a parameter, to tell them

69 z 157

j y p j p
to perform this particular operation in the process of fulfilling your request. You could say
that a Command is a messenger (because its intent and use is very straightforward) that
carries behavior, rather than data.

//: command:CommandPattern.java
package command;
import java.util.*;
import junit.framework.*;

interface Command {
 void execute();
}

class Hello implements Command {
 public void execute() {
 System.out.print("Hello ");
 }
}

class World implements Command {
 public void execute() {
 System.out.print("World! ");
 }
}

class IAm implements Command {
 public void execute() {
 System.out.print("I'm the command pattern!");
 }
}

// An object that holds commands:
class Macro {
 private List commands = new ArrayList();
 public void add(Command c) { commands.add(c); }
 public void run() {
 Iterator it = commands.iterator();
 while(it.hasNext())
 ((Command)it.next()).execute();
 }
}

public class CommandPattern extends TestCase {
 Macro macro = new Macro();
 public void test() {
 macro.add(new Hello());
 macro.add(new World());
 macro.add(new IAm());
 macro.run();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(CommandPattern.class);
 }
} ///:~

The primary point of Command is to allow you to hand a desired action to a method or object.
In the above example, this provides a way to queue a set of actions to be performed
collectively. In this case, it allows you to dynamically create new behavior, something you can
normally only do by writing new code but in the above example could be done by interpreting
a script (see the Interpreter pattern if what you need to do gets very complex).

70 z 157

p p p y g y p

Another example of Command is refactor:DirList.java [????]. The DirFilter class is the
command object which contains its action in the method accept() that is passed to the list
() method. The list() method determines what to include in its result by calling accept().

Design Patterns says that “Commands are an object-oriented replacement for callbacks[8].”
However, I think that the word “back” is an essential part of the concept of callbacks. That is,
I think a callback actually reaches back to the creator of the callback. On the other hand, with
a Command object you typically just create it and hand it to some method or object, and are
not otherwise connected over time to the Command object. That’s my take on it, anyway.
Later in this book, I combine a group of design patterns under the heading of “callbacks.”

Strategy appears to be a family of Command classes, all inherited from the same base. But if
you look at Command, you’ll see that it has the same structure: a hierarchy of function
objects. The difference is in the way this hierarchy is used. As seen in
refactor:DirList.java, you use Command to solve a particular problem—in that case,
selecting files from a list. The “thing that stays the same” is the body of the method that’s
being called, and the part that varies is isolated in the function object. I would hazard to say
that Command provides flexibility while you’re writing the program, whereas Strategy’s
flexibility is at run time. Nonetheless, it seems a rather fragile distinction.

Exercises
 4. Use Command in Chapter 3, Exercise 1.

Chain of responsibility
Example: translation service (local->global->Babelfish).

Chain of Responsibility might be thought of as a dynamic generalization of recursion using
Strategy objects. You make a call, and each Strategy in a linked sequence tries to satisfy the
call. The process ends when one of the strategies is successful or the chain ends. In recursion,
one method calls itself over and over until a termination condition is reached; with Chain of
Responsibility, a method calls itself, which (by moving down the chain of Strategies) calls a
different implementation of the method, etc., until a termination condition is reached. The
termination condition is either the bottom of the chain is reached (in which case a default
object is returned; you may or may not be able to provide a default result so you must be able
to determine the success or failure of the chain) or one of the Strategies is successful.

Instead of calling a single method to satisfy a request, multiple methods in the chain have a
chance to satisfy the request, so it has the flavor of an expert system. Since the chain is
effectively a linked list, it can be dynamically created, so you could also think of it as a more
general, dynamically-built switch statement.

In the GoF, there’s a fair amount of discussion of how to create the chain of responsibility as a
linked list. However, when you look at the pattern it really shouldn’t matter how the chain is
maintained; that’s an implementation detail. Since GoF was written before the Standard
Template Library (STL) was incorporated into most C++ compilers, the reason for this is
most likely (1) there was no list and thus they had to create one and (2) data structures are
often taught as a fundamental skill in academia, and the idea that data structures should be
standard tools available with the programming language may not have occurred to the GoF
authors. I maintain that the implementation of Chain of Responsibility as a chain
(specifically, a linked list) adds nothing to the solution and can just as easily be implemented
using a standard Java List, as shown below. Furthermore, you’ll see that I’ve gone to some
effort to separate the chain-management parts of the implementation from the various
Strategies, so that the code can be more easily reused.

In StrategyPattern.java, above, what you probably want is to automatically find a solution.
Chain of Responsibility provides a way to do this by chaining the Strategy objects together
and providing a mechanism for them to automatically recurse through each one in the chain:

//: chainofresponsibility:FindMinima.java

71 z 157

package chainofresponsibility;
import com.bruceeckel.util.*; // Arrays2.toString()
import junit.framework.*;

// Carries the result data and
// whether the strategy was successful:
class LineData {
 public double[] data;
 public LineData(double[] data) { this.data = data; }
 private boolean succeeded;
 public boolean isSuccessful() { return succeeded; }
 public void setSuccessful(boolean b) { succeeded = b; }
}

interface Strategy {
 LineData strategy(LineData m);
}

class LeastSquares implements Strategy {
 public LineData strategy(LineData m) {
 System.out.println("Trying LeastSquares algorithm");
 LineData ld = (LineData)m;
 // [Actual test/calculation here]
 LineData r = new LineData(
 new double[] { 1.1, 2.2 }); // Dummy data
 r.setSuccessful(false);
 return r;
 }
}

class NewtonsMethod implements Strategy {
 public LineData strategy(LineData m) {
 System.out.println("Trying NewtonsMethod algorithm");
 LineData ld = (LineData)m;
 // [Actual test/calculation here]
 LineData r = new LineData(
 new double[] { 3.3, 4.4 }); // Dummy data
 r.setSuccessful(false);
 return r;
 }
}

class Bisection implements Strategy {
 public LineData strategy(LineData m) {
 System.out.println("Trying Bisection algorithm");
 LineData ld = (LineData)m;
 // [Actual test/calculation here]
 LineData r = new LineData(
 new double[] { 5.5, 6.6 }); // Dummy data
 r.setSuccessful(true);
 return r;
 }
}

class ConjugateGradient implements Strategy {
 public LineData strategy(LineData m) {
 System.out.println(
 "Trying ConjugateGradient algorithm");
 LineData ld = (LineData)m;
 // [Actual test/calculation here]
 LineData r = new LineData(

72 z 157

 new double[] { 5.5, 6.6 }); // Dummy data
 r.setSuccessful(true);
 return r;
 }
}

class MinimaFinder {
 private static Strategy[] solutions = {
 new LeastSquares(),
 new NewtonsMethod(),
 new Bisection(),
 new ConjugateGradient(),
 };
 public static LineData solve(LineData line) {
 LineData r = line;
 for(int i = 0; i < solutions.length; i++) {
 r = solutions[i].strategy(r);
 if(r.isSuccessful())
 return r;
 }
 throw new RuntimeException("unsolved: " + line);
 }
}

public class FindMinima extends TestCase {
 LineData line = new LineData(new double[]{
 1.0, 2.0, 1.0, 2.0, -1.0, 3.0, 4.0, 5.0, 4.0
 });
 public void test() {
 System.out.println(Arrays2.toString(
 ((LineData)MinimaFinder.solve(line)).data));
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(FindMinima.class);
 }
} ///:~

Exercises
 1. Implement Chain of Responsibility to create an "expert system" that solves problems

by successively trying one solution after another until one matches. You should be
able to dynamically add solutions to the expert system. The test for solution should
just be a string match, but when a solution fits, the expert system should return the
appropriate type of ProblemSolver object. What other pattern/patterns show up
here?

 2. Implement Chain of Responsibility to create a language translator which begins by
searching for a local specialized translation system (which may know specifics about
your problem domain), then a more global generalized system, and finally falls back
on BabelFish if it can’t translate everything. Note that each link in the chain may
partially translate what it’s able to.

 3. Implement Chain of Responsibility to create an tool to help reformat Java source
code by trying multiple approaches to breaking lines. Note that normal code and
comments will probably need to be treated differently, leading to the possibility of
implementing a Tree of Responsibility. Also note the similarity between this approach
and the Composite design pattern; perhaps the more general description of this

73 z 157

technique is a Composite of Strategies.

Externalizing object
state

Memento
Use serialization to create an undo mechanism.

Complex interactions
Multiple dispatching

When dealing with multiple types which are interacting, a program can get particularly
messy. For example, consider a system that parses and executes mathematical expressions.
You want to be able to say Number + Number, Number * Number, etc., where Number
is the base class for a family of numerical objects. But when you say a + b, and you don’t
know the exact type of either a or b, so how can you get them to interact properly?

The answer starts with something you probably don’t think about: Java performs only single
dispatching. That is, if you are performing an operation on more than one object whose type
is unknown, Java can invoke the dynamic binding mechanism on only one of those types.
This doesn’t solve the problem, so you end up detecting some types manually and effectively
producing your own dynamic binding behavior.

The solution is called multiple dispatching. Remember that polymorphism can occur only via
member function calls, so if you want double dispatching to occur, there must be two member
function calls: the first to determine the first unknown type, and the second to determine the
second unknown type. With multiple dispatching, you must have a polymorphic method call
to determine each of the types. Generally, you’ll set up a configuration such that a single
member function call produces more than one dynamic member function call and thus
determines more than one type in the process. To get this effect, you need to work with more
than one polymorphic method call: you’ll need one call for each dispatch. The methods in the
following example are called compete() and eval(), and are both members of the same
type. (In this case there will be only two dispatches, which is referred to as double
dispatching). If you are working with two different type hierarchies that are interacting, then
you’ll have to have a polymorphic method call in each hierarchy.

Here’s an example of multiple dispatching:

//: multipledispatch:PaperScissorsRock.java
// Demonstration of multiple dispatching.
package multipledispatch;
import java.util.*;
import junit.framework.*;

// An enumeration type:
class Outcome {
 private String name;
 private Outcome(String name) { this.name = name; }

74 z 157

 public final static Outcome
 WIN = new Outcome("wins"),
 LOSE = new Outcome("loses"),
 DRAW = new Outcome("draws");
 public String toString() { return name; }
}

interface Item {
 Outcome compete(Item it);
 Outcome eval(Paper p);
 Outcome eval(Scissors s);
 Outcome eval(Rock r);
}

class Paper implements Item {
 public Outcome compete(Item it) { return it.eval(this); }
 public Outcome eval(Paper p) { return Outcome.DRAW; }
 public Outcome eval(Scissors s) { return Outcome.WIN; }
 public Outcome eval(Rock r) { return Outcome.LOSE; }
 public String toString() { return "Paper"; }
}

class Scissors implements Item {
 public Outcome compete(Item it) { return it.eval(this); }
 public Outcome eval(Paper p) { return Outcome.LOSE; }
 public Outcome eval(Scissors s) { return Outcome.DRAW; }
 public Outcome eval(Rock r) { return Outcome.WIN; }
 public String toString() { return "Scissors"; }
}

class Rock implements Item {
 public Outcome compete(Item it) { return it.eval(this); }
 public Outcome eval(Paper p) { return Outcome.WIN; }
 public Outcome eval(Scissors s) { return Outcome.LOSE; }
 public Outcome eval(Rock r) { return Outcome.DRAW; }
 public String toString() { return "Rock"; }
}

class ItemGenerator {
 private static Random rand = new Random();
 public static Item newItem() {
 switch(rand.nextInt(3)) {
 default:
 case 0: return new Scissors();
 case 1: return new Paper();
 case 2: return new Rock();
 }
 }
}

class Compete {
 public static void match(Item a, Item b) {
 System.out.println(
 a + " " + a.compete(b) + " vs. " + b);
 }
}

public class PaperScissorsRock extends TestCase {
 static int SIZE = 20;
 public void test() {
 for(int i = 0; i < SIZE; i++)

75 z 157

 Compete.match(ItemGenerator.newItem(),
 ItemGenerator.newItem());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(PaperScissorsRock.class);
 }
} ///:~

Visitor, a type of multiple
dispatching

The assumption is that you have a primary class hierarchy that is fixed; perhaps it’s from
another vendor and you can’t make changes to that hierarchy. However, you’d like to add new
polymorphic methods to that hierarchy, which means that normally you’d have to add
something to the base class interface. So the dilemma is that you need to add methods to the
base class, but you can’t touch the base class. How do you get around this?

The design pattern that solves this kind of problem is called a “visitor” (the final one in the
Design Patterns book), and it builds on the double dispatching scheme shown in the last
section.

The visitor pattern allows you to extend the interface of the primary type by creating a
separate class hierarchy of type Visitor to virtualize the operations performed upon the
primary type. The objects of the primary type simply “accept” the visitor, then call the visitor’s
dynamically-bound member function.

//: visitor:BeeAndFlowers.java
// Demonstration of "visitor" pattern.
package visitor;
import java.util.*;
import junit.framework.*;

interface Visitor {
 void visit(Gladiolus g);
 void visit(Runuculus r);
 void visit(Chrysanthemum c);
}

// The Flower hierarchy cannot be changed:
interface Flower {
 void accept(Visitor v);
}

class Gladiolus implements Flower {
 public void accept(Visitor v) { v.visit(this);}
}

class Runuculus implements Flower {
 public void accept(Visitor v) { v.visit(this);}
}

class Chrysanthemum implements Flower {
 public void accept(Visitor v) { v.visit(this);}
}

76 z 157

// Add the ability to produce a string:
class StringVal implements Visitor {
 String s;
 public String toString() { return s; }
 public void visit(Gladiolus g) {
 s = "Gladiolus";
 }
 public void visit(Runuculus r) {
 s = "Runuculus";
 }
 public void visit(Chrysanthemum c) {
 s = "Chrysanthemum";
 }
}

// Add the ability to do "Bee" activities:
class Bee implements Visitor {
 public void visit(Gladiolus g) {
 System.out.println("Bee and Gladiolus");
 }
 public void visit(Runuculus r) {
 System.out.println("Bee and Runuculus");
 }
 public void visit(Chrysanthemum c) {
 System.out.println("Bee and Chrysanthemum");
 }
}

class FlowerGenerator {
 private static Random rand = new Random();
 public static Flower newFlower() {
 switch(rand.nextInt(3)) {
 default:
 case 0: return new Gladiolus();
 case 1: return new Runuculus();
 case 2: return new Chrysanthemum();
 }
 }
}

public class BeeAndFlowers extends TestCase {
 List flowers = new ArrayList();
 public BeeAndFlowers() {
 for(int i = 0; i < 10; i++)
 flowers.add(FlowerGenerator.newFlower());
 }
 public void test() {
 // It's almost as if I had a function to
 // produce a Flower string representation:
 StringVal sval = new StringVal();
 Iterator it = flowers.iterator();
 while(it.hasNext()) {
 ((Flower)it.next()).accept(sval);
 System.out.println(sval);
 }
 // Perform "Bee" operation on all Flowers:
 Bee bee = new Bee();
 it = flowers.iterator();
 while(it.hasNext())
 ((Flower)it.next()).accept(bee);
 }

77 z 157

 public static void main(String args[]) {
 junit.textui.TestRunner.run(BeeAndFlowers.class);
 }
} ///:~

Exercises
 1. Create a business-modeling environment with three types of Inhabitant: Dwarf

(for engineers), Elf (for marketers) and Troll (for managers). Now create a class
called Project that creates the different inhabitants and causes them to interact()
with each other using multiple dispatching.

 2. Modify the above example to make the interactions more detailed. Each Inhabitant
can randomly produce a Weapon using getWeapon(): a Dwarf uses Jargon or
Play, an Elf uses InventFeature or SellImaginaryProduct, and a Troll uses
Edict and Schedule. You must decide which weapons “win” and “lose” in each
interaction (as in PaperScissorsRock.java). Add a battle() member function to
Project that takes two Inhabitants and matches them against each other. Now
create a meeting() member function for Project that creates groups of Dwarf, Elf
and Manager and battles the groups against each other until only members of one
group are left standing. These are the “winners.”

 3. Modify PaperScissorsRock.java to replace the double dispatching with a table
lookup. The easiest way to do this is to create a Map of Maps, with the key of each
Map the class of each object. Then you can do the lookup by saying:
((Map)map.get(o1.getClass())).get(o2.getClass())
Notice how much easier it is to reconfigure the system. When is it more appropriate to
use this approach vs. hard-coding the dynamic dispatches? Can you create a system
that has the syntactic simplicity of use of the dynamic dispatch but uses a table
lookup?

 4. Modify Exercise 2 to use the table lookup technique described in Exercise 3.

Multiple languages
This chapter looks at the value of crossing language boundaries. It is often very advantageous
to solve a problem using more than one programming language, rather than being arbitrarily
stuck using a single language. As you’ll see in this chapter, a problem that is very difficult or
tedious to solve in one language can often be solved quickly and easily in another. If you can
combine the use of languages, you can create your product much more quickly and cheaply.

The most straightforward use of this idea is the Interpreter design pattern, which adds an
interpreted language to your program to allow the end user to easily customize a solution. In
Java, the easiest and most powerful way to do this is with Jython[9], an implementation of
the Python language in pure Java byte codes.

Interpreter solves a particular problem – that of creating a scripting language for the user.
But sometimes it’s just easier and faster to temporarily step into another language to solve a
particular aspect of your problem. You’re not creating an interpreter, you’re just writing some
code in another language. Again, Jython is a good example of this, but CORBA also allows you
to cross language boundaries.

78 z 157

g g

Interpreter motivation
If the application user needs greater run time flexibility, for example to create scripts
describing the desired behavior of the system, you can use the Interpreter design pattern.
Here, you create and embed a language interpreter into your program.

Remember that each design pattern allows one or more factors to change, so it’s important to
first be aware of which factor is changing. Sometimes the end users of your application
(rather than the programmers of that application) need complete flexibility in the way that
they configure some aspect of the program. That is, they need to do some kind of simple
programming. The interpreter pattern provides this flexibility by adding a language
interpreter.

The problem is that developing your own language and building an interpreter is a time-
consuming distraction from the process of developing your application. You must ask
whether you want to finish writing your application or create a new language. The best
solution is to reuse code: embed an interpreter that’s already been built and debugged for
you. The Python language can be freely embedded into your for-profit application without
signing any license agreement, paying royalties, or dealing with strings of any kind. There are
basically no restrictions at all when you're using Python.

Python is a language that is very easy to learn, very logical to read and write, supports
functions and objects, has a large set of available libraries, and runs on virtually every
platform. You can download Python and learn more about it by going to www.Python.org.

For solving Java problems, we will look at a special version of Python called Jython. This is
generated entirely in Java byte codes, so incorporating it into your application is quite
simple, and it’s as portable as Java is. It has an extremely clean interface with Java: Java can
call Python classes, and Python can call Java classes.

Python is designed with classes from the ground up and is a truly pure object oriented
language (both C++ and Java violate purity in various ways). Python scales up so that you can
create very big programs without losing control of the code.

To install Python, go to www.Python.org and follow the links and instructions. To install
Jython, go to http://jython.sourceforge.net. The download is a .class file, which will run an
installer when you execute it with Java. You also need to add jython.jar to your
CLASSPATH. You can find further installation instructions at
http://www.bruceeckel.com/TIPatterns/Building-Code.html.

Python overview
To get you started, here is a brief introduction for the experienced programmer (which is
what you should be if you’re reading this book). You can refer to the full documentation at
www.Python.org (especially the incredibly useful HTML page A Python Quick Reference),
and also numerous books such as Learning Python by Mark Lutz and David Ascher (O’Reilly,
1999).

Python is often referred to as a scripting language, but scripting languages tend to be limiting,
especially in the scope of the problems that they solve. Python, on the other hand, is a
programming language that also supports scripting. It is marvelous for scripting, and you
may find yourself replacing all your batch files, shell scripts, and simple programs with
Python scripts. But it is far more than a scripting language.

Python is designed to be very clean to write and especially to read. You will find that it’s quite
easy to read your own code long after you’ve written it, and also to read other people’s code.
This is accomplished partially through clean, to-the-point syntax, but a major factor in code
readability is indentation – scoping in Python is determined by indentation. For example:

##interpreter:if.py

79 z 157

response = "yes"
if response == "yes":
 print "affirmative"
 val = 1
print "continuing..."
##~

The ‘#’ denotes a comment that goes until the end of the line, just like C++ and Java ‘//’
comments.

First notice that the basic syntax of Python is C-ish; notice the if statement. But in a C if, you
would be required to use parentheses around the conditional, whereas they are not necessary
in Python (but it won’t complain if you use them anyway).

The conditional clause ends with a colon, and this indicates that what follows will be a group
of indented statements, which are the “then” part of the if statement. In this case, there is a
“print” statement which sends the result to standard output, followed by an assignment to a
variable named val. The subsequent statement is not indented so it is no longer part of the if.
Indenting can nest to any level, just like curly braces in C++ or Java, but unlike those
languages there is no option (and no argument) about where the braces are placed – the
compiler forces everyone’s code to be formatted the same way, which is one of the main
reasons for Python’s consistent readability.

Python normally has only one statement per line (you can put more by separating them with
semicolons), thus no terminating semicolon is necessary. Even from the brief example above
you can see that the language is designed to be as simple as possible, and yet still very
readable.

Built-in containers
With languages like C++ and Java, containers are add-on libraries and not integral to the
language. In Python, the essential nature of containers for programming is acknowledged by
building them into the core of the language: both lists and associative arrays (a.k.a. maps,
dictionaries, hash tables) are fundamental data types. This adds much to the elegance of the
language.

In addition, the for statement automatically iterates through lists rather than just counting
through a sequence of numbers. This makes a lot of sense when you think about it, since
you’re almost always using a for loop to step through an array or a container. Python
formalizes this by automatically making for use an iterator that works through a sequence.
Here’s an example:

interpreter:list.py
list = [1, 3, 5, 7, 9, 11]
print list
list.append(13)
for x in list:
 print x
##~

The first line creates a list. You can print the list and it will look exactly as you put it in (in
contrast, remember that I had to create a special Arrays2 class in Thinking in Java, 2nd
Edition in order to print arrays in Java). Lists are like Java containers – you can add new
elements to them (here, append() is used) and they will automatically resize themselves.
The for statement creates an iterator x which takes on each value in the list.

You can create a list of numbers with the range() function, so if you really need to imitate
C’s for, you can.

Notice that there aren’t any type declarations – the object names simply appear, and Python
infers their type by the way that you use them. It’s as if Python is designed so that you only
need to press the keys that absolutely must. You’ll find after you’ve worked with Python for a
short while that you’ve been using up a lot of brain cycles parsing semicolons, curly braces,
and all sorts of other extra verbiage that was demanded by your non-Python programming

80 z 157

g y y y p g g
language but didn’t actually describe what your program was supposed to do.

Functions
To create a function in Python, you use the def keyword, followed by the function name and
argument list, and a colon to begin the function body. Here is the first example turned into a
function:

interpreter:myFunction.py
def myFunction(response):
 val = 0
 if response == "yes":
 print "affirmative"
 val = 1
 print "continuing..."
 return val

print myFunction("no")
print myFunction("yes")
##~

Notice there is no type information in the function signature – all it specifies is the name of
the function and the argument identifiers, but no argument types or return types. Python is a
weakly-typed language, which means it puts the minimum possible requirements on typing.
For example, you could pass and return different types from the same function:

interpreter:differentReturns.py
def differentReturns(arg):
 if arg == 1:
 return "one"
 if arg == "one":
 return 1

print differentReturns(1)
print differentReturns("one")
##~

The only constraints on an object that is passed into the function are that the function can
apply its operations to that object, but other than that, it doesn’t care. Here, the same
function applies the ‘+’ operator to integers and strings:

interpreter:sum.py
def sum(arg1, arg2):
 return arg1 + arg2

print sum(42, 47)
print sum('spam ', "eggs")
##~

When the operator ‘+’ is used with strings, it means concatenation (yes, Python supports
operator overloading, and it does a nice job of it).

Strings
The above example also shows a little bit about Python string handling, which is the best of
any language I’ve seen. You can use single or double quotes to represent strings, which is very
nice because if you surround a string with double quotes, you can embed single quotes and
vice versa:

interpreter:strings.py
print "That isn't a horse"
print 'You are not a "Viking"'
print """You're just pounding two
coconut halves together."""
print '''"Oh no!" He exclaimed.

81 z 157

"It's the blemange!"'''
print r'c:\python\lib\utils'
##~

Note that Python was not named after the snake, but rather the Monty Python comedy
troupe, and so examples are virtually required to include Python-esque references.

The triple-quote syntax quotes everything, including newlines. This makes it particularly
useful for doing things like generating web pages (Python is an especially good CGI language),
since you can just triple-quote the entire page that you want without any other editing.

The ‘r’ right before a string means “raw,” which takes the backslashes literally so you don’t
have to put in an extra backslash.

Substitution in strings is exceptionally easy, since Python uses C’s printf() substitution
syntax, but for any string at all. You simply follow the string with a ‘%’ and the values to
substitute:

interpreter:stringFormatting.py
val = 47
print "The number is %d" % val
val2 = 63.4
s = "val: %d, val2: %f" % (val, val2)
print s
##~

As you can see in the second case, if you have more than one argument you surround them in
parentheses (this forms a tuple, which is a list that cannot be modified).

All the formatting from printf() is available, including control over the number of decimal
places and alignment. Python also has very sophisticated regular expressions.

Classes
Like everything else in Python, the definition of a class uses a minimum of additional syntax.
You use the class keyword, and inside the body you use def to create methods. Here’s a
simple class:

interpreter:SimpleClass.py
class Simple:
 def __init__(self, str):
 print "Inside the Simple constructor"
 self.s = str
 # Two methods:
 def show(self):
 print self.s
 def showMsg(self, msg):
 print msg + ':',
 self.show() # Calling another method

if __name__ == "__main__":
 # Create an object:
 x = Simple("constructor argument")
 x.show()
 x.showMsg("A message")
##~

Both methods have “self” as their first argument. C++ and Java both have a hidden first
argument in their class methods, which points to the object that the method was called for
and can be accessed using the keyword this. Python methods also use a reference to the
current object, but when you are defining a method you must explicitly specify the reference
as the first argument. Traditionally, the reference is called self but you could use any
identifier you want (if you do not use self you will probably confuse a lot of people, however).
If you need to refer to fields in the object or other methods in the object, you must use self in
the expression. However, when you call a method for an object as in x.show(), you do not

82 z 157

p y j y
hand it the reference to the object – that is done for you.

Here, the first method is special, as is any identifier that begins and ends with double
underscores. In this case, it defines the constructor, which is automatically called when the
object is created, just like in C++ and Java. However, at the bottom of the example you can
see that the creation of an object looks just like a function call using the class name. Python’s
spare syntax makes you realize that the new keyword isn’t really necessary in C++ or Java,
either.

All the code at the bottom is set off by an if clause, which checks to see if something called
__name__ is equivalent to __main__. Again, the double underscores indicate special
names. The reason for the if is that any file can also be used as a library module within
another program (modules are described shortly). In that case, you just want the classes
defined, but you don’t want the code at the bottom of the file to be executed. This particular if
statement is only true when you are running this file directly; that is, if you say on the
command line:

Python SimpleClass.py
However, if this file is imported as a module into another program, the __main__ code is
not executed.

Something that’s a little surprising at first is that you define fields inside methods, and not
outside of the methods like C++ or Java (if you create fields using the C++/Java style, they
implicitly become static fields). To create an object field, you just name it – using self –
inside of one of the methods (usually in the constructor, but not always), and space is created
when that method is run. This seems a little strange coming from C++ or Java where you
must decide ahead of time how much space your object is going to occupy, but it turns out to
be a very flexible way to program.

Inheritance
Because Python is weakly typed, it doesn’t really care about interfaces – all it cares about is
applying operations to objects (in fact, Java’s interface keyword would be wasted in
Python). This means that inheritance in Python is different from inheritance in C++ or Java,
where you often inherit simply to establish a common interface. In Python, the only reason
you inherit is to inherit an implementation – to re-use the code in the base class.

If you’re going to inherit from a class, you must tell Python to bring that class into your new
file. Python controls its name spaces as aggressively as Java does, and in a similar fashion
(albeit with Python’s penchant for simplicity). Every time you create a file, you implicitly
create a module (which is like a package in Java) with the same name as that file. Thus, no
package keyword is needed in Python. When you want to use a module, you just say import
and give the name of the module. Python searches the PYTHONPATH in the same way that
Java searches the CLASSPATH (but for some reason, Python doesn’t have the same kinds of
pitfalls as Java does) and reads in the file. To refer to any of the functions or classes within a
module, you give the module name, a period, and the function or class name. If you don’t
want the trouble of qualifying the name, you can say

from module import name(s)

Where “name(s)” can be a list of names separated by commas.

You inherit a class (or classes – Python supports multiple inheritance) by listing the name(s)
of the class inside parentheses after the name of the inheriting class. Note that the Simple
class, which resides in the file (and thus, module) named SimpleClass is brought into this
new name space using an import statement:

interpreter:Simple2.py
from SimpleClass import Simple

class Simple2(Simple):
 def __init__(self, str):
 print "Inside Simple2 constructor"

83 z 157

 # You must explicitly call
 # the base-class constructor:
 Simple.__init__(self, str)
 def display(self):
 self.showMsg("Called from display()")
 # Overriding a base-class method
 def show(self):
 print "Overridden show() method"
 # Calling a base-class method from inside
 # the overridden method:
 Simple.show(self)

class Different:
 def show(self):
 print "Not derived from Simple"

if __name__ == "__main__":
 x = Simple2("Simple2 constructor argument")
 x.display()
 x.show()
 x.showMsg("Inside main")
 def f(obj): obj.show() # One-line definition
 f(x)
 f(Different())
##~

Simple2 is inherited from Simple, and in the constructor, the base-class constructor is
called. In display(), showMsg() can be called as a method of self, but when calling the
base-class version of the method you are overriding, you must fully qualify the name and pass
self in as the first argument, as shown in the base-class constructor call. This can also be seen
in the overridden version of show().

In __main__, you will see (when you run the program) that the base-class constructor is
called. You can also see that the showMsg() method is available in the derived class, just as
you would expect with inheritance.

The class Different also has a method named show(), but this class is not derived from
Simple. The f() method defined in __main__ demonstrates weak typing: all it cares about
is that show() can be applied to obj, and it doesn’t have any other type requirements. You
can see that f() can be applied equally to an object of a class derived from Simple and one
that isn’t, without discrimination. If you’re a C++ programmer, you should see that the
objective of the C++ template feature is exactly this: to provide weak typing in a strongly-
typed language. Thus, in Python you automatically get the equivalent of templates – without
having to learn that particularly difficult syntax and semantics.

Creating a language
It turns out to be remarkably simple to use Jython to create an interpreted language inside
your application. Consider the greenhouse controller example from Chapter 8 of Thinking in
Java, 2nd edition. This is a situation where you want the end user – the person managing the
greenhouse – to have configuration control over the system, and so a simple scripting
language is the ideal solution.

To create the language, we’ll simply write a set of Python classes, and the constructor of each
will add itself to a (static) master list. The common data and behavior will be factored into the
base class Event. Each Event object will contain an action string (for simplicity – in reality,
you’d have some sort of functionality) and a time when the event is supposed to run. The
constructor initializes these fields, and then adds the new Event object to a static list called
events (defining it in the class, but outside of any methods, is what makes it static):

#:interpreter:GreenHouseLanguage.py

84 z 157

class Event:
 events = [] # static
 def __init__(self, action, time):
 self.action = action
 self.time = time
 Event.events.append(self)
 # Used by sort(). This will cause
 # comparisons to be based only on time:
 def __cmp__ (self, other):
 if self.time < other.time: return -1
 if self.time > other.time: return 1
 return 0
 def run(self):
 print "%.2f: %s" % (self.time, self.action)

class LightOn(Event):
 def __init__(self, time):
 Event.__init__(self, "Light on", time)

class LightOff(Event):
 def __init__(self, time):
 Event.__init__(self, "Light off", time)

class WaterOn(Event):
 def __init__(self, time):
 Event.__init__(self, "Water on", time)

class WaterOff(Event):
 def __init__(self, time):
 Event.__init__(self, "Water off", time)

class ThermostatNight(Event):
 def __init__(self, time):
 Event.__init__(self,"Thermostat night", time)

class ThermostatDay(Event):
 def __init__(self, time):
 Event.__init__(self, "Thermostat day", time)

class Bell(Event):
 def __init__(self, time):
 Event.__init__(self, "Ring bell", time)

def run():
 Event.events.sort();
 for e in Event.events:
 e.run()

To test, this will be run when you say:
python GreenHouseLanguage.py
if __name__ == "__main__":
 ThermostatNight(5.00)
 LightOff(2.00)
 WaterOn(3.30)
 WaterOff(4.45)
 LightOn(1.00)
 ThermostatDay(6.00)
 Bell(7.00)
 run()
##~

The constructor of each derived class calls the base-class constructor, which adds the new

85 z 157

object to the list. The run() function sorts the list, which automatically uses the __cmp__
() method that was defined in Event to base comparisons on time only. In this example, it
only prints out the list, but in the real system it would wait for the time of each event to come
up and then run the event.

The __main__ section performs a simple test on the classes.

The above file is now a module that can be included in another Python program to define all
the classes it contains. But instead of an ordinary Python program, let’s use Jython, inside of
Java. This turns out to be remarkably simple: you import some Jython classes, create a
PythonInterpreter object, and cause the Python files to be loaded:

//- interpreter:GreenHouseController.java
package interpreter;
import org.python.util.PythonInterpreter;
import org.python.core.*;
import junit.framework.*;

public class
GreenHouseController extends TestCase {
 PythonInterpreter interp =
 new PythonInterpreter();
 public void test() throws PyException {
 System.out.println(
 "Loading GreenHouse Language");
 interp.execfile("GreenHouseLanguage.py");
 System.out.println(
 "Loading GreenHouse Script");
 interp.execfile("Schedule.ghs");
 System.out.println(
 "Executing GreenHouse Script");
 interp.exec("run()");
 }
 public static void
 main(String[] args) throws PyException {
 junit.textui.TestRunner.run(GreenHouseController.class);
 }
} ///:~

The PythonInterpreter object is a complete Python interpreter that accepts commands
from the Java program. One of these commands is execfile(), which tells it to execute all the
statements it finds in a particular file. By executing GreenHouseLanguage.py, all the
classes from that file are loaded into our PythonInterpreter object, and so it now “holds”
the greenhouse controller language. The Schedule.ghs file is the one created by the end user
to control the greenhouse. Here’s an example:

//:! interpreter:Schedule.ghs
Bell(7.00)
ThermostatDay(6.00)
WaterOn(3.30)
LightOn(1.00)
ThermostatNight(5.00)
LightOff(2.00)
WaterOff(4.45)
///:~

This is the goal of the interpreter design pattern: to make the configuration of your program
as simple as possible for the end user. With Jython you can achieve this with almost no effort
at all.

One of the other methods available to the PythonInterpreter is exec(), which allows you
to send a command to the interpreter. Here, the run() function is called using exec().

86 z 157

p g

Remember, to run this program you must go to http://jython.sourceforge.net and download
and install Jython (actually, you only need jython.jar in your CLASSPATH). Once that’s in
place, it’s just like running any other Java program.

Controlling the interpreter
The prior example only creates and runs the interpreter using external scripts. In the rest of
this chapter, we shall look at more sophisticated ways to interact with Jython. The simplest
way to exercise more control over the PythonInterpreter object from within Java is to send
data to the interpreter, and pull data back out.

Putting data in
To inject data into your Python program, the PythonInterpreter class has a deceptively
simple method: set(). However, set() takes many different data types and performs
conversions upon them. The following example is a reasonably thorough exercise of the
various set() possibilities, along with comments that should give a fairly complete
explanation:

//- interpreter:PythonInterpreterSetting.java
// Passing data from Java to python when using
// the PythonInterpreter object.
package interpreter;
import org.python.util.PythonInterpreter;
import org.python.core.*;
import java.util.*;
import com.bruceeckel.python.*;
import junit.framework.*;

public class
PythonInterpreterSetting extends TestCase {
 PythonInterpreter interp =
 new PythonInterpreter();
 public void test() throws PyException {
 // It automatically converts Strings
 // into native Python strings:
 interp.set("a", "This is a test");
 interp.exec("print a");
 interp.exec("print a[5:]"); // A slice
 // It also knows what to do with arrays:
 String[] s = { "How", "Do", "You", "Do?" };
 interp.set("b", s);
 interp.exec("for x in b: print x[0], x");
 // set() only takes Objects, so it can't
 // figure out primitives. Instead,
 // you have to use wrappers:
 interp.set("c", new PyInteger(1));
 interp.set("d", new PyFloat(2.2));
 interp.exec("print c + d");
 // You can also use Java's object wrappers:
 interp.set("c", new Integer(9));
 interp.set("d", new Float(3.14));
 interp.exec("print c + d");
 // Define a Python function to print arrays:
 interp.exec(
 "def prt(x): \n" +
 " print x \n" +
 " for i in x: \n" +
 " print i, \n" +

87 z 157

 " print x.__class__\n");
 // Arrays are Objects, so it has no trouble
 // figuring out the types contained in arrays:
 Object[] types = {
 new boolean[]{ true, false, false, true },
 new char[]{ 'a', 'b', 'c', 'd' },
 new byte[]{ 1, 2, 3, 4 },
 new int[]{ 10, 20, 30, 40 },
 new long[]{ 100, 200, 300, 400 },
 new float[]{ 1.1f, 2.2f, 3.3f, 4.4f },
 new double[]{ 1.1, 2.2, 3.3, 4.4 },
 };
 for(int i = 0; i < types.length; i++) {
 interp.set("e", types[i]);
 interp.exec("prt(e)");
 }
 // It uses toString() to print Java objects:
 interp.set("f", new Date());
 interp.exec("print f");
 // You can pass it a List
 // and index into it...
 List x = new ArrayList();
 for(int i = 0; i < 10; i++)
 x.add(new Integer(i * 10));
 interp.set("g", x);
 interp.exec("print g");
 interp.exec("print g[1]");
 // ... But it's not quite smart enough
 // to treat it as a Python array:
 interp.exec("print g.__class__");
 // interp.exec("print g[5:]); // Fails
 // If you want it to be a python array, you
 // must extract the Java array:
 System.out.println("ArrayList to array:");
 interp.set("h", x.toArray());
 interp.exec("print h.__class__");
 interp.exec("print h[5:]");
 // Passing in a Map:
 Map m = new HashMap();
 m.put(new Integer(1), new Character('a'));
 m.put(new Integer(3), new Character('b'));
 m.put(new Integer(5), new Character('c'));
 m.put(new Integer(7), new Character('d'));
 m.put(new Integer(11), new Character('e'));
 System.out.println("m: " + m);
 interp.set("m", m);
 interp.exec("print m, m.__class__, " +
 "m[1], m[1].__class__");
 // Not a Python dictionary, so this fails:
 //! interp.exec("for x in m.keys():" +
 //! "print x, m[x]");
 // To convert a Map to a Python dictionary,
 // use com.bruceeckel.python.PyUtil:
 interp.set("m", PyUtil.toPyDictionary(m));
 interp.exec("print m, m.__class__, " +
 "m[1], m[1].__class__");
 interp.exec("for x in m.keys():print x,m[x]");
 }
 public static void
 main(String[] args) throws PyException {
 junit.textui.TestRunner.run(

88 z 157

 PythonInterpreterSetting.class);
 }
} ///:~

As usual with Java, the distinction between real objects and primitive types causes trouble. In
general, if you pass a regular object to set(), it knows what to do with it, but if you want to
pass in a primitive you must perform a conversion. One way to do this is to create a “Py” type,
such as PyInteger or PyFloat. but it turns out you can also use Java’s own object wrappers
like Integer and Float, which is probably going to be a lot easier to remember.

Early in the program you’ll see an exec() containing the Python statement:

print a[5:]
The colon inside the indexing statement indicates a Python slice, which produces a range of
elements from the original array. In this case, it produces an array containing the elements
from number 5 until the end of the array. You could also say ‘a[3:5]’ to produce elements 3
through 5, or ‘a[:5]’ to produce the elements zero through 5. The reason a slice is used in this
statement is to make sure that the Java String has really been converted to a Python string,
which can also be treated as an array of characters.

You can see that it’s possible, using exec(), to create a Python function (although it’s a bit
awkward). The prt() function prints the whole array, and then (to make sure it’s a real
Python array), iterates through each element of the array and prints it. Finally, it prints the
class of the array, so we can see what conversion has taken place (Python not only has run-
time type information, it also has the equivalent of Java reflection). The prt() function is
used to print arrays that come from each of the Java primitive types.

Although a Java ArrayList does pass into the interpreter using set(), and you can index
into it as if it were an array, trying to create a slice fails. To completely convert it into an array,
one approach is to simply extract a Java array using toArray(), and pass that in. The set()
method converts it to a PyArray – one of the classes provided with Jython – which can be
treated as a Python array (you can also explicitly create a PyArray, but this seems
unnecessary).

Finally, a Map is created and passed directly into the interpreter. While it is possible to do
simple things like index into the resulting object, it’s not a real Python dictionary so you can’t
(for example) call the keys() method. There is no straightforward way to convert a Java
Map into a Python dictionary, and so I wrote a utility called toPyDictionary() and made it
a static method of com.bruceeckel.python.PyUtil. This also includes utilities to extract a
Python array into a Java List, and a Python dictionary into a Java Map:

//- com:bruceeckel:python:PyUtil.java
// PythonInterpreter utilities
package com.bruceeckel.python;
import org.python.util.PythonInterpreter;
import org.python.core.*;
import java.util.*;

public class PyUtil {
 /** Extract a Python tuple or array into a Java
 List (which can be converted into other kinds
 of lists and sets inside Java).
 @param interp The Python interpreter object
 @param pyName The id of the python list object
 */
 public static List
 toList(PythonInterpreter interp, String pyName){
 return new ArrayList(Arrays.asList(
 (Object[])interp.get(
 pyName, Object[].class)));
 }
 /** Extract a Python dictionary into a Java Map

89 z 157

 @param interp The Python interpreter object
 @param pyName The id of the python dictionary
 */
 public static Map
 toMap(PythonInterpreter interp, String pyName){
 PyList pa = ((PyDictionary)interp.get(
 pyName)).items();
 Map map = new HashMap();
 while(pa.__len__() != 0) {
 PyTuple po = (PyTuple)pa.pop();
 Object first = po.__finditem__(0)
 .__tojava__(Object.class);
 Object second = po.__finditem__(1)
 .__tojava__(Object.class);
 map.put(first, second);
 }
 return map;
 }
 /** Turn a Java Map into a PyDictionary,
 suitable for placing into a PythonInterpreter
 @param map The Java Map object
 */
 public static PyDictionary
 toPyDictionary(Map map) {
 Map m = new HashMap();
 Iterator it = map.entrySet().iterator();
 while(it.hasNext()) {
 Map.Entry e = (Map.Entry)it.next();
 m.put(Py.java2py(e.getKey()),
 Py.java2py(e.getValue()));
 }
 // PyDictionary constructor wants a Hashtable:
 return new PyDictionary(new Hashtable(m));
 }
} ///:~

Here is the (black-box) unit testing code:

//- com:bruceeckel:python:Test.java
package com.bruceeckel.python;
import org.python.util.PythonInterpreter;
import java.util.*;
import junit.framework.*;

public class Test extends TestCase {
 PythonInterpreter pi =
 new PythonInterpreter();
 public void test1() {
 pi.exec("tup=('fee','fi','fo','fum','fi')");
 List lst = PyUtil.toList(pi, "tup");
 System.out.println(lst);
 System.out.println(new HashSet(lst));
 }
 public void test2() {
 pi.exec("ints=[1,3,5,7,9,11,13,17,19]");
 List lst = PyUtil.toList(pi, "ints");
 System.out.println(lst);
 }
 public void test3() {
 pi.exec("dict = { 1 : 'a', 3 : 'b', " +
 "5 : 'c', 9 : 'd', 11 : 'e'}");

90 z 157

 Map mp = PyUtil.toMap(pi, "dict");
 System.out.println(mp);
 }
 public void test4() {
 Map m = new HashMap();
 m.put("twas", new Integer(11));
 m.put("brillig", new Integer(27));
 m.put("and", new Integer(47));
 m.put("the", new Integer(42));
 m.put("slithy", new Integer(33));
 m.put("toves", new Integer(55));
 System.out.println(m);
 pi.set("m", PyUtil.toPyDictionary(m));
 pi.exec("print m");
 pi.exec("print m['slithy']");
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(Test.class);
 }
} ///:~

We’ll see the use of the extraction tools in the next section.

Getting data out
There are a number of different ways to extract data from the PythonInterpreter. If you
simply call the get() method, passing it the object identifier as a string, it returns a
PyObject (part of the org.python.core support classes). It’s possible to “cast” it using the
__tojava__() method, but there are better alternatives:

1. The convenience methods in the Py class, such as py2int(), take a PyObject and
convert it to a number of different types.

2. An overloaded version of get() takes the desired Java Class object as a second
argument, and produces an object that has that run-time type (so you still need to
perform a cast on the result in your Java code).

Using the second approach, getting an array from the PythonInterpreter is quite easy. This
is especially useful because Python is exceptionally good at manipulating strings and files,
and so you will commonly want to extract the results as an array of strings. For example, you
can do a wildcard expansion of file names using Python’s glob(), as shown further down in
the following code:

//- interpreter:PythonInterpreterGetting.java
// Getting data from the PythonInterpreter object.
package interpreter;
import org.python.util.PythonInterpreter;
import org.python.core.*;
import java.util.*;
import com.bruceeckel.python.*;
import junit.framework.*;

public class
PythonInterpreterGetting extends TestCase {
 PythonInterpreter interp =
 new PythonInterpreter();
 public void test() throws PyException {
 interp.exec("a = 100");
 // If you just use the ordinary get(),
 // it returns a PyObject:
 PyObject a = interp.get("a");

91 z 157

 // There's not much you can do with a generic
 // PyObject, but you can print it out:
 System.out.println("a = " + a);
 // If you know the type it's supposed to be,
 // you can "cast" it using __tojava__() to
 // that Java type and manipulate it in Java.
 // To use 'a' as an int, you must use
 // the Integer wrapper class:
 int ai= ((Integer)a.__tojava__(Integer.class))
 .intValue();
 // There are also convenience functions:
 ai = Py.py2int(a);
 System.out.println("ai + 47 = " + (ai + 47));
 // You can convert it to different types:
 float af = Py.py2float(a);
 System.out.println("af + 47 = " + (af + 47));
 // If you try to cast it to an inappropriate
 // type you'll get a runtime exception:
 //! String as = (String)a.__tojava__(
 //! String.class);

 // If you know the type, a more useful method
 // is the overloaded get() that takes the
 // desired class as the 2nd argument:
 interp.exec("x = 1 + 2");
 int x = ((Integer)interp
 .get("x", Integer.class)).intValue();
 System.out.println("x = " + x);

 // Since Python is so good at manipulating
 // strings and files, you will often need to
 // extract an array of Strings. Here, a file
 // is read as a Python array:
 interp.exec("lines = " +
 "open('PythonInterpreterGetting.java')" +
 ".readlines()");
 // Pull it in as a Java array of String:
 String[] lines = (String[])
 interp.get("lines", String[].class);
 for(int i = 0; i < 10; i++)
 System.out.print(lines[i]);

 // As an example of useful string tools,
 // global expansion of ambiguous file names
 // using glob is very useful, but it's not
 // part of the standard Jython package, so
 // you'll have to make sure that your
 // Python path is set to include these, or
 // that you deliver the necessary Python
 // files with your application.
 interp.exec("from glob import glob");
 interp.exec("files = glob('*.java')");
 String[] files = (String[])
 interp.get("files", String[].class);
 for(int i = 0; i < files.length; i++)
 System.out.println(files[i]);

 // You can extract tuples and arrays into
 // Java Lists with com.bruceeckel.PyUtil:
 interp.exec(
 "tup = ('fee', 'fi', 'fo', 'fum', 'fi')");

92 z 157

 List tup = PyUtil.toList(interp, "tup");
 System.out.println(tup);
 // It really is a list of String objects:
 System.out.println(tup.get(0).getClass());
 // You can easily convert it to a Set:
 Set tups = new HashSet(tup);
 System.out.println(tups);
 interp.exec("ints=[1,3,5,7,9,11,13,17,19]");
 List ints = PyUtil.toList(interp, "ints");
 System.out.println(ints);
 // It really is a List of Integer objects:
 System.out.println((ints.get(1)).getClass());

 // If you have a Python dictionary, it can
 // be extracted into a Java Map, again with
 // com.bruceeckel.PyUtil:
 interp.exec("dict = { 1 : 'a', 3 : 'b'," +
 "5 : 'c', 9 : 'd', 11 : 'e' }");
 Map map = PyUtil.toMap(interp, "dict");
 System.out.println("map: " + map);
 // It really is Java objects, not PyObjects:
 Iterator it = map.entrySet().iterator();
 Map.Entry e = (Map.Entry)it.next();
 System.out.println(e.getKey().getClass());
 System.out.println(e.getValue().getClass());
 }
 public static void
 main(String[] args) throws PyException {
 junit.textui.TestRunner.run(
 PythonInterpreterGetting.class);
 }
} ///:~

The last two examples show the extraction of Python tuples and lists into Java Lists, and
Python dictionaries into Java Maps. Both of these cases require more processing than is
provided in the standard Jython library, so I have again created utilities in
com.bruceeckel.pyton.PyUtil: toList() to produce a List from a Python sequence, and
toMap() to produce a Map from a Python dictionary. The PyUtil methods make it easier to
take important data structures back and forth between Java and Python.

Multiple interpreters
It’s also worth noting that you can have multiple PythonInterpreter objects in a program,
and each one has its own name space:

//- interpreter:MultipleJythons.java
// You can run multiple interpreters, each
// with its own name space.
package interpreter;
import org.python.util.PythonInterpreter;
import org.python.core.*;
import junit.framework.*;

public class MultipleJythons extends TestCase {
 PythonInterpreter
 interp1 = new PythonInterpreter(),
 interp2 = new PythonInterpreter();
 public void test() throws PyException {
 interp1.set("a", new PyInteger(42));
 interp2.set("a", new PyInteger(47));
 interp1.exec("print a");

93 z 157

 interp2.exec("print a");
 PyObject x1 = interp1.get("a");
 PyObject x2 = interp2.get("a");
 System.out.println("a from interp1: " + x1);
 System.out.println("a from interp2: " + x2);
 }
 public static void
 main(String[] args) throws PyException {
 junit.textui.TestRunner.run(MultipleJythons.class);
 }
} ///:~

When you run the program you’ll see that the value of a is distinct within each
PythonInterpreter.

Controlling Java from Jython
Since you have the Java language at your disposal, and you can set and retrieve values in the
interpreter, there’s a tremendous amount that you can accomplish with the above approach
(controlling Python from Java). But one of the amazing things about Jython is that it makes
Java classes almost transparently available from within Jython. Basically, a Java class looks
like a Python class. This is true for standard Java library classes as well as classes that you
create yourself, as you can see here:

interpreter:JavaClassInPython.py
#=M jython.bat JavaClassInPython.py
Using Java classes within Jython
from java.util import Date, HashSet, HashMap
from interpreter.javaclass import JavaClass
from math import sin

d = Date() # Creating a Java Date object
print d # Calls toString()

A "generator" to easily create data:
class ValGen:
 def __init__(self, maxVal):
 self.val = range(maxVal)
 # Called during 'for' iteration:
 def __getitem__(self, i):
 # Returns a tuple of two elements:
 return self.val[i], sin(self.val[i])

Java standard containers:
map = HashMap()
set = HashSet()

for x, y in ValGen(10):
 map.put(x, y)
 set.add(y)
 set.add(y)

print map
print set

Iterating through a set:
for z in set:
 print z, z.__class__

print map[3] # Uses Python dictionary indexing

94 z 157

for x in map.keySet(): # keySet() is a Map method
 print x, map[x]

Using a Java class that you create yourself is
just as easy:
jc = JavaClass()
jc2 = JavaClass("Created within Jython")
print jc2.getVal()
jc.setVal("Using a Java class is trivial")
print jc.getVal()
print jc.getChars()
jc.val = "Using bean properties"
print jc.val
##~

The “=M” comment is recognized by the makefile generator tool (that I created for this book)
as a replacement makefile command. This will be used instead of the commands that the
extraction tool would normally place in the makefile.

Note that the import statements map to the Java package structure exactly as you would
expect. In the first example, a Date() object is created as if it were a native Python class, and
printing this object just calls toString().

ValGen implements the concept of a “generator” which is used a great deal in the C++ STL
(Standard Template Library, part of the Standard C++ Library). A generator is an object that
produces a new object every time its “generation method” is called, and it is quite convenient
for filling containers. Here, I wanted to use it in a for iteration, and so I needed the
generation method to be the one that is called by the iteration process. This is a special
method called __getitem__(), which is actually the overloaded operator for indexing, ‘[]’.
A for loop calls this method every time it wants to move the iteration forward, and when the
elements run out, __getitem__() throws an out-of-bounds exception and that signals the
end of the for loop (in other languages, you would never use an exception for ordinary
control flow, but in Python it seems to work quite well). This exception happens automatically
when self.val[i] runs out of elements, so the __getitem__() code turns out to be simple.
The only complexity is that __getitem__() appears to return two objects instead of just
one. What Python does is automatically package multiple return values into a tuple, so you
still only end up returning a single object (in C++ or Java you would have to create your own
data structure to accomplish this). In addition, in the for loop where ValGen is used, Python
automatically “unpacks” the tuple so that you can have multiple iterators in the for. These are
the kinds of syntax simplifications that make Python so endearing.

The map and set objects are instances of Java’s HashMap and HashSet, again created as if
those classes were just native Python components. In the for loop, the put() and add()
methods work just like they do in Java. Also, indexing into a Java Map uses the same
notation as for dictionaries, but note that to iterate through the keys in a Map you must use
the Map method keySet() rather than the Python dictionary method keys().

The final part of the example shows the use of a Java class that I created from scratch, to
demonstrate how trivial it is. Notice also that Jython intuitively understands JavaBeans
properties, since you can either use the getVal() and setVal() methods, or assign to and
read from the equivalent val property. Also, getChars() returns a Character[] in Java,
and this becomes an array in Python.

The easiest way to use Java classes that you create for use inside a Python program is to put
them inside a package. Although Jython can also import unpackaged java classes (import
JavaClass), all such unpackaged java classes will be treated as if they were defined in
different packages so they can only see each other’s public methods.

Java packages translate into Python modules, and Python must import a module in order to
be able to use the Java class. Here is the Java code for JavaClass:

//- interpreter:javaclass:JavaClass.java
package interpreter.javaclass;

95 z 157

import junit.framework.*;
import com.bruceeckel.util.*;

public class JavaClass {
 private String s = "";
 public JavaClass() {
 System.out.println("JavaClass()");
 }
 public JavaClass(String a) {
 s = a;
 System.out.println("JavaClass(String)");
 }
 public String getVal() {
 System.out.println("getVal()");
 return s;
 }
 public void setVal(String a) {
 System.out.println("setVal()");
 s = a;
 }
 public Character[] getChars() {
 System.out.println("getChars()");
 Character[] r = new Character[s.length()];
 for(int i = 0; i < s.length(); i++)
 r[i] = new Character(s.charAt(i));
 return r;
 }
 public static class Test extends TestCase {
 JavaClass
 x1 = new JavaClass(),
 x2 = new JavaClass("UnitTest");
 public void test1() {
 System.out.println(x2.getVal());
 x1.setVal("SpamEggsSausageAndSpam");
 System.out.println(
 Arrays2.toString(x1.getChars()));
 }
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(Test.class);
 }
} ///:~

You can see that this is just an ordinary Java class, without any awareness that it will be used
in a Jython program. For this reason, one of the important uses of Jython is in testing Java
code[10]. Because Python is such a powerful, flexible, dynamic language it is an ideal tool for
automated test frameworks, without making any changes to the Java code that’s being tested.

Inner Classes
Inner classes becomes attributes on the class object. Instances of static inner classes can be
create by the usual call:

com.foo.JavaClass.StaticInnerClass()
Non-static inner classes must have an outer class instance supplied explicitly as the first
argument:

com.foo.JavaClass.InnerClass(com.foo.JavaClass())

Using Java libraries

96 z 157

g
Jython wraps the Java libraries so that any of them can be used directly or via inheritance. In
addition, Python shorthand simplifies coding.

As an example, consider the HTMLButton.java example from Chapter 9 of Thinking in
Java, 2nd edition (you presumably have already downloaded and installed the source code for
that book from www.BruceEckel.com, since a number of examples in this book use libraries
from that book). Here is its conversion to Jython:

interpreter:PythonSwing.py
The HTMLButton.java example from
"Thinking in Java, 2nd edition," Chapter 13,
converted into Jython.
Don’t run this as part of the automatic make:
#=M @echo skipping PythonSwing.py
from javax.swing import JFrame, JButton, JLabel
from java.awt import FlowLayout

frame = JFrame("HTMLButton", visible=1,
 defaultCloseOperation=JFrame.EXIT_ON_CLOSE)

def kapow(e):
 frame.contentPane.add(JLabel("<html>"+
 "<i>Kapow!"))
 # Force a re-layout to
 # include the new label:
 frame.validate()

button = JButton("<html>" +
 "<center>Hello!
<i>Press me now!",
 actionPerformed=kapow)
frame.contentPane.layout = FlowLayout()
frame.contentPane.add(button)
frame.pack()
frame.size=200, 500
##~

If you compare the Java version of the program to the above Jython implementation, you’ll
see that Jython is shorter and generally easier to understand. For example, in the Java
version to set up the frame you had to make several calls: the constructor for JFrame(), the
setVisible() method and the setDefaultCloseOperation() method, whereas in the
above code all three of these operations are performed with a single constructor call.

Also notice that the JButton is configured with an actionListener() method inside the
constructor, with the assignment to kapow. In addition, Jython’s JavaBean awareness
means that a call to any method with a name that begins with “set” can be replaced with an
assignment, as you can see above.

The only method that did not come over from Java is the pack() method, which seems to be
essential in order to force the layout to happen properly. It’s also important that the call to
pack() appear before the size setting.

Inheriting from Java library classes
You can easily inherit from standard Java library classes in Jython. Here’s the Dialogs.java
example from Chapter 13 of Thinking in Java, 2nd edition, converted into Jython:

interpreter:PythonDialogs.py
Dialogs.java from "Thinking in Java, 2nd
edition," Chapter 13, converted into Jython.
Don’t run this as part of the automatic make:
#=M @echo skipping PythonDialogs.py
from java.awt import FlowLayout

97 z 157

from javax.swing import JFrame, JDialog, JLabel
from javax.swing import JButton

class MyDialog(JDialog):
 def __init__(self, parent=None):
 JDialog.__init__(self,
 title="My dialog", modal=1)
 self.contentPane.layout = FlowLayout()
 self.contentPane.add(JLabel("A dialog!"))
 self.contentPane.add(JButton("OK",
 actionPerformed =
 lambda e, t=self: t.dispose()))
 self.pack()

frame = JFrame("Dialogs", visible=1,
 defaultCloseOperation=JFrame.EXIT_ON_CLOSE)
dlg = MyDialog()
frame.contentPane.add(
 JButton("Press here to get a Dialog Box",
 actionPerformed = lambda e: dlg.show()))
frame.pack()
##~

MyDialog is inherited from JDialog, and you can see named arguments being used in the
call to the base-class constructor.

In the creation of the “OK” JButton, note that the actionPerformed method is set right
inside the constructor, and that the function is created using the Python lambda keyword.
This creates a nameless function with the arguments appearing before the colon and the
expression that generates the returned value after the colon. As you should know, the Java
prototype for the actionPerformed() method only contains a single argument, but the
lambda expression indicates two. However, the second argument is provided with a default
value, so the function can be called with only one argument. The reason for the second
argument is seen in the default value, because this is a way to pass self into the lambda
expression, so that it can be used to dispose of the dialog.

Compare this code with the version that’s published in Thinking in Java, 2nd edition. You’ll
find that Python language features allow a much more succinct and direct implementation.

Creating Java classes with
Jython

Although it does not directly relate to the original problem of this chapter (creating an
interpreter), Jython has the additional ability to create Java classes directly from your Jython
code. This can produce very useful results, as you are then able to treat the results as if they
are native Java classes, albeit with Python power under the hood.

To produce Java classes from Python code, Jython comes with a compiler called jythonc.

The process of creating Python classes that will produce Java classes is a bit more complex
than when calling Java classes from Python, because the methods in Java classes are strongly
typed, while Python functions and methods are weakly typed. Thus, you must somehow tell
jythonc that a Python method is intended to have a particular set of argument types and that
its return value is a particular type. You accomplish this with the “@sig” string, which is
placed right after the beginning of the Python method definition (this is the standard location
for the Python documentation string). For example:

 def returnArray(self):
 "@sig public java.lang.String[] returnArray()"

The Python definition doesn’t specify any return type, but the @sig string gives the full type

98 z 157

y p y y yp g g g yp
information about what is being passed and returned. The jythonc compiler uses this
information to generate the correct Java code.

There’s one other set of rules you must follow in order to get a successful compilation: you
must inherit from a Java class or interface in your Python class (you do not need to specify
the @sig signature for methods defined in the superclass/interface). If you do not do this,
you won’t get your desired methods – unfortunately, jythonc gives you no warnings or errors
in this case, but you won’t get what you want. If you don’t see what’s missing, it can be very
frustrating.

In addition, you must import the appropriate java class and give the correct package
specification. In the example below, java is imported so you must inherit from
java.lang.Object, but you could also say from java.lang import Object and then you’d
just inherit from Object without the package specification. Unfortunately, you don’t get any
warnings or errors if you get this wrong, so you must be patient and keep trying.

Here is an example of a Python class created to produce a Java class. This also introduces the
‘=T’ directive for the makefile builder tool, which specifies a different target than the one that
is normally used by the tool. In this case, the Python file is used to build a Java .class file, so
the class file is the desired makefile target. To accomplish this, the default makefile command
is replaced using the ‘=M’ directive (notice how you can break across lines using ‘\’):

interpreter:PythonToJavaClass.py
#=T python\java\test\PythonToJavaClass.class
#=M jythonc.bat --package python.java.test \
#=M PythonToJavaClass.py
A Python class created to produce a Java class
from jarray import array
import java

class PythonToJavaClass(java.lang.Object):
 # The '@sig' signature string is used to create
 # the proper signature in the resulting
 # Java code:
 def __init__(self):
 "@sig public PythonToJavaClass()"
 print "Constructor for PythonToJavaClass"

 def simple(self):
 "@sig public void simple()"
 print "simple()"

 # Returning values to Java:
 def returnString(self):
 "@sig public java.lang.String returnString()"
 return "howdy"

 # You must construct arrays to return along
 # with the type of the array:
 def returnArray(self):
 "@sig public java.lang.String[] returnArray()"
 test = ["fee", "fi", "fo", "fum"]
 return array(test, java.lang.String)

 def ints(self):
 "@sig public java.lang.Integer[] ints()"
 test = [1, 3, 5, 7, 11, 13, 17, 19, 23]
 return array(test, java.lang.Integer)

 def doubles(self):
 "@sig public java.lang.Double[] doubles()"
 test = [1, 3, 5, 7, 11, 13, 17, 19, 23]

99 z 157

 return array(test, java.lang.Double)

 # Passing arguments in from Java:
 def argIn1(self, a):
 "@sig public void argIn1(java.lang.String a)"
 print "a: %s" % a
 print "a.__class__", a.__class__

 def argIn2(self, a):
 "@sig public void argIn1(java.lang.Integer a)"
 print "a + 100: %d" % (a + 100)
 print "a.__class__", a.__class__

 def argIn3(self, a):
 "@sig public void argIn3(java.util.List a)"
 print "received List:", a, a.__class__
 print "element type:", a[0].__class__
 print "a[3] + a[5]:", a[5] + a[7]
 #! print "a[2:5]:", a[2:5] # Doesn't work

 def argIn4(self, a):
 "@sig public void \
 argIn4(org.python.core.PyArray a)"
 print "received type:", a.__class__
 print "a: ", a
 print "element type:", a[0].__class__
 print "a[3] + a[5]:", a[5] + a[7]
 print "a[2:5]:", a[2:5] # A real Python array

 # A map must be passed in as a PyDictionary:
 def argIn5(self, m):
 "@sig public void \
 argIn5(org.python.core.PyDictionary m)"
 print "received Map: ", m, m.__class__
 print "m['3']:", m['3']
 for x in m.keys():
 print x, m[x]
##~

First note that PythonToJavaClass is inherited from java.lang.Object; if you don’t do
this you will quietly get a Java class without the right signatures. You are not required to
inherit from Object; any other Java class will do.

This class is designed to demonstrate different arguments and return values, to provide you
with enough examples that you’ll be able to easily create your own signature strings. The first
three of these are fairly self-explanatory, but note the full qualification of the Java name in
the signature string.

In returnArray(), a Python array must be returned as a Java array. To do this, the Jython
array() function (from the jarray module) must be used, along with the type of the class for
the resulting array. Any time you need to return an array to Java, you must use array(), as
seen in the methods ints() and doubles().

The last methods show how to pass arguments in from Java. Basic types happen
automatically as long as you specify them in the @sig string, but you must use objects and
you cannot pass in primitives (that is, primitives must be ensconced in wrapper objects, such
as Integer).

In argIn3(), you can see that a Java List is transparently converted to something that
behaves just like a Python array, but is not a true array because you cannot take a slice from
it. If you want a true Python array, then you must create and pass a PyArray as in argIn4(),
where the slice is successful. Similarly, a Java Map must come in as a PyDictionary in order
to be treated as a Python dictionary.

100 z 157

y y

Here is the Java program to exercise the Java classes produced by the above Python code.
This also introduces the ‘=D’ directive for the makefile builder tool, which specifies a
dependency in addition to those detected by the tool. Here, you can’t compile
TestPythonToJavaClass.java until PythonToJavaClass.class is available:

//- interpreter:TestPythonToJavaClass.java
//+D python\java\test\PythonToJavaClass.class
package interpreter;
import java.lang.reflect.*;
import java.util.*;
import org.python.core.*;
import junit.framework.*;
import com.bruceeckel.util.*;
import com.bruceeckel.python.*;
// The package with the Python-generated classes:
import python.java.test.*;

public class
TestPythonToJavaClass extends TestCase {
 PythonToJavaClass p2j = new PythonToJavaClass();
 public void testDumpClassInfo() {
 System.out.println(
 Arrays2.toString(
 p2j.getClass().getConstructors()));
 Method[] methods =
 p2j.getClass().getMethods();
 for(int i = 0; i < methods.length; i++) {
 String nm = methods[i].toString();
 if(nm.indexOf("PythonToJavaClass") != -1)
 System.out.println(nm);
 }
 }
 public void test1() {
 p2j.simple();
 System.out.println(p2j.returnString());
 System.out.println(
 Arrays2.toString(p2j.returnArray()));
 System.out.println(
 Arrays2.toString(p2j.ints());
 System.out.println(
 Arrays2.toString(p2j.doubles()));
 p2j.argIn1("Testing argIn1()");
 p2j.argIn2(new Integer(47));
 ArrayList a = new ArrayList();
 for(int i = 0; i < 10; i++)
 a.add(new Integer(i));
 p2j.argIn3(a);
 p2j.argIn4(
 new PyArray(Integer.class, a.toArray()));
 Map m = new HashMap();
 for(int i = 0; i < 10; i++)
 m.put("" + i, new Float(i));
 p2j.argIn5(PyUtil.toPyDictionary(m));
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(
 TestPythonToJavaClass.class);
 }
} ///:~

101 z 157

For Python support, you’ll usually only need to import the classes in org.python.core.
Everything else in the above example is fairly straightforward, as PythonToJavaClass
appears, from the Java side, to be just another Java class. dumpClassInfo() uses reflection
to verify that the method signatures specified in PythonToJavaClass.py have come
through properly.

Building the Java classes from the Python
code
Part of the trick of creating Java classes from Python code is the @sig information in the
method documentation strings. But there’s a second problem which stems from the fact that
Python has no “package” keyword – the Python equivalent of packages (modules) are
implicitly created based on the file name. However, to bring the resulting class files into the
Java program, jythonc must be given information about how to create the Java package for
the Python code. This is done on the jythonc command line using the --package flag,
followed by the package name you wish to produce (including the separation dots, just as you
would give the package name using the package keyword in a Java program). This will put
the resulting .class files in the appropriate subdirectory off of the current directory. Then you
only need to import the package in your Java program, as shown above (you’ll need ‘.’ in your
CLASSPATH in order to run it from the code directory).

Here are the make dependency rules that I used to build the above example (the backslashes
at the ends of the lines are understood by make to be line continuations). These rules are
encoded into the above Java and Python files using the comment syntax that’s understood by
my makefile builder tool:

TestPythonToJavaClass.class: \
 TestPythonToJavaClass.java \
 python\java\test\PythonToJavaClass.class
 javac TestPythonToJavaClass.java

python\java\test\PythonToJavaClass.class: \
 PythonToJavaClass.py
 jythonc.bat --package python.java.test \
 PythonToJavaClass.py

The first target, TestPythonToJavaClass.class, depends on both
TestPythonToJavaClass.java and the PythonToJavaClass.class, which is the Python
code that’s converted to a class file. This latter, in turn, depends on the Python source code.
Note that it’s important that the directory where the target lives be specified, so that the
makefile will create the Java program with the minimum necessary amount of rebuilding.

The Java-Python Extension (JPE)
An alternative to Jython is the Java-Python Extension (JPE), which directly connects with
your native C-Python implementation.

Jython runs entirely within the JavaVM, which produces two fundamental limitations:
Jython cannot be called from CPython, and native Python extensions are not accessible from
JPython. JPE is linked with the Python C libraries, so JPE can be called from C-Python, and
native Python extensions can be called from Java through JPE.

If you need to access the features on your native platform, JPE might be the easiest solution.
You can find JPE at http://www.arakne.com/jpe.htm.

Summary
This chapter has arguably gone much deeper into Jython than required to use the interpreter
design pattern. Indeed, once you decide that you need to use interpreter and that you’re not

102 z 157

g p y y p y
going to get lost inventing your own language, the solution of installing Jython is quite
simple, and you can at least get started by following the GreenHouseController example.

Of course, that example is often too simple and you may need something more sophisticated,
often requiring more interesting data to be passed back and forth. When I encountered the
limited documentation, I felt it necessary to come up with a more thorough examination of
Jython.

In the process, note that there could be another equally powerful design pattern lurking in
here, which could perhaps be called multiple languages. This is based on the experience of
having each language solve a certain class of problems better than the other; by combining
languages you can solve problems much faster than with either language by itself. CORBA is
another way to bridge across languages, and at the same time bridging between computers
and operating systems.

To me, Python and Java present a very potent combination for program development because
of Java’s architecture and tool set, and Python’s extremely rapid development (generally
considered to be 5-10 times faster than C++ or Java). Python is usually slower, however, but
even if you end up re-coding parts of your program for speed, the initial fast development will
allow you to more quickly flesh out the system and uncover and solve the critical sections.
And often, the execution speed of Python is not a problem – in those cases it’s an even bigger
win. A number of commercial products already use Java and Jython, and because of the
terrific productivity leverage I expect to see this happen more in the future.

Exercises
 1. Modify GreenHouseLanguage.py so that it checks the times for the events and

runs those events at the appropriate times.

 2. Modify GreenHouseLanguage.py so that it calls a function for action instead of
just printing a string.

 3. Create a Swing application with a JTextField (where the user will enter commands)
and a JTextArea (where the command results will be displayed). Connect to a
PythonInterpreter object so that the output will be sent to the JTextArea (which
should scroll). You’ll need to locate the PythonInterpreter command that redirects
the output to a Java stream.

 4. Modify GreenHouseLanguage.py to add a master controller class (instead of the
static array inside Event) and provide a run() method for each of the subclasses.
Each run() should create and use an object from the standard Java library during its
execution. Modify GreenHouseController.java to use this new class.

 5. Modify the resulting GreenHouseLanguage.py from exercise two to produce Java
classes (add the @sig documentation strings to produce the correct Java signatures,
and create a makefile to build the Java .class files). Write a Java program that uses
these classes.

Complex system states
StateMachine

While State has a way to allow the client programmer to change the implementation,
StateMachine imposes a structure to automatically change the implementation from one

103 z 157

p y g p
object to the next. The current implementation represents the state that a system is in, and
the system behaves differently from one state to the next (because it uses State). Basically,
this is a “state machine” using objects.

The code that moves the system from one state to the next is often a Template Method, as
seen in the following framework for a basic state machine. We start by defining a tagging
interface for input objects:

//: statemachine:Input.java
// Inputs to a state machine
package statemachine;

public interface Input {} ///:~

Each state can be run() to perform its behavior, and (in this design) you can also pass it an
Input object so it can tell you what new state to move to based on that Input. The key
distinction between this design and the next is that here, each State object decides what
other states it can move to, based on the Input, whereas in the subsequent design all of the
state transitions are held in a single table. Another way to put it is that here, each State object
has its own little State table, and in the subsequent design there is a single master state
transition table for the whole system.

//: statemachine:State.java
// A State has an operation, and can be moved
// into the next State given an Input:
package statemachine;

public interface State {
 void run();
 State next(Input i);
} ///:~

The StateMachine keeps track of the current state, which is initialized by the constructor.
The runAll() method takes an Iterator to a list of Input objects (an Iterator is used here
for convenience and simplicity; the important issue is that the input information comes from
somewhere). This method not only moves to the next state, but it also calls run() for each
state object – thus you can see it’s an expansion of the idea of the State pattern, since run()
does something different depending on the state that the system is in.

//: statemachine:StateMachine.java
// Takes an Iterator of Inputs to move from State
// to State using a template method.
package statemachine;
import java.util.*;

public class StateMachine {
 private State currentState;
 public StateMachine(State initialState) {
 currentState = initialState;
 currentState.run();
 }
 // Template method:
 public final void runAll(Iterator inputs) {
 while(inputs.hasNext()) {
 Input i = (Input)inputs.next();
 System.out.println(i);
 currentState = currentState.next(i);
 currentState.run();
 }
 }
} ///:~

I’ve also treated runAll() as a template method. This is typical, but certainly not required –

104 z 157

p yp y q
you could concievably want to override it, but typically the behavior change will occur in
State’s run() instead.

At this point the basic framework for this style of StateMachine (where each state decides the
next states) is complete. As an example, I’ll use a fancy mousetrap that can move through
several states in the process of trapping a mouse[11]. The mouse classes and information are
stored in the mouse package, including a class representing all the possible moves that a
mouse can make, which will be the inputs to the state machine:

//: statemachine:mouse:MouseAction.java
package statemachine.mouse;
import java.util.*;
import statemachine.*;

public class MouseAction implements Input {
 private String action;
 private static List instances = new ArrayList();
 private MouseAction(String a) {
 action = a;
 instances.add(this);
 }
 public String toString() { return action; }
 public int hashCode() {
 return action.hashCode();
 }
 public boolean equals(Object o) {
 return (o instanceof MouseAction)
 && action.equals(((MouseAction)o).action);
 }
 public static MouseAction forString(String description) {
 Iterator it = instances.iterator();
 while(it.hasNext()) {
 MouseAction ma = (MouseAction)it.next();
 if(ma.action.equals(description))
 return ma;
 }
 throw new RuntimeException("not found: " + description);
 }
 public static MouseAction
 appears = new MouseAction("mouse appears"),
 runsAway = new MouseAction("mouse runs away"),
 enters = new MouseAction("mouse enters trap"),
 escapes = new MouseAction("mouse escapes"),
 trapped = new MouseAction("mouse trapped"),
 removed = new MouseAction("mouse removed");
} ///:~

You’ll note that hashCode() and equals() have been overriden so that MouseAction
objects can be used as keys in a HashMap, but in the first version of the mousetrap we won’t
do this. Also, each possible move by a mouse is enumerated as a static MouseAction object.

For creating test code, a sequence of mouse inputs is provided from a text file:

//:! statemachine:mouse:MouseMoves.txt
mouse appears
mouse runs away
mouse appears
mouse enters trap
mouse escapes
mouse appears
mouse enters trap

105 z 157

mouse trapped
mouse removed
mouse appears
mouse runs away
mouse appears
mouse enters trap
mouse trapped
mouse removed
///:~

To read this file in a generic fashion, here is a general-purpose tool called StringList:

//: com:bruceeckel:util:StringList.java
// General-purpose tool that reads a file of text
// lines into a List, one line per list.
package com.bruceeckel.util;
import java.io.*;
import java.util.*;

public class StringList extends ArrayList {
 public StringList(String textFilePath) {
 try {
 BufferedReader inputs = new BufferedReader (
 new FileReader(textFilePath));
 String line;
 while((line = inputs.readLine()) != null)
 add(line.trim());
 } catch(IOException e) {
 throw new RuntimeException(e);
 }
 }
} ///:~

This StringList only holds Objects, just as an ArrayList does, so we need an adapter to
turn the Strings into MouseActions:

//: statemachine:mouse:MouseMoveList.java
// A "transformer" to produce a
// List of MouseAction objects.
package statemachine.mouse;
import java.util.*;
import com.bruceeckel.util.*;

public class MouseMoveList extends ArrayList {
 public MouseMoveList(Iterator it) {
 while(it.hasNext())
 add(MouseAction.forString((String)it.next()));
 }
} ///:~

The MouseMoveList looks a bit like a decorator, and acts a bit like an adapter. However, an
adapter changes one interface to another, and a decorator adds functionality or data.
MouseMoveList changes the contents of the container, so it might be thought of as a
Transformer.

With these tools in place, it’s now possible to create the first version of the mousetrap
program. Each State subclass defines it’s run() behavior, and also establishes its next state
with an if-else clause:

//: statemachine:mousetrap1:MouseTrapTest.java
// State Machine pattern using 'if' statements
// to determine the next state.
package statemachine.mousetrap1;

106 z 157

import statemachine.mouse.*;
import statemachine.*;
import com.bruceeckel.util.*;
import java.util.*;
import java.io.*;
import junit.framework.*;

// A different subclass for each state:

class Waiting implements State {
 public void run() {
 System.out.println(
 "Waiting: Broadcasting cheese smell");
 }
 public State next(Input i) {
 MouseAction ma = (MouseAction)i;
 if(ma.equals(MouseAction.appears))
 return MouseTrap.luring;
 return MouseTrap.waiting;
 }
}

class Luring implements State {
 public void run() {
 System.out.println(
 "Luring: Presenting Cheese, door open");
 }
 public State next(Input i) {
 MouseAction ma = (MouseAction)i;
 if(ma.equals(MouseAction.runsAway))
 return MouseTrap.waiting;
 if(ma.equals(MouseAction.enters))
 return MouseTrap.trapping;
 return MouseTrap.luring;
 }
}

class Trapping implements State {
 public void run() {
 System.out.println("Trapping: Closing door");
 }
 public State next(Input i) {
 MouseAction ma = (MouseAction)i;
 if(ma.equals(MouseAction.escapes))
 return MouseTrap.waiting;
 if(ma.equals(MouseAction.trapped))
 return MouseTrap.holding;
 return MouseTrap.trapping;
 }
}

class Holding implements State {
 public void run() {
 System.out.println("Holding: Mouse caught");
 }
 public State next(Input i) {
 MouseAction ma = (MouseAction)i;
 if(ma.equals(MouseAction.removed))
 return MouseTrap.waiting;
 return MouseTrap.holding;
 }

107 z 157

}

class MouseTrap extends StateMachine {
 public static State
 waiting = new Waiting(),
 luring = new Luring(),
 trapping = new Trapping(),
 holding = new Holding();
 public MouseTrap() {
 super(waiting); // Initial state
 }
}

public class MouseTrapTest extends TestCase {
 MouseTrap trap = new MouseTrap();
 MouseMoveList moves =
 new MouseMoveList(
 new StringList("../mouse/MouseMoves.txt")
 .iterator());
 public void test() {
 trap.runAll(moves.iterator());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(MouseTrapTest.class);
 }
} ///:~

The StateMachine class simply defines all the possible states as static objects, and also sets
up the initial state. The UnitTest creates a MouseTrap and then tests it with all the inputs
from a MouseMoveList.

While the use of if-else statements inside the next() methods is perfectly reasonable,
managing a large number of these could become difficult. Another approach is to create tables
inside each State object defining the various next states based on the input.

Initially, this seems like it ought to be quite simple. You should be able to define a static table
in each State subclass that defines the transitions in terms of the other State objects.
However, it turns out that this approach generates cyclic initialization dependencies. To solve
the problem, I’ve had to delay the initialization of the tables until the first time that the next
() method is called for a particular State object. Initially, the next() methods can appear a
little strange because of this.

The StateT class is an implementation of State (so that the same StateMachine class can
be used from the previous example) that adds a Map and a method to initialize the map from
a two-dimensional array. The next() method has a base-class implementation which must
be called from the overridden derived class next() methods after they test for a null Map
(and initialize it if it’s null):

//: statemachine:mousetrap2:MouseTrap2Test.java
// A better mousetrap using tables
package statemachine.mousetrap2;
import statemachine.mouse.*;
import statemachine.*;
import java.util.*;
import java.io.*;
import com.bruceeckel.util.*;
import junit.framework.*;

abstract class StateT implements State {
 protected Map transitions = null;
 protected void init(Object[][] states) {
 transitions = new HashMap();
 for(int i = 0; i < states.length; i++)

108 z 157

 transitions.put(states[i][0], states[i][1]);
 }
 public abstract void run();
 public State next(Input i) {
 if(transitions.containsKey(i))
 return (State)transitions.get(i);
 else
 throw new RuntimeException(
 "Input not supported for current state");
 }
}

class MouseTrap extends StateMachine {
 public static State
 waiting = new Waiting(),
 luring = new Luring(),
 trapping = new Trapping(),
 holding = new Holding();
 public MouseTrap() {
 super(waiting); // Initial state
 }
}

class Waiting extends StateT {
 public void run() {
 System.out.println(
 "Waiting: Broadcasting cheese smell");
 }
 public State next(Input i) {
 // Delayed initialization:
 if(transitions == null)
 init(new Object[][] {
 { MouseAction.appears, MouseTrap.luring },
 });
 return super.next(i);
 }
}

class Luring extends StateT {
 public void run() {
 System.out.println(
 "Luring: Presenting Cheese, door open");
 }
 public State next(Input i) {
 if(transitions == null)
 init(new Object[][] {
 { MouseAction.enters, MouseTrap.trapping },
 { MouseAction.runsAway, MouseTrap.waiting },
 });
 return super.next(i);
 }
}

class Trapping extends StateT {
 public void run() {
 System.out.println("Trapping: Closing door");
 }
 public State next(Input i) {
 if(transitions == null)
 init(new Object[][] {
 { MouseAction.escapes, MouseTrap.waiting },

109 z 157

 { MouseAction.trapped, MouseTrap.holding },
 });
 return super.next(i);
 }
}

class Holding extends StateT {
 public void run() {
 System.out.println("Holding: Mouse caught");
 }
 public State next(Input i) {
 if(transitions == null)
 init(new Object[][] {
 { MouseAction.removed, MouseTrap.waiting },
 });
 return super.next(i);
 }
}

public class MouseTrap2Test extends TestCase {
 MouseTrap trap = new MouseTrap();
 MouseMoveList moves =
 new MouseMoveList(
 new StringList("../mouse/MouseMoves.txt")
 .iterator());
 public void test() {
 trap.runAll(moves.iterator());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(MouseTrap2Test.class);
 }
} ///:~

The rest of the code is identical – the difference is in the next() methods and the StateT
class.

If you have to create and maintain a lot of State classes, this approach is an improvement,
since it’s easier to quickly read and understand the state transitions from looking at the table.

Exercises
 1. Modify MouseTrap2Test.java so that the state table information is loaded from

an external text file, which only contains the state table information.

Table-Driven State Machine
The advantage of the previous design is that all the information about a state, including the
state transition information, is located within the state class itself. This is generally a good
design principle.

However, in a pure state machine, the machine can be completely represented by a single
state-transition table. This has the advantage of locating all the information about the state
machine in a single place, which means that you can more easily create and maintain the
table based on a classic state-transition diagram.

The classic state-transition diagram uses a circle to represent each state, and lines from the
state pointing to all states that state can transition into. Each transition line is annotated with
conditions for transition and an action during transition. Here’s what it looks like:

(Simple State Machine Diagram)

Goals:

110 z 157

• Direct translation of state diagram

• Vector of change: the state diagram representation

• Reasonable implementation

• No excess of states (you could represent every single change with a new state)

• Simplicity and flexibility

Observations:

• States are trivial – no information or functions/data, just an identity

• Not like the State pattern!

• The machine governs the move from state to state

• Similar to flyweight

• Each state may move to many others

• Condition & action functions must also be external to states

• Centralize description in a single table containing all variations, for ease of
configuration

Example:

• State Machine & Table-Driven Code

• Implements a vending machine

• Uses several other patterns

• Separates common state-machine code from specific application (like template
method)

• Each input causes a seek for appropriate solution (like chain of responsibility)

• Tests and transitions are encapsulated in function objects (objects that hold
functions)

• Java constraint: methods are not first-class objects

111 z 157

The State class
The State class is distinctly different from before, since it is really just a placeholder with a
name. Thus it is not inherited from previous State classes:

//: statemachine2:State.java
package statemachine2;

public class State {
 private String name;
 public State(String nm) { name = nm; }
 public String toString() { return name; }
} ///:~

Conditions for transition
In the state transition diagram, an input is tested to see if it meets the condition necessary to
transfer to the state under question. As before, the Input is just a tagging interface:

//: statemachine2:Input.java
// Inputs to a state machine
package statemachine2;

public interface Input {} ///:~

The Condition evaluates the Input to decide whether this row in the table is the correct
transition:

//: statemachine2:Condition.java
// Condition function object for state machine
package statemachine2;

public interface Condition {
 boolean condition(Input i);
} ///:~

Transition actions
If the Condition returns true, then the transition to a new state is made, and as that
transition is made some kind of action occurs (in the previous state machine design, this was
the run() method):

//: statemachine2:Transition.java
// Transition function object for state machine
package statemachine2;

public interface Transition {
 void transition(Input i);
} ///:~

The table
With these classes in place, we can set up a 3-dimensional table where each row completely

112 z 157

p p p y
describes a state. The first element in the row is the current state, and the rest of the elements
are each a row indicating what the type of the input can be, the condition that must be
satisfied in order for this state change to be the correct one, the action that happens during
transition, and the new state to move into. Note that the Input object is not just used for its
type, it is also a Messenger object that carries information to the Condition and Transition
objects:

{ {CurrentState},
 {Input, Condition(Input), Transition(Input), Next},
 {Input, Condition(Input), Transition(Input), Next},
 {Input, Condition(Input), Transition(Input), Next},
 ...
}

The basic machine
//: statemachine2:StateMachine.java
// A table-driven state machine
package statemachine2;
import java.util.*;

public class StateMachine {
 private State state;
 private Map map = new HashMap();
 public StateMachine(State initial) {
 state = initial;
 }
 public void buildTable(Object[][][] table) {
 for(int i = 0; i < table.length; i++) {
 Object[][] row = table[i];
 Object currentState = row[0][0];
 List transitions = new ArrayList();
 for(int j = 1; j < row.length; j++)
 transitions.add(row[j]);
 map.put(currentState, transitions);
 }
 }
 public void nextState(Input input) {
 Iterator it=((List)map.get(state)).iterator();
 while(it.hasNext()) {
 Object[] tran = (Object[])it.next();
 if(input == tran[0] ||
 input.getClass() == tran[0]) {
 if(tran[1] != null) {
 Condition c = (Condition)tran[1];
 if(!c.condition(input))
 continue; // Failed test
 }
 if(tran[2] != null)
 ((Transition)tran[2]).transition(input);
 state = (State)tran[3];
 return;
 }
 }
 throw new RuntimeException(
 "Input not supported for current state");
 }
} ///:~

113 z 157

Simple vending machine
//: statemachine:vendingmachine:VendingMachine.java
// Demonstrates use of StateMachine.java
package statemachine.vendingmachine;
import statemachine2.*;

final class VM extends State {
 private VM(String nm) { super(nm); }
 public final static VM
 quiescent = new VM("Quiesecent"),
 collecting = new VM("Collecting"),
 selecting = new VM("Selecting"),
 unavailable = new VM("Unavailable"),
 wantMore = new VM("Want More?"),
 noChange = new VM("Use Exact Change Only"),
 makesChange = new VM("Machine makes change");
}
final class HasChange implements Input {
 private String name;
 private HasChange(String nm) { name = nm; }
 public String toString() { return name; }
 public final static HasChange
 yes = new HasChange("Has change"),
 no = new HasChange("Cannot make change");
}
class ChangeAvailable extends StateMachine {
 public ChangeAvailable() {
 super(VM.makesChange);
 buildTable(new Object[][][]{
 { {VM.makesChange}, // Current state
 // Input, test, transition, next state:
 {HasChange.no, null, null, VM.noChange}},
 { {VM.noChange}, // Current state
 // Input, test, transition, next state:
 {HasChange.yes, null,
 null, VM.makesChange}},
 });
 }
}
final class Money implements Input {
 private String name;
 private int value;
 private Money(String nm, int val) {
 name = nm;
 value = val;
 }
 public String toString() { return name; }
 public int getValue() { return value; }
 public final static Money
 quarter = new Money("Quarter", 25),
 dollar = new Money("Dollar", 100);
}
final class Quit implements Input {
 private Quit() {}
 public String toString() { return "Quit"; }
 public final static Quit quit = new Quit();
}
final class FirstDigit implements Input {
 private String name;

114 z 157

 private int value;
 private FirstDigit(String nm, int val) {
 name = nm;
 value = val;
 }
 public String toString() { return name; }
 public int getValue() { return value; }
 public final static FirstDigit
 A = new FirstDigit("A", 0),
 B = new FirstDigit("B", 1),
 C = new FirstDigit("C", 2),
 D = new FirstDigit("D", 3);
}
final class SecondDigit implements Input {
 private String name;
 private int value;
 private SecondDigit(String nm, int val) {
 name = nm;
 value = val;
 }
 public String toString() { return name; }
 public int getValue() { return value; }
 public final static SecondDigit
 one = new SecondDigit("one", 0),
 two = new SecondDigit("two", 1),
 three = new SecondDigit("three", 2),
 four = new SecondDigit("four", 3);
}
class ItemSlot {
 int price;
 int quantity;
 static int counter = 0;
 String id = Integer.toString(counter++);
 public ItemSlot(int prc, int quant) {
 price = prc;
 quantity = quant;
 }
 public String toString() { return id; }
 public int getPrice() { return price; }
 public int getQuantity() { return quantity; }
 public void decrQuantity() { quantity--; }
}
public class VendingMachine extends StateMachine{
 StateMachine changeAvailable =
 new ChangeAvailable();
 int amount = 0;
 FirstDigit first = null;
 ItemSlot[][] items = new ItemSlot[4][4];
 Condition notEnough = new Condition() {
 public boolean condition(Input input) {
 int i1 = first.getValue();
 int i2 = ((SecondDigit)input).getValue();
 return items[i1][i2].getPrice() > amount;
 }
 };
 Condition itemAvailable = new Condition() {
 public boolean condition(Input input) {
 int i1 = first.getValue();
 int i2 = ((SecondDigit)input).getValue();
 return items[i1][i2].getQuantity() > 0;
 }

115 z 157

 };
 Condition itemNotAvailable = new Condition() {
 public boolean condition(Input input) {
 return !itemAvailable.condition(input);
 }
 };
 Transition clearSelection = new Transition() {
 public void transition(Input input) {
 int i1 = first.getValue();
 int i2 = ((SecondDigit)input).getValue();
 ItemSlot is = items[i1][i2];
 System.out.println(
 "Clearing selection: item " + is +
 " costs " + is.getPrice() +
 " and has quantity " + is.getQuantity());
 first = null;
 }
 };
 Transition dispense = new Transition() {
 public void transition(Input input) {
 int i1 = first.getValue();
 int i2 = ((SecondDigit)input).getValue();
 ItemSlot is = items[i1][i2];
 System.out.println("Dispensing item " +
 is + " costs " + is.getPrice() +
 " and has quantity " + is.getQuantity());
 items[i1][i2].decrQuantity();
 System.out.println("New Quantity " +
 is.getQuantity());
 amount -= is.getPrice();
 System.out.println("Amount remaining " +
 amount);
 }
 };
 Transition showTotal = new Transition() {
 public void transition(Input input) {
 amount += ((Money)input).getValue();
 System.out.println("Total amount = " +
 amount);
 }
 };
 Transition returnChange = new Transition() {
 public void transition(Input input) {
 System.out.println("Returning " + amount);
 amount = 0;
 }
 };
 Transition showDigit = new Transition() {
 public void transition(Input input) {
 first = (FirstDigit)input;
 System.out.println("First Digit= "+ first);
 }
 };
 public VendingMachine() {
 super(VM.quiescent); // Initial state
 for(int i = 0; i < items.length; i++)
 for(int j = 0; j < items[i].length; j++)
 items[i][j] = new ItemSlot((j+1)*25, 5);
 items[3][0] = new ItemSlot(25, 0);
 buildTable(new Object[][][]{
 { {VM.quiescent}, // Current state

116 z 157

 // Input, test, transition, next state:
 {Money.class, null,
 showTotal, VM.collecting}},
 { {VM.collecting}, // Current state
 // Input, test, transition, next state:
 {Quit.quit, null,
 returnChange, VM.quiescent},
 {Money.class, null,
 showTotal, VM.collecting},
 {FirstDigit.class, null,
 showDigit, VM.selecting}},
 { {VM.selecting}, // Current state
 // Input, test, transition, next state:
 {Quit.quit, null,
 returnChange, VM.quiescent},
 {SecondDigit.class, notEnough,
 clearSelection, VM.collecting},
 {SecondDigit.class, itemNotAvailable,
 clearSelection, VM.unavailable},
 {SecondDigit.class, itemAvailable,
 dispense, VM.wantMore}},
 { {VM.unavailable}, // Current state
 // Input, test, transition, next state:
 {Quit.quit, null,
 returnChange, VM.quiescent},
 {FirstDigit.class, null,
 showDigit, VM.selecting}},
 { {VM.wantMore}, // Current state
 // Input, test, transition, next state:
 {Quit.quit, null,
 returnChange, VM.quiescent},
 {FirstDigit.class, null,
 showDigit, VM.selecting}},
 });
 }
} ///:~

Testing the machine
//: statemachine:vendingmachine:VendingMachineTest.java
// Demonstrates use of StateMachine.java
package statemachine.vendingmachine;
import statemachine2.*;
import junit.framework.*;

public class VendingMachineTest extends TestCase {
 VendingMachine vm = new VendingMachine();
 Input[] inputs = {
 Money.quarter,
 Money.quarter,
 Money.dollar,
 FirstDigit.A,
 SecondDigit.two,
 FirstDigit.A,
 SecondDigit.two,
 FirstDigit.C,
 SecondDigit.three,
 FirstDigit.D,
 SecondDigit.one,
 Quit.quit,
 };

117 z 157

 public void test() {
 for(int i = 0; i < inputs.length; i++)
 vm.nextState(inputs[i]);
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(VendingMachineTest.class);
 }
} ///:~

Tools
Another approach, as your state machine gets bigger, is to use an automation tool whereby
you configure a table and let the tool generate the state machine code for you. This can be
created yourself using a language like Python, but there are also free, open-source tools such
as Libero, at http://www.imatix.com.

Table-driven code: configuration
flexibility

Table-driven code using anonymous inner
classes
See ListPerformance.java example in TIJ from Chapter 9

Also GreenHouse.java

Exercises
 1. Apply TransitionTable.java to the “Washer” problem.

 2. Create a StateMachine system whereby the current state along with input
information determines the next state that the system will be in. To do this, each state
must store a reference back to the proxy object (the state controller) so that it can
request the state change. Use a HashMap to create a table of states, where the key is
a String naming the new state and the value is the new state object. Inside each state
subclass override a method nextState() that has its own state-transition table. The
input to nextState() should be a single word that comes from a text file containing
one word per line.

 3. Modify the previous exercise so that the state machine can be configured by
creating/modifying a single multi-dimensional array.

 4. Modify the “mood” exercise from the previous session so that it becomes a state
machine using StateMachine.java

 5. Create an elevator state machine system using StateMachine.java

 6. Create a heating/air-conditioning system using StateMachine.java

 7. A generator is an object that produces other objects, just like a factory, except that
the generator function doesn’t require any arguments. Create a
MouseMoveGenerator which produces correct MouseMove actions as outputs
each time the generator function is called (that is, the mouse must move in the proper

118 z 157

sequence, thus the possible moves are based on the previous move – it’s another state
machine). Add a method iterator() to produce an iterator, but this method should
take an int argument that specifies the number of moves to produce before hasNext
() returns false.

Pattern refactoring
This chapter will look at the process of solving a problem by applying design patterns in an
evolutionary fashion. That is, a first cut design will be used for the initial solution, and then
this solution will be examined and various design patterns will be applied to the problem
(some of which will work, and some of which won’t). The key question that will always be
asked in seeking improved solutions is “what will change?”

This process is similar to what Martin Fowler talks about in his book Refactoring: Improving
the Design of Existing Code[12] (although he tends to talk about pieces of code more than
pattern-level designs). You start with a solution, and then when you discover that it doesn’t
continue to meet your needs, you fix it. Of course, this is a natural tendency but in computer
programming it’s been extremely difficult to accomplish with procedural programs, and the
acceptance of the idea that we can refactor code and designs adds to the body of proof that
object-oriented programming is “a good thing.”

Simulating the trash recycler
The nature of this problem is that the trash is thrown unclassified into a single bin, so the
specific type information is lost. But later, the specific type information must be recovered to
properly sort the trash. In the initial solution, RTTI (described in Chapter 12 of Thinking in
Java, 2nd edition) is used.

This is not a trivial design because it has an added constraint. That’s what makes it
interesting—it’s more like the messy problems you’re likely to encounter in your work. The
extra constraint is that the trash arrives at the trash recycling plant all mixed together. The
program must model the sorting of that trash. This is where RTTI comes in: you have a bunch
of anonymous pieces of trash, and the program figures out exactly what type they are.

//: refactor:recyclea:RecycleA.java
// Recycling with RTTI.
package refactor.recyclea;
import java.util.*;
import java.io.*;
import junit.framework.*;

abstract class Trash {
 private double weight;
 Trash(double wt) { weight = wt; }
 abstract double getValue();
 double getWeight() { return weight; }
 // Sums the value of Trash in a bin:
 static void sumValue(Iterator it) {
 double val = 0.0f;
 while(it.hasNext()) {
 // One kind of RTTI:
 // A dynamically-checked cast
 Trash t = (Trash)it.next();
 // Polymorphism in action:
 val += t.getWeight() * t.getValue();
 System.out.println(
 "weight of " +

119 z 157

 // Using RTTI to get type
 // information about the class:
 t.getClass().getName() +
 " = " + t.getWeight());
 }
 System.out.println("Total value = " + val);
 }
}

class Aluminum extends Trash {
 static double val = 1.67f;
 Aluminum(double wt) { super(wt); }
 double getValue() { return val; }
 static void setValue(double newval) {
 val = newval;
 }
}

class Paper extends Trash {
 static double val = 0.10f;
 Paper(double wt) { super(wt); }
 double getValue() { return val; }
 static void setValue(double newval) {
 val = newval;
 }
}

class Glass extends Trash {
 static double val = 0.23f;
 Glass(double wt) { super(wt); }
 double getValue() { return val; }
 static void setValue(double newval) {
 val = newval;
 }
}

public class RecycleA extends TestCase {
 Collection
 bin = new ArrayList(),
 glassBin = new ArrayList(),
 paperBin = new ArrayList(),
 alBin = new ArrayList();
 private static Random rand = new Random();
 public RecycleA() {
 // Fill up the Trash bin:
 for(int i = 0; i < 30; i++)
 switch(rand.nextInt(3)) {
 case 0 :
 bin.add(new
 Aluminum(rand.nextDouble() * 100));
 break;
 case 1 :
 bin.add(new
 Paper(rand.nextDouble() * 100));
 break;
 case 2 :
 bin.add(new
 Glass(rand.nextDouble() * 100));
 }
 }
 public void test() {

120 z 157

 Iterator sorter = bin.iterator();
 // Sort the Trash:
 while(sorter.hasNext()) {
 Object t = sorter.next();
 // RTTI to show class membership:
 if(t instanceof Aluminum)
 alBin.add(t);
 if(t instanceof Paper)
 paperBin.add(t);
 if(t instanceof Glass)
 glassBin.add(t);
 }
 Trash.sumValue(alBin.iterator());
 Trash.sumValue(paperBin.iterator());
 Trash.sumValue(glassBin.iterator());
 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(RecycleA.class);
 }
} ///:~

In the source code listings available for this book, this file will be placed in the subdirectory
recyclea that branches off from the subdirectory refactor. The unpacking tool takes care of
placing it into the correct subdirectory. The reason for doing this is that this chapter rewrites
this particular example a number of times and by putting each version in its own directory
(using the default package in each directory so that invoking the program is easy), the class
names will not clash.

Several ArrayList objects are created to hold Trash references. Of course, ArrayLists
actually hold Objects so they’ll hold anything at all. The reason they hold Trash (or
something derived from Trash) is only because you’ve been careful to not put in anything
except Trash. If you do put something “wrong” into the ArrayList, you won’t get any
compile-time warnings or errors—you’ll find out only via an exception at run time.

When the Trash references are added, they lose their specific identities and become simply
Object references (they are upcast). However, because of polymorphism the proper
behavior still occurs when the dynamically-bound methods are called through the Iterator
sorter, once the resulting Object has been cast back to Trash. sumValue() also takes an
Iterator to perform operations on every object in the ArrayList.

It looks silly to upcast the types of Trash into a container holding base type references, and
then turn around and downcast. Why not just put the trash into the appropriate receptacle in
the first place? (Indeed, this is the whole enigma of recycling). In this program it would be
easy to repair, but sometimes a system’s structure and flexibility can benefit greatly from
downcasting.

The program satisfies the design requirements: it works. This might be fine as long as it’s a
one-shot solution. However, a useful program tends to evolve over time, so you must ask,
“What if the situation changes?” For example, cardboard is now a valuable recyclable
commodity, so how will that be integrated into the system (especially if the program is large
and complicated). Since the above type-check coding in the switch statement could be
scattered throughout the program, you must go find all that code every time a new type is
added, and if you miss one the compiler won’t give you any help by pointing out an error.

The key to the misuse of RTTI here is that every type is tested. If you’re looking for only a
subset of types because that subset needs special treatment, that’s probably fine. But if you’re
hunting for every type inside a switch statement, then you’re probably missing an important
point, and definitely making your code less maintainable. In the next section we’ll look at how
this program evolved over several stages to become much more flexible. This should prove a
valuable example in program design.

121 z 157

p p g g

Improving the design
The solutions in Design Patterns are organized around the question “What will change as this
program evolves?” This is usually the most important question that you can ask about any
design. If you can build your system around the answer, the results will be two-pronged: not
only will your system allow easy (and inexpensive) maintenance, but you might also produce
components that are reusable, so that other systems can be built more cheaply. This is the
promise of object-oriented programming, but it doesn’t happen automatically; it requires
thought and insight on your part. In this section we’ll see how this process can happen during
the refinement of a system.

The answer to the question “What will change?” for the recycling system is a common one:
more types will be added to the system. The goal of the design, then, is to make this addition
of types as painless as possible. In the recycling program, we’d like to encapsulate all places
where specific type information is mentioned, so (if for no other reason) any changes can be
localized to those encapsulations. It turns out that this process also cleans up the rest of the
code considerably.

“Make more objects”
This brings up a general object-oriented design principle that I first heard spoken by Grady
Booch: “If the design is too complicated, make more objects.” This is simultaneously
counterintuitive and ludicrously simple, and yet it’s the most useful guideline I’ve found. (You
might observe that “making more objects” is often equivalent to “add another level of
indirection.”) In general, if you find a place with messy code, consider what sort of class
would clean that up. Often the side effect of cleaning up the code will be a system that has
better structure and is more flexible.

Consider first the place where Trash objects are created, which is a switch statement inside
main():

 for(int i = 0; i < 30; i++)
 switch((int)(rand.nextInt(3)) {
 case 0 :
 bin.add(new
 Aluminum(rand.nextDouble() * 100));
 break;
 case 1 :
 bin.add(new
 Paper(rand.nextDouble() * 100));
 break;
 case 2 :
 bin.add(new
 Glass(rand.nextDouble() * 100));
 }

This is definitely messy, and also a place where you must change code whenever a new type is
added. If new types are commonly added, a better solution is a single method that takes all of
the necessary information and produces a reference to an object of the correct type, already
upcast to a trash object. In Design Patterns this is broadly referred to as a creational pattern
(of which there are several). The specific pattern that will be applied here is a variant of the
Factory Method. Here, the factory method is a static member of Trash, but more commonly
it is a method that is overridden in the derived class.

The idea of the factory method is that you pass it the essential information it needs to know to
create your object, then stand back and wait for the reference (already upcast to the base type)
to pop out as the return value. From then on, you treat the object polymorphically. Thus, you
never even need to know the exact type of object that’s created. In fact, the factory method
hides it from you to prevent accidental misuse. If you want to use the object without
polymorphism, you must explicitly use RTTI and casting.

122 z 157

p y p y p y g

But there’s a little problem, especially when you use the more complicated approach (not
shown here) of making the factory method in the base class and overriding it in the derived
classes. What if the information required in the derived class requires more or different
arguments? “Creating more objects” solves this problem. To implement the factory method,
the Trash class gets a new method called factory. To hide the creational data, there’s a new
class called Messenger that carries all of the necessary information for the factory method
to create the appropriate Trash object (we’ve started referring to Messenger as a design
pattern, but it’s simple enough that you may not choose to elevate it to that status). Here’s a
simple implementation of Messenger:

class Messenger {
 int type;
 // Must change this to add another type:
 static final int MAX_NUM = 4;
 double data;
 Messenger(int typeNum, double val) {
 type = typeNum % MAX_NUM;
 data = val;
 }
}

A Messenger object’s only job is to hold information for the factory() method. Now, if
there’s a situation in which factory() needs more or different information to create a new
type of Trash object, the factory() interface doesn’t need to be changed. The Messenger
class can be changed by adding new data and new constructors, or in the more typical object-
oriented fashion of subclassing.

The factory() method for this simple example looks like this:

 static Trash factory(Messenger i) {
 switch(i.type) {
 default: // To quiet the compiler
 case 0:
 return new Aluminum(i.data);
 case 1:
 return new Paper(i.data);
 case 2:
 return new Glass(i.data);
 // Two lines here:
 case 3:
 return new Cardboard(i.data);
 }
 }

Here, the determination of the exact type of object is simple, but you can imagine a more
complicated system in which factory() uses an elaborate algorithm. The point is that it’s
now hidden away in one place, and you know to come to this place when you add new types.

The creation of new objects is now much simpler in main():

 for(int i = 0; i < 30; i++)
 bin.add(
 Trash.factory(
 new Messenger(
 rand.nextInt(Messenger.MAX_NUM),
 rand.nextDouble() * 100)));

A Messenger object is created to pass the data into factory(), which in turn produces some
kind of Trash object on the heap and returns the reference that’s added to the ArrayList
bin. Of course, if you change the quantity and type of argument, this statement will still need
to be modified, but that can be eliminated if the creation of the Messenger object is
automated. For example, an ArrayList of arguments can be passed into the constructor of a

123 z 157

p y g p
Messenger object (or directly into a factory() call, for that matter). This requires that the
arguments be parsed and checked at run time, but it does provide the greatest flexibility.

You can see from this code what “vector of change” problem the factory is responsible for
solving: if you add new types to the system (the change), the only code that must be modified
is within the factory, so the factory isolates the effect of that change.

A pattern for prototyping
creation

A problem with the design above is that it still requires a central location where all the types
of the objects must be known: inside the factory() method. If new types are regularly being
added to the system, the factory() method must be changed for each new type. When you
discover something like this, it is useful to try to go one step further and move all of the
information about the type—including its creation—into the class representing that type. This
way, the only thing you need to do to add a new type to the system is to inherit a single class.

To move the information concerning type creation into each specific type of Trash, the
“prototype” pattern (from the Design Patterns book) will be used. The general idea is that you
have a master sequence of objects, one of each type you’re interested in making. The objects
in this sequence are used only for making new objects, using an operation that’s not unlike
the clone() scheme built into Java’s root class Object. In this case, we’ll name the cloning
method tClone(). When you’re ready to make a new object, presumably you have some sort
of information that establishes the type of object you want to create, then you move through
the master sequence comparing your information with whatever appropriate information is
in the prototype objects in the master sequence. When you find one that matches your needs,
you clone it.

In this scheme there is no hard-coded information for creation. Each object knows how to
expose appropriate information and how to clone itself. Thus, the factory() method doesn’t
need to be changed when a new type is added to the system.

One approach to the problem of prototyping is to add a number of methods to support the
creation of new objects. However, in Java 1.1 there’s already support for creating new objects
if you have a reference to the Class object. With Java 1.1 reflection (introduced in Chapter 12
of Thinking in Java, 2nd edition) you can call a constructor even if you have only a reference
to the Class object. This is the perfect solution for the prototyping problem.

The list of prototypes will be represented indirectly by a list of references to all the Class
objects you want to create. In addition, if the prototyping fails, the factory() method will
assume that it’s because a particular Class object wasn’t in the list, and it will attempt to load
it. By loading the prototypes dynamically like this, the Trash class doesn’t need to know what
types it is working with, so it doesn’t need any modifications when you add new types. This
allows it to be easily reused throughout the rest of the chapter.

//: refactor:trash:Trash.java
// Base class for Trash recycling examples.
package refactor.trash;
import java.util.*;
import java.lang.reflect.*;

public abstract class Trash {
 private double weight;
 public Trash(double wt) { weight = wt; }
 public Trash() {}
 public abstract double getValue();
 public double getWeight() { return weight; }
 // Sums the value of Trash given an
 // Iterator to any container of Trash:
 public static void sumValue(Iterator it) {

124 z 157

 double val = 0.0f;
 while(it.hasNext()) {
 // One kind of RTTI: A dynamically-checked cast
 Trash t = (Trash)it.next();
 val += t.getWeight() * t.getValue();
 System.out.println(
 "weight of " +
 // Using RTTI to get type
 // information about the class:
 t.getClass().getName() + " = " + t.getWeight());
 }
 System.out.println("Total value = " + val);
 }
 public static class Messenger {
 public String id;
 public double data;
 public Messenger(String name, double val) {
 id = name;
 data = val;
 }
 }
 // Remainder of class provides
 // support for prototyping:
 private static List trashTypes = new ArrayList();
 public static Trash factory(Messenger info) {
 Iterator it = trashTypes.iterator();
 while(it.hasNext()) {
 // Somehow determine the new type
 // to create, and create one:
 Class tc = (Class)it.next();
 if (tc.getName().indexOf(info.id) != -1) {
 try {
 // Get the dynamic constructor method
 // that takes a double argument:
 Constructor ctor = tc.getConstructor(
 new Class[]{ double.class });
 // Call the constructor
 // to create a new object:
 return (Trash)ctor.newInstance(
 new Object[]{new Double(info.data)});
 } catch(Exception e) {
 throw new RuntimeException(
 "Cannot Create Trash", e);
 }
 }
 }
 // Class was not in the list. Try to load it,
 // but it must be in your class path!
 try {
 System.out.println("Loading " + info.id);
 trashTypes.add(Class.forName(info.id));
 } catch(Exception e) {
 throw new RuntimeException("Prototype not found", e);
 }
 // Loaded successfully.
 // Recursive call should work:
 return factory(info);
 }
} ///:~

The basic Trash class and sumValue() remain as before. The rest of the class supports the

125 z 157

pp
prototyping pattern. You first see two inner classes (which are made static, so they are inner
classes only for code organization purposes) describing exceptions that can occur. This is
followed by an ArrayList called trashTypes, which is used to hold the Class references.

In Trash.factory(), the String inside the Messenger object id (a different version of the
Messenger class than that of the prior discussion) contains the type name of the Trash to
be created; this String is compared to the Class names in the list. If there’s a match, then
that’s the object to create. Of course, there are many ways to determine what object you want
to make. This one is used so that information read in from a file can be turned into objects.

Once you’ve discovered which kind of Trash to create, then the reflection methods come into
play. The getConstructor() method takes an argument that’s an array of Class references.
This array represents the arguments, in their proper order, for the constructor that you’re
looking for. Here, the array is dynamically created using the Java 1.1 array-creation syntax:

new Class[] {double.class}

This code assumes that every Trash type has a constructor that takes a double (and notice
that double.class is distinct from Double.class). It’s also possible, for a more flexible
solution, to call getConstructors(), which returns an array of the possible constructors.

What comes back from getConstructor() is a reference to a Constructor object (part of
java.lang.reflect). You call the constructor dynamically with the method newInstance(),
which takes an array of Object containing the actual arguments. This array is again created
using the Java 1.1 syntax:

new Object[]{new Double(Messenger.data)}

In this case, however, the double must be placed inside a wrapper class so that it can be part
of this array of objects. The process of calling newInstance() extracts the double, but you
can see it is a bit confusing—an argument might be a double or a Double, but when you
make the call you must always pass in a Double. Fortunately, this issue exists only for the
primitive types.

Once you understand how to do it, the process of creating a new object given only a Class
reference is remarkably simple. Reflection also allows you to call methods in this same
dynamic fashion.

Of course, the appropriate Class reference might not be in the trashTypes list. In this case,
the return in the inner loop is never executed and you’ll drop out at the end. Here, the
program tries to rectify the situation by loading the Class object dynamically and adding it to
the trashTypes list. If it still can’t be found something is really wrong, but if the load is
successful then the factory method is called recursively to try again.

As you’ll see, the beauty of this design is that this code doesn’t need to be changed, regardless
of the different situations it will be used in (assuming that all Trash subclasses contain a
constructor that takes a single double argument).

Trash subclasses
To fit into the prototyping scheme, the only thing that’s required of each new subclass of
Trash is that it contain a constructor that takes a double argument. Java reflection handles
everything else.

Here are the different types of Trash, each in their own file but part of the Trash package
(again, to facilitate reuse within the chapter):

//: refactor:trash:Aluminum.java
// The Aluminum class with prototyping.
package refactor.trash;

public class Aluminum extends Trash {
 private static double val = 1.67f;
 public Aluminum(double wt) { super(wt); }

126 z 157

 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

//: refactor:trash:Paper.java
// The Paper class with prototyping.
package refactor.trash;

public class Paper extends Trash {
 private static double val = 0.10f;
 public Paper(double wt) { super(wt); }
 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

//: refactor:trash:Glass.java
// The Glass class with prototyping.
package refactor.trash;

public class Glass extends Trash {
 private static double val = 0.23f;
 public Glass(double wt) { super(wt); }
 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

And here’s a new type of Trash:

//: refactor:trash:Cardboard.java
// The Cardboard class with prototyping.
package refactor.trash;

public class Cardboard extends Trash {
 private static double val = 0.23f;
 public Cardboard(double wt) { super(wt); }
 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

You can see that, other than the constructor, there’s nothing special about any of these
classes.

Parsing Trash from an external file
The information about Trash objects will be read from an outside file. The file has all of the
necessary information about each piece of trash on a single line in the form Trash:weight,
such as:

//:! refactor:trash:Trash.dat
refactor.trash.Glass:54
refactor.trash.Paper:22
refactor.trash.Paper:11
refactor.trash.Glass:17
refactor.trash.Aluminum:89

127 z 157

refactor.trash.Paper:88
refactor.trash.Aluminum:76
refactor.trash.Cardboard:96
refactor.trash.Aluminum:25
refactor.trash.Aluminum:34
refactor.trash.Glass:11
refactor.trash.Glass:68
refactor.trash.Glass:43
refactor.trash.Aluminum:27
refactor.trash.Cardboard:44
refactor.trash.Aluminum:18
refactor.trash.Paper:91
refactor.trash.Glass:63
refactor.trash.Glass:50
refactor.trash.Glass:80
refactor.trash.Aluminum:81
refactor.trash.Cardboard:12
refactor.trash.Glass:12
refactor.trash.Glass:54
refactor.trash.Aluminum:36
refactor.trash.Aluminum:93
refactor.trash.Glass:93
refactor.trash.Paper:80
refactor.trash.Glass:36
refactor.trash.Glass:12
refactor.trash.Glass:60
refactor.trash.Paper:66
refactor.trash.Aluminum:36
refactor.trash.Cardboard:22
///:~

Note that the class path must be included when giving the class names, otherwise the class
will not be found.

This file is read using the previously-defined StringList tool, and each line is picked aparat
using the String method indexOf() to produce the index of the ‘:’. This is first used with
the String method substring() to extract the name of the trash type, and next to get the
weight that is turned into a double with the static Double.valueOf() method. The trim
() method removes white space at both ends of a string.

The Trash parser is placed in a separate file since it will be reused throughout this chapter:

//: refactor:trash:ParseTrash.java
// Parse file contents into Trash objects,
// placing each into a Fillable holder.
package refactor.trash;
import java.util.*;
import java.io.*;
import com.bruceeckel.util.StringList;

public class ParseTrash {
 public static void
 fillBin(String filePath, Fillable bin) {
 Iterator it = new StringList(filePath).iterator();
 while(it.hasNext()) {
 String line = (String)it.next();
 String type = line.substring(0,
 line.indexOf(':')).trim();
 double weight = Double.valueOf(
 line.substring(line.indexOf(':') + 1)
 .trim()).doubleValue();
 bin.addTrash(

128 z 157

 Trash.factory(new Trash.Messenger(type, weight)));
 }
 }
 // Special case to handle Collection:
 public static void
 fillBin(String filePath, Collection bin) {
 fillBin(filePath, new FillableCollection(bin));
 }
} ///:~

In RecycleA.java, an ArrayList was used to hold the Trash objects. However, other types
of containers can be used as well. To allow for this, the first version of fillBin() takes a
reference to a Fillable, which is simply an interface that supports a method called
addTrash():

//: refactor:trash:Fillable.java
// Any object that can be filled with Trash.
package refactor.trash;

public interface Fillable {
 void addTrash(Trash t);
} ///:~

Anything that supports this interface can be used with fillBin. Of course, Collection doesn’t
implement Fillable, so it won’t work. Since Collection is used in most of the examples, it
makes sense to add a second overloaded fillBin() method that takes a Collection. Any
Collection can then be used as a Fillable object using an adapter class:

//: refactor:trash:FillableCollection.java
// Adapter that makes a Collection Fillable.
package refactor.trash;
import java.util.*;

public class FillableCollection implements Fillable {
 private Collection c;
 public FillableCollection(Collection cc) { c = cc; }
 public void addTrash(Trash t) { c.add(t); }
} ///:~

You can see that the only job of this class is to connect Fillable’s addTrash() method to
Collection’s add(). With this class in hand, the overloaded fillBin() method can be used
with a Collection in ParseTrash.java:

 public static void
 fillBin(String filePath, Collection bin) {
 fillBin(filePath, new FillableCollection(bin));
 }

This approach works for any container class that’s used frequently. Alternatively, the
container class can provide its own adapter that implements Fillable. (You’ll see this later, in
DynaTrash.java.)

Recycling with prototyping
Now you can see the revised version of RecycleA.java using the prototyping technique:

//: refactor:recycleap:RecycleAP.java
// Recycling with RTTI and Prototypes.
package refactor.recycleap;

129 z 157

import refactor.trash.*;
import java.util.*;
import junit.framework.*;

public class RecycleAP extends TestCase {
 Collection
 bin = new ArrayList(),
 glassBin = new ArrayList(),
 paperBin = new ArrayList(),
 alBin = new ArrayList();
 public RecycleAP() {
 // Fill up the Trash bin:
 ParseTrash.fillBin("../trash/Trash.dat", bin);
 }
 public void test() {
 Iterator sorter = bin.iterator();
 // Sort the Trash:
 while(sorter.hasNext()) {
 Object t = sorter.next();
 // RTTI to show class membership:
 if(t instanceof Aluminum)
 alBin.add(t);
 else if(t instanceof Paper)
 paperBin.add(t);
 else if(t instanceof Glass)
 glassBin.add(t);
 else
 System.err.println("Unknown type " + t);
 }
 Trash.sumValue(alBin.iterator());
 Trash.sumValue(paperBin.iterator());
 Trash.sumValue(glassBin.iterator());
 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(RecycleAP.class);
 }
} ///:~

All of the Trash objects, as well as the ParseTrash and support classes, are now part of the
package refactor.trash, so they are simply imported.

The process of opening the data file containing Trash descriptions and the parsing of that file
have been wrapped into the static method ParseTrash.fillBin(), so now it’s no longer a
part of our design focus. You will see that throughout the rest of the chapter, no matter what
new classes are added, ParseTrash.fillBin() will continue to work without change, which
indicates a good design.

In terms of object creation, this design does indeed severely localize the changes you need to
make to add a new type to the system. However, there’s a significant problem in the use of
RTTI that shows up clearly here. The program seems to run fine, and yet it never detects any
cardboard, even though there is cardboard in the list! This happens because of the use of
RTTI, which looks for only the types that you tell it to look for. The clue that RTTI is being
misused is that every type in the system is being tested, rather than a single type or subset of
types. As you will see later, there are ways to use polymorphism instead when you’re testing
for every type. But if you use RTTI a lot in this fashion, and you add a new type to your
system, you can easily forget to make the necessary changes in your program and produce a
difficult-to-find bug. So it’s worth trying to eliminate RTTI in this case, not just for aesthetic
reasons—it produces more maintainable code.

130 z 157

p

Abstracting usage
With creation out of the way, it’s time to tackle the remainder of the design: where the classes
are used. Since it’s the act of sorting into bins that’s particularly ugly and exposed, why not
take that process and hide it inside a class? This is the principle of “If you must do something
ugly, at least localize the ugliness inside a class.” It looks like this:

The TrashSorter object initialization must now be changed whenever a new type of Trash
is added to the model. You could imagine that the TrashSorter class might look something
like this:

class TrashSorter extends ArrayList {
 void sort(Trash t) { /* ... */ }
}

That is, TrashSorter is an ArrayList of references to ArrayLists of Trash references, and
with add() you can install another one, like so:

TrashSorter ts = new TrashSorter();
ts.add(new ArrayList());

Now, however, sort() becomes a problem. How does the statically-coded method deal with
the fact that a new type has been added? To solve this, the type information must be removed
from sort() so that all it needs to do is call a generic method that takes care of the details of
type. This, of course, is another way to describe a dynamically-bound method. So sort() will
simply move through the sequence and call a dynamically-bound method for each
ArrayList. Since the job of this method is to grab the pieces of trash it is interested in, it’s
called grab(Trash). The structure now looks like:

TrashSorter needs to call each grab() method and get a different result depending on
what type of Trash the current ArrayList is holding. That is, each ArrayList must be aware
of the type it holds. The classic approach to this problem is to create a base “Trash bin” class
and inherit a new derived class for each different type you want to hold. If Java had a
parameterized type mechanism that would probably be the most straightforward approach.
But rather than hand-coding all the classes that such a mechanism should be building for us,
further observation can produce a better approach.

A basic OOP design principle is “Use data members for variation in state, use polymorphism
for variation in behavior.” Your first thought might be that the grab() method certainly

131 z 157

g g g y
behaves differently for an ArrayList that holds Paper than for one that holds Glass. But
what it does is strictly dependent on the type, and nothing else. This could be interpreted as a
different state, and since Java has a class to represent type (Class) this can be used to
determine the type of Trash a particular Tbin will hold.

The constructor for this Tbin requires that you hand it the Class of your choice. This tells the
ArrayList what type it is supposed to hold. Then the grab() method uses Class BinType
and RTTI to see if the Trash object you’ve handed it matches the type it’s supposed to grab.

Here is the new version of the program:

//: refactor:recycleb:RecycleB.java
// Containers that grab objects of interest.
package refactor.recycleb;
import refactor.trash.*;
import java.util.*;
import junit.framework.*;

// A container that admits only the right type
// of Trash (established in the constructor):
class Tbin {
 private List list = new ArrayList();
 private Class type;
 public Tbin(Class binType) { type = binType; }
 public boolean grab(Trash t) {
 // Comparing class types:
 if(t.getClass().equals(type)) {
 list.add(t);
 return true; // Object grabbed
 }
 return false; // Object not grabbed
 }
 public Iterator iterator() {
 return list.iterator();
 }
}

class TbinList extends ArrayList {
 void sortTrashItem(Trash t) {
 Iterator e = iterator(); // Iterate over self
 while(e.hasNext())
 if(((Tbin)e.next()).grab(t)) return;
 // Need a new Tbin for this type:
 add(new Tbin(t.getClass()));
 sortTrashItem(t); // Recursive call
 }
}

public class RecycleB extends TestCase {
 Collection bin = new ArrayList();
 TbinList trashBins = new TbinList();
 public RecycleB() {
 ParseTrash.fillBin("../trash/Trash.dat",bin);
 }
 public void test() {
 Iterator it = bin.iterator();
 while(it.hasNext())
 trashBins.sortTrashItem((Trash)it.next());
 Iterator e = trashBins.iterator();
 while(e.hasNext())
 Trash.sumValue(((Tbin)e.next()).iterator());

132 z 157

 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(RecycleB.class);
 }
} ///:~

Tbin contains a Class reference type which establishes in the constructor what what type it
should grab. The grab() method checks this type against the object you pass it. Note that in
this design, grab() only accepts Trash objects so you get compile-time type checking on the
base type, but you could also just accept Object and it would still work.

TbinList holds a set of Tbin references, so that sort() can iterate through the Tbins when
it’s looking for a match for the Trash object you’ve handed it. If it doesn’t find a match, it
creates a new Tbin for the type that hasn’t been found, and makes a recursive call to itself –
the next time around, the new bin will be found.

Notice the genericity of this code: it doesn’t change at all if new types are added. If the bulk of
your code doesn’t need changing when a new type is added (or some other change occurs)
then you have an easily extensible system.

Multiple dispatching
The above design is certainly satisfactory. Adding new types to the system consists of adding
or modifying distinct classes without causing code changes to be propagated throughout the
system. In addition, RTTI is not “misused” as it was in RecycleA.java. However, it’s possible
to go one step further and take a purist viewpoint about RTTI and say that it should be
eliminated altogether from the operation of sorting the trash into bins.

To accomplish this, you must first take the perspective that all type-dependent activities—
such as detecting the type of a piece of trash and putting it into the appropriate bin—should
be controlled through polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences of elements that were all
of a particular type. But whenever you find yourself picking out particular types, stop and
think. The whole idea of polymorphism (dynamically-bound method calls) is to handle type-
specific information for you. So why are you hunting for types?

The answer is something you probably don’t think about: Java performs only single
dispatching. That is, if you are performing an operation on more than one object whose type
is unknown, Java will invoke the dynamic binding mechanism on only one of those types.
This doesn’t solve the problem, so you end up detecting some types manually and effectively
producing your own dynamic binding behavior.

The solution is called multiple dispatching, which means setting up a configuration such that
a single method call produces more than one dynamic method call and thus determines more
than one type in the process. To get this effect, you need to work with more than one type
hierarchy: you’ll need a type hierarchy for each dispatch. The following example works with
two hierarchies: the existing Trash family and a hierarchy of the types of trash bins that the
trash will be placed into. This second hierarchy isn’t always obvious and in this case it needed
to be created in order to produce multiple dispatching (in this case there will be only two
dispatches, which is referred to as double dispatching).

Implementing the double dispatch
Remember that polymorphism can occur only via method calls, so if you want double
dispatching to occur, there must be two method calls: one used to determine the type within
each hierarchy. In the Trash hierarchy there will be a new method called addToBin(), which
takes an argument of an array of TypedBin. It uses this array to step through and try to add
itself to the appropriate bin, and this is where you'll see the double dispatch.

133 z 157

pp p y p

The new hierarchy is TypedBin, and it contains its own method called add() that is also used
polymorphically. But here's an additional twist: add() is overloaded to take arguments of the
different types of trash. So an essential part of the double dispatching scheme also involves
overloading.

Redesigning the program produces a dilemma: it’s now necessary for the base class Trash to
contain an addToBin() method. One approach is to copy all of the code and change the base
class. Another approach, which you can take when you don’t have control of the source code,
is to put the addToBin() method into an interface, leave Trash alone, and inherit new
specific types of Aluminum, Paper, Glass, and Cardboard. This is the approach that will
be taken here.

Most of the classes in this design must be public, so they are placed in their own files. Here’s
the interface:

//: refactor:doubledispatch:TypedBinMember.java
// An interface for adding the double
// dispatching method to the trash hierarchy
// without modifying the original hierarchy.
package refactor.doubledispatch;

interface TypedBinMember {
 // The new method:
 boolean addToBin(TypedBin[] tb);
} ///:~

In each particular subtype of Aluminum, Paper, Glass, and Cardboard, the addToBin
() method in the interface TypedBinMember is implemented, but it looks like the code is
exactly the same in each case:

//: refactor:doubledispatch:DDAluminum.java
// Aluminum for double dispatching.
package refactor.doubledispatch;
import refactor.trash.*;

public class DDAluminum extends Aluminum
 implements TypedBinMember {
 public DDAluminum(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;

134 z 157

 return false;
 }
} ///:~

//: refactor:doubledispatch:DDPaper.java
// Paper for double dispatching.
package refactor.doubledispatch;
import refactor.trash.*;

public class DDPaper extends Paper
 implements TypedBinMember {
 public DDPaper(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

//: refactor:doubledispatch:DDGlass.java
// Glass for double dispatching.
package refactor.doubledispatch;
import refactor.trash.*;

public class DDGlass extends Glass
 implements TypedBinMember {
 public DDGlass(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

//: refactor:doubledispatch:DDCardboard.java
// Cardboard for double dispatching.
package refactor.doubledispatch;
import refactor.trash.*;

public class DDCardboard extends Cardboard
 implements TypedBinMember {
 public DDCardboard(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

The code in each addToBin() calls add() for each TypedBin object in the array. But
notice the argument: this. The type of this is different for each subclass of Trash, so the
code is different. (Although this code will benefit if a parameterized type mechanism is ever
added to Java.) So this is the first part of the double dispatch, because once you’re inside this
method you know you’re Aluminum, or Paper, etc. During the call to add(), this
information is passed via the type of this. The compiler resolves the call to the proper
overloaded version of add(). But since tb[i] produces a reference to the base type
TypedBin, this call will end up calling a different method depending on the type of
TypedBin that’s currently selected. That is the second dispatch.

135 z 157

yp y p

Here’s the base class for TypedBin:

//: refactor:doubledispatch:TypedBin.java
// A container for the second dispatch.
package refactor.doubledispatch;
import refactor.trash.*;
import java.util.*;

public abstract class TypedBin {
 Collection c = new ArrayList();
 protected boolean addIt(Trash t) {
 c.add(t);
 return true;
 }
 public Iterator iterator() {
 return c.iterator();
 }
 public boolean add(DDAluminum a) {
 return false;
 }
 public boolean add(DDPaper a) {
 return false;
 }
 public boolean add(DDGlass a) {
 return false;
 }
 public boolean add(DDCardboard a) {
 return false;
 }
} ///:~

You can see that the overloaded add() methods all return false. If the method is not
overloaded in a derived class, it will continue to return false, and the caller (addToBin(), in
this case) will assume that the current Trash object has not been added successfully to a
container, and continue searching for the right container.

In each of the subclasses of TypedBin, only one overloaded method is overridden, according
to the type of bin that’s being created. For example, CardboardBin overrides add
(DDCardboard). The overridden method adds the trash object to its container and returns
true, while all the rest of the add() methods in CardboardBin continue to return false,
since they haven’t been overridden. This is another case in which a parameterized type
mechanism in Java would allow automatic generation of code. (With C++ templates, you
wouldn’t have to explicitly write the subclasses or place the addToBin() method in Trash.)

Since for this example the trash types have been customized and placed in a different
directory, you’ll need a different trash data file to make it work. Here’s a possible
DDTrash.dat:

//:! refactor:doubledispatch:DDTrash.dat
refactor.doubledispatch.DDGlass:54
refactor.doubledispatch.DDPaper:22
refactor.doubledispatch.DDPaper:11
refactor.doubledispatch.DDGlass:17
refactor.doubledispatch.DDAluminum:89
refactor.doubledispatch.DDPaper:88
refactor.doubledispatch.DDAluminum:76
refactor.doubledispatch.DDCardboard:96
refactor.doubledispatch.DDAluminum:25
refactor.doubledispatch.DDAluminum:34
refactor.doubledispatch.DDGlass:11
refactor.doubledispatch.DDGlass:68

136 z 157

refactor.doubledispatch.DDGlass:43
refactor.doubledispatch.DDAluminum:27
refactor.doubledispatch.DDCardboard:44
refactor.doubledispatch.DDAluminum:18
refactor.doubledispatch.DDPaper:91
refactor.doubledispatch.DDGlass:63
refactor.doubledispatch.DDGlass:50
refactor.doubledispatch.DDGlass:80
refactor.doubledispatch.DDAluminum:81
refactor.doubledispatch.DDCardboard:12
refactor.doubledispatch.DDGlass:12
refactor.doubledispatch.DDGlass:54
refactor.doubledispatch.DDAluminum:36
refactor.doubledispatch.DDAluminum:93
refactor.doubledispatch.DDGlass:93
refactor.doubledispatch.DDPaper:80
refactor.doubledispatch.DDGlass:36
refactor.doubledispatch.DDGlass:12
refactor.doubledispatch.DDGlass:60
refactor.doubledispatch.DDPaper:66
refactor.doubledispatch.DDAluminum:36
refactor.doubledispatch.DDCardboard:22
///:~

Here’s the rest of the program:

//: refactor:doubledispatch:DoubleDispatch.java
// Using multiple dispatching to handle more
// than one unknown type during a method call.
package refactor.doubledispatch;
import refactor.trash.*;
import java.util.*;
import junit.framework.*;

class AluminumBin extends TypedBin {
 public boolean add(DDAluminum a) {
 return addIt(a);
 }
}

class PaperBin extends TypedBin {
 public boolean add(DDPaper a) {
 return addIt(a);
 }
}

class GlassBin extends TypedBin {
 public boolean add(DDGlass a) {
 return addIt(a);
 }
}

class CardboardBin extends TypedBin {
 public boolean add(DDCardboard a) {
 return addIt(a);
 }
}

class TrashBinSet {
 private TypedBin[] binSet = {
 new AluminumBin(),

137 z 157

 new PaperBin(),
 new GlassBin(),
 new CardboardBin()
 };
 public void sortIntoBins(Iterator it) {
 while(it.hasNext()) {
 TypedBinMember t = (TypedBinMember)it.next();
 if(!t.addToBin(binSet))
 System.err.println("Couldn't add " + t);
 }
 }
 public TypedBin[] binSet() { return binSet; }
}

public class DoubleDispatch extends TestCase {
 Collection bin = new ArrayList();
 TrashBinSet bins = new TrashBinSet();
 public DoubleDispatch() {
 // ParseTrash still works, without changes:
 ParseTrash.fillBin("DDTrash.dat", bin);
 }
 public void test() {
 // Sort from the master bin into
 // the individually-typed bins:
 bins.sortIntoBins(bin.iterator());
 TypedBin[] tb = bins.binSet();
 // Perform sumValue for each bin...
 for(int i = 0; i < tb.length; i++)
 Trash.sumValue(tb[i].c.iterator());
 // ... and for the master bin
 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(DoubleDispatch.class);
 }
} ///:~

TrashBinSet encapsulates all of the different types of TypedBins, along with the
sortIntoBins() method, which is where all the double dispatching takes place. You can see
that once the structure is set up, sorting into the various TypedBins is remarkably easy. In
addition, the efficiency of two dynamic method calls is probably better than any other way
you could sort.

Notice the ease of use of this system in main(), as well as the complete independence of any
specific type information within main(). All other methods that talk only to the Trash base-
class interface will be equally invulnerable to changes in Trash types.

The changes necessary to add a new type are relatively isolated: you modify TypedBin,
inherit the new type of Trash with its addToBin() method, then inherit a new TypedBin
(this is really just a copy and simple edit), and finally add a new type into the aggregate
initialization for TrashBinSet.

The Visitor pattern
Now consider applying a design pattern that has an entirely different goal to the trash sorting
problem.

For this pattern, we are no longer concerned with optimizing the addition of new types of
Trash to the system. Indeed, this pattern makes adding a new type of Trash more
complicated. The assumption is that you have a primary class hierarchy that is fixed; perhaps
it’s from another vendor and you can’t make changes to that hierarchy. However, you’d like to

138 z 157

y g y y
add new polymorphic methods to that hierarchy, which means that normally you’d have to
add something to the base class interface. So the dilemma is that you need to add methods to
the base class, but you can’t touch the base class. How do you get around this?

The design pattern that solves this kind of problem is called a “visitor” (the final one in the
Design Patterns book), and it builds on the double dispatching scheme shown in the last
section.

The visitor pattern allows you to extend the interface of the primary type by creating a
separate class hierarchy of type Visitor to virtualize the operations performed upon the
primary type. The objects of the primary type simply “accept” the visitor, then call the visitor’s
dynamically-bound method. It looks like this:

Now, if v is a Visitable reference to an Aluminum object, the code:

PriceVisitor pv = new PriceVisitor();
v.accept(pv);

uses double dispatching to cause two polymorphic method calls: the first one to select
Aluminum’s version of accept(), and the second one within accept() when the specific
version of visit() is called dynamically using the base-class Visitor reference v.

This configuration means that new functionality can be added to the system in the form of
new subclasses of Visitor. The Trash hierarchy doesn’t need to be touched. This is the prime

139 z 157

y p
benefit of the visitor pattern: you can add new polymorphic functionality to a class hierarchy
without touching that hierarchy (once the accept() methods have been installed). Note that
the benefit is helpful here but not exactly what we started out to accomplish, so at first blush
you might decide that this isn’t the desired solution.

But look at one thing that’s been accomplished: the visitor solution avoids sorting from the
master Trash sequence into individual typed sequences. Thus, you can leave everything in
the single master sequence and simply pass through that sequence using the appropriate
visitor to accomplish the goal. Although this behavior seems to be a side effect of visitor, it
does give us what we want (avoiding RTTI).

The double dispatching in the visitor pattern takes care of determining both the type of
Trash and the type of Visitor. In the following example, there are two implementations of
Visitor: PriceVisitor to both determine and sum the price, and WeightVisitor to keep
track of the weights.

You can see all of this implemented in the new, improved version of the recycling program.

As with DoubleDispatch.java, the Trash class is left alone and a new interface is created
to add the accept() method:

//: refactor:trashvisitor:Visitable.java
// An interface to add visitor functionality
// to the Trash hierarchy without
// modifying the base class.
package refactor.trashvisitor;
import refactor.trash.*;

interface Visitable {
 // The new method:
 void accept(Visitor v);
} ///:~

Since there’s nothing concrete in the Visitor base class, it can be created as an interface:

//: refactor:trashvisitor:Visitor.java
// The base interface for visitors.
package refactor.trashvisitor;
import refactor.trash.*;

interface Visitor {
 void visit(Aluminum a);
 void visit(Paper p);
 void visit(Glass g);
 void visit(Cardboard c);
} ///:~

A Reflective Decorator
At this point, you could follow the same approach that was used for double dispatching and
create new subtypes of Aluminum, Paper, Glass, and Cardboard that implement the
accept() method. For example, the new Visitable Aluminum would look like this:

//: refactor:trashvisitor:VAluminum.java
// Taking the previous approach of creating a
// specialized Aluminum for the visitor pattern.
package refactor.trashvisitor;
import refactor.trash.*;

public class VAluminum extends Aluminum
 implements Visitable {
 public VAluminum(double wt) { super(wt); }
 public void accept(Visitor v) {

140 z 157

 v.visit(this);
 }
} ///:~

However, we seem to be encountering an “explosion of interfaces:” basic Trash, special
versions for double dispatching, and now more special versions for visitor. Of course, this
“explosion of interfaces” is arbitrary—one could simply put the additional methods in the
Trash class. If we ignore that we can instead see an opportunity to use the Decorator
pattern: it seems like it should be possible to create a Decorator that can be wrapped around
an ordinary Trash object and will produce the same interface as Trash and add the extra
accept() method. In fact, it’s a perfect example of the value of Decorator.

The double dispatch creates a problem, however. Since it relies on overloading of both
accept() and visit(), it would seem to require specialized code for each different version of
the accept() method. With C++ templates, this would be fairly easy to accomplish (since
templates automatically generate type-specialized code) but Java has no such mechanism—at
least it does not appear to. However, reflection allows you to determine type information at
run time, and it turns out to solve many problems that would seem to require templates
(albeit not as simply). Here’s the decorator that does the trick[13]:

//: refactor:trashvisitor:VisitableDecorator.java
// A decorator that adapts the generic Trash
// classes to the visitor pattern.
// [Use a Dynamic Proxy here??]
package refactor.trashvisitor;
import refactor.trash.*;
import java.lang.reflect.*;

public class VisitableDecorator
extends Trash implements Visitable {
 private Trash delegate;
 private Method dispatch;
 public VisitableDecorator(Trash t) {
 delegate = t;
 try {
 dispatch = Visitor.class.getMethod (
 "visit", new Class[] { t.getClass() }
);
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
 public double getValue() {
 return delegate.getValue();
 }
 public double getWeight() {
 return delegate.getWeight();
 }
 public void accept(Visitor v) {
 try {
 dispatch.invoke(v, new Object[]{delegate});
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
} ///:~

[[Description of Reflection use]]

[[Note that a Dynamic Proxy might also be applied here.]]

The only other tool we need is a new type of Fillable adapter that automatically decorates the

141 z 157

y yp p y
objects as they are being created from the original Trash.dat file. But this might as well be a
decorator itself, decorating any kind of Fillable:

//: refactor:trashvisitor:FillableVisitor.java
// Adapter Decorator that adds the visitable
// decorator as the Trash objects are
// being created.
package refactor.trashvisitor;
import refactor.trash.*;
import java.util.*;

public class FillableVisitor
implements Fillable {
 private Fillable f;
 public FillableVisitor(Fillable ff) { f = ff; }
 public void addTrash(Trash t) {
 f.addTrash(new VisitableDecorator(t));
 }
} ///:~

Now you can wrap it around any kind of existing Fillable, or any new ones that haven’t yet
been created.

The rest of the program creates specific Visitor types and sends them through a single list of
Trash objects:

//: refactor:trashvisitor:TrashVisitor.java
// The "visitor" pattern with VisitableDecorators.
package refactor.trashvisitor;
import refactor.trash.*;
import java.util.*;
import junit.framework.*;

// Specific group of algorithms packaged
// in each implementation of Visitor:
class PriceVisitor implements Visitor {
 private double alSum; // Aluminum
 private double pSum; // Paper
 private double gSum; // Glass
 private double cSum; // Cardboard
 public void visit(Aluminum al) {
 double v = al.getWeight() * al.getValue();
 System.out.println(
 "value of Aluminum= " + v);
 alSum += v;
 }
 public void visit(Paper p) {
 double v = p.getWeight() * p.getValue();
 System.out.println(
 "value of Paper= " + v);
 pSum += v;
 }
 public void visit(Glass g) {
 double v = g.getWeight() * g.getValue();
 System.out.println(
 "value of Glass= " + v);
 gSum += v;
 }
 public void visit(Cardboard c) {
 double v = c.getWeight() * c.getValue();
 System.out.println(
 "value of Cardboard = " + v);

142 z 157

 cSum += v;
 }
 void total() {
 System.out.println(
 "Total Aluminum: $" + alSum +
 "\n Total Paper: $" + pSum +
 "\nTotal Glass: $" + gSum +
 "\nTotal Cardboard: $" + cSum +
 "\nTotal: $" +
 (alSum + pSum + gSum + cSum));
 }
}

class WeightVisitor implements Visitor {
 private double alSum; // Aluminum
 private double pSum; // Paper
 private double gSum; // Glass
 private double cSum; // Cardboard
 public void visit(Aluminum al) {
 alSum += al.getWeight();
 System.out.println("weight of Aluminum = "
 + al.getWeight());
 }
 public void visit(Paper p) {
 pSum += p.getWeight();
 System.out.println("weight of Paper = "
 + p.getWeight());
 }
 public void visit(Glass g) {
 gSum += g.getWeight();
 System.out.println("weight of Glass = "
 + g.getWeight());
 }
 public void visit(Cardboard c) {
 cSum += c.getWeight();
 System.out.println("weight of Cardboard = "
 + c.getWeight());
 }
 void total() {
 System.out.println(
 "Total weight Aluminum: " + alSum +
 "\nTotal weight Paper: " + pSum +
 "\nTotal weight Glass: " + gSum +
 "\nTotal weight Cardboard: " + cSum +
 "\nTotal weight: " + (alSum + pSum + gSum + cSum));

 }
}

public class TrashVisitor extends TestCase {
 Collection bin = new ArrayList();
 PriceVisitor pv = new PriceVisitor();
 WeightVisitor wv = new WeightVisitor();
 public TrashVisitor() {
 ParseTrash.fillBin("../trash/Trash.dat",
 new FillableVisitor(
 new FillableCollection(bin)));
 }
 public void test() {
 Iterator it = bin.iterator();
 while(it.hasNext()) {

143 z 157

 Visitable v = (Visitable)it.next();
 v.accept(pv);
 v.accept(wv);
 }
 pv.total();
 wv.total();
 }
 public static void main(String args[]) {
 junit.textui.TestRunner.run(TrashVisitor.class);
 }
} ///:~

In Test(), note how visitability is added by simply creating a different kind of bin using the
decorator. Also notice that the FillableCollection adapter has the appearance of being used
as a decorator (for ArrayList) in this situation. However, it completely changes the interface
of the ArrayList, whereas the definition of Decorator is that the interface of the decorated
class must still be there after decoration.

Note that the shape of the client code (shown in the Test class) has changed again, from the
original approaches to the problem. Now there’s only a single Trash bin. The two Visitor
objects are accepted into every element in the sequence, and they perform their operations.
The visitors keep their own internal data to tally the total weights and prices.

Finally, there’s no run time type identification other than the inevitable cast to Trash when
pulling things out of the sequence. This, too, could be eliminated with the implementation of
parameterized types in Java.

One way you can distinguish this solution from the double dispatching solution described
previously is to note that, in the double dispatching solution, only one of the overloaded
methods, add(), was overridden when each subclass was created, while here each one of the
overloaded visit() methods is overridden in every subclass of Visitor.

More coupling?
There’s a lot more code here, and there’s definite coupling between the Trash hierarchy and
the Visitor hierarchy. However, there’s also high cohesion within the respective sets of
classes: they each do only one thing (Trash describes Trash, while Visitor describes actions
performed on Trash), which is an indicator of a good design. Of course, in this case it works
well only if you’re adding new Visitors, but it gets in the way when you add new types of
Trash.

Low coupling between classes and high cohesion within a class is definitely an important
design goal. Applied mindlessly, though, it can prevent you from achieving a more elegant
design. It seems that some classes inevitably have a certain intimacy with each other. These
often occur in pairs that could perhaps be called couplets; for example, containers and
iterators. The Trash-Visitor pair above appears to be another such couplet.

RTTI considered harmful?
Various designs in this chapter attempt to remove RTTI, which might give you the impression
that it’s “considered harmful” (the condemnation used for poor, ill-fated goto, which was
thus never put into Java). This isn’t true; it is the misuse of RTTI that is the problem. The
reason our designs removed RTTI is because the misapplication of that feature prevented
extensibility, while the stated goal was to be able to add a new type to the system with as little
impact on surrounding code as possible. Since RTTI is often misused by having it look for
every single type in your system, it causes code to be non-extensible: when you add a new
type, you have to go hunting for all the code in which RTTI is used, and if you miss any you
won’t get help from the compiler.

However, RTTI doesn’t automatically create non-extensible code. Let’s revisit the trash
recycler once more. This time, a new tool will be introduced, which I call a TypeMap. It

144 z 157

y yp p
contains a HashMap that holds ArrayLists, but the interface is simple: you can add() a
new object, and you can get() an ArrayList containing all the objects of a particular type.
The keys for the contained HashMap are the types in the associated ArrayList. The beauty
of this design is that the TypeMap dynamically adds a new pair whenever it encounters a
new type, so whenever you add a new type to the system (even if you add the new type at run
time), it adapts.

Our example will again build on the structure of the Trash types in package
refactor.Trash (and the Trash.dat file used there can be used here without change):

//: refactor:dynatrash:DynaTrash.java
// Using a Map of Lists and RTTI to automatically sort
// trash into ArrayLists. This solution, despite the
// use of RTTI, is extensible.
package refactor.dynatrash;
import refactor.trash.*;
import java.util.*;
import junit.framework.*;

// Generic TypeMap works in any situation:
class TypeMap {
 private Map t = new HashMap();
 public void add(Object o) {
 Class type = o.getClass();
 if(t.containsKey(type))
 ((List)t.get(type)).add(o);
 else {
 List v = new ArrayList();
 v.add(o);
 t.put(type,v);
 }
 }
 public List get(Class type) {
 return (List)t.get(type);
 }
 public Iterator keys() {
 return t.keySet().iterator();
 }
}

// Adapter class to allow callbacks
// from ParseTrash.fillBin():
class TypeMapAdapter implements Fillable {
 TypeMap map;
 public TypeMapAdapter(TypeMap tm) { map = tm; }
 public void addTrash(Trash t) { map.add(t); }
}

public class DynaTrash extends TestCase {
 TypeMap bin = new TypeMap();
 public DynaTrash() {
 ParseTrash.fillBin("../trash/Trash.dat",
 new TypeMapAdapter(bin));
 }
 public void test() {
 Iterator keys = bin.keys();
 while(keys.hasNext())
 Trash.sumValue(
 bin.get((Class)keys.next()).iterator());
 }
 public static void main(String args[]) {

145 z 157

 junit.textui.TestRunner.run(DynaTrash.class);
 }
} ///:~

Although powerful, the definition for TypeMap is simple. It contains a HashMap, and the
add() method does most of the work. When you add() a new object, the reference for the
Class object for that type is extracted. This is used as a key to determine whether an
ArrayList holding objects of that type is already present in the HashMap. If so, that
ArrayList is extracted and the object is added to the ArrayList. If not, the Class object and
a new ArrayList are added as a key-value pair.

You can get an Iterator of all the Class objects from keys(), and use each Class object to
fetch the corresponding ArrayList with get(). And that’s all there is to it.

The filler() method is interesting because it takes advantage of the design of
ParseTrash.fillBin(), which doesn’t just try to fill an ArrayList but instead anything that
implements the Fillable interface with its addTrash() method. All filler() needs to do is
to return a reference to an interface that implements Fillable, and then this reference can
be used as an argument to fillBin() like this:

ParseTrash.fillBin("Trash.dat", bin.filler());

To produce this reference, an anonymous inner class (described in Chapter 8 of Thinking in
Java, 2nd edition) is used. You never need a named class to implement Fillable, you just
need a reference to an object of that class, thus this is an appropriate use of anonymous inner
classes.

An interesting thing about this design is that even though it wasn’t created to handle the
sorting, fillBin() is performing a sort every time it inserts a Trash object into bin.

Much of class DynaTrash should be familiar from the previous examples. This time,
instead of placing the new Trash objects into a bin of type ArrayList, the bin is of type
TypeMap, so when the trash is thrown into bin it’s immediately sorted by TypeMap’s
internal sorting mechanism. Stepping through the TypeMap and operating on each
individual ArrayList becomes a simple matter.

As you can see, adding a new type to the system won’t affect this code at all, and the code in
TypeMap is completely independent. This is certainly the smallest solution to the problem,
and arguably the most elegant as well. It does rely heavily on RTTI, but notice that each key-
value pair in the HashMap is looking for only one type. In addition, there’s no way you can
“forget” to add the proper code to this system when you add a new type, since there isn’t any
code you need to add.

Summary
Coming up with a design such as TrashVisitor.java that contains a larger amount of code
than the earlier designs can seem at first to be counterproductive. It pays to notice what
you’re trying to accomplish with various designs. Design patterns in general strive to separate
the things that change from the things that stay the same. The “things that change” can refer
to many different kinds of changes. Perhaps the change occurs because the program is placed
into a new environment or because something in the current environment changes (this could
be: “The user wants to add a new shape to the diagram currently on the screen”). Or, as in this
case, the change could be the evolution of the code body. While previous versions of the trash
sorting example emphasized the addition of new types of Trash to the system,
TrashVisitor.java allows you to easily add new functionality without disturbing the Trash
hierarchy. There’s more code in TrashVisitor.java, but adding new functionality to Visitor
is cheap. If this is something that happens a lot, then it’s worth the extra effort and code to
make it happen more easily.

The discovery of the vector of change is no trivial matter; it’s not something that an analyst

146 z 157

y g g y
can usually detect before the program sees its initial design. The necessary information will
probably not appear until later phases in the project: sometimes only at the design or
implementation phases do you discover a deeper or more subtle need in your system. In the
case of adding new types (which was the focus of most of the “recycle” examples) you might
realize that you need a particular inheritance hierarchy only when you are in the maintenance
phase and you begin extending the system!

One of the most important things that you’ll learn by studying design patterns seems to be an
about-face from what has been promoted so far in this book. That is: “OOP is all about
polymorphism.” This statement can produce the “two-year-old with a hammer” syndrome
(everything looks like a nail). Put another way, it’s hard enough to “get” polymorphism, and
once you do, you try to cast all your designs into that one particular mold.

What design patterns say is that OOP isn’t just about polymorphism. It’s about “separating
the things that change from the things that stay the same.” Polymorphism is an especially
important way to do this, and it turns out to be helpful if the programming language directly
supports polymorphism (so you don’t have to wire it in yourself, which would tend to make it
prohibitively expensive). But design patterns in general show other ways to accomplish the
basic goal, and once your eyes have been opened to this you will begin to search for more
creative designs.

Since the Design Patterns book came out and made such an impact, people have been
searching for other patterns. You can expect to see more of these appear as time goes on. Here
are some sites recommended by Jim Coplien, of C++ fame (http://www.bell-
labs.com/~cope), who is one of the main proponents of the patterns movement:

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki
http://c2.com/ppr
http://www.bell-labs.com/people/cope/Patterns/Process/index.html
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Also note there has been a yearly conference on design patterns, called PLOP, that produces a
published proceedings, the third of which came out in late 1997 (all published by Addison-
Wesley).

Exercises
 1. Add a class Plastic to TrashVisitor.java.

 2. Add a class Plastic to DynaTrash.java.

 3. Create a decorator like VisitableDecorator, but for the multiple dispatching
example, along with an “adapter decorator” class like the one created for
VisitableDecorator. Build the rest of the example and show that it works.

Projects
A number of more challenging projects for you to solve. [[Some of these
may turn into examples in the book, and so at some point might
disappear from here]]

147 z 157

Rats & Mazes
First, create a Blackboard (cite reference) which is an object on which anyone may record
information. This particular blackboard draws a maze, and is used as information comes back
about the structure of a maze from the rats that are investigating it.

Now create the maze itself. Like a real maze, this object reveals very little information about
itself — given a coordinate, it will tell you whether there are walls or spaces in the four
directions immediately surrounding that coordinate, but no more. For starters, read the maze
in from a text file but consider hunting on the internet for a maze-generating algorithm. In
any event, the result should be an object that, given a maze coordinate, will report walls and
spaces around that coordinate. Also, you must be able to ask it for an entry point to the maze.

Finally, create the maze-investigating Rat class. Each rat can communicate with both the
blackboard to give the current information and the maze to request new information based on
the current position of the rat. However, each time a rat reaches a decision point where the
maze branches, it creates a new rat to go down each of the branches. Each rat is driven by its
own thread. When a rat reaches a dead end, it terminates itself after reporting the results of
its final investigation to the blackboard.

The goal is to completely map the maze, but you must also determine whether the end
condition will be naturally found or whether the blackboard must be responsible for the
decision.

An example implementation by Jeremy Meyer:

//: projects:Maze.java
package projects;
import java.util.*;
import java.io.*;
import java.awt.*;

public class Maze extends Canvas {
 private Vector lines; // a line is a char array
 private int width = -1;
 private int height = -1;
 public static void main (String [] args)
 throws IOException {
 if (args.length < 1) {
 System.out.println("Enter filename");
 System.exit(0);
 }
 Maze m = new Maze();
 m.load(args[0]);
 Frame f = new Frame();
 f.setSize(m.width*20, m.height*20);
 f.add(m);
 Rat r = new Rat(m, 0, 0);
 f.setVisible(true);
 }
 public Maze() {
 lines = new Vector();
 setBackground(Color.lightGray);
 }
 synchronized public boolean
 isEmptyXY(int x, int y) {
 if (x < 0) x += width;
 if (y < 0) y += height;
 // Use mod arithmetic to bring rat in line:
 byte[] by =

148 z 157

 (byte[])(lines.elementAt(y%height));
 return by[x%width]==' ';
 }
 synchronized public void
 setXY(int x, int y, byte newByte) {
 if (x < 0) x += width;
 if (y < 0) y += height;
 byte[] by =
 (byte[])(lines.elementAt(y%height));
 by[x%width] = newByte;
 repaint();
 }
 public void
 load(String filename) throws IOException {
 String currentLine = null;
 BufferedReader br = new BufferedReader(
 new FileReader(filename));
 for(currentLine = br.readLine();
 currentLine != null;
 currentLine = br.readLine()) {
 lines.addElement(currentLine.getBytes());
 if(width < 0 ||
 currentLine.getBytes().length > width)
 width = currentLine.getBytes().length;
 }
 height = lines.size();
 br.close();
 }
 public void update(Graphics g) { paint(g); }
 public void paint (Graphics g) {
 int canvasHeight = this.getBounds().height;
 int canvasWidth = this.getBounds().width;
 if (height < 1 || width < 1)
 return; // nothing to do
 int width =
 ((byte[])(lines.elementAt(0))).length;
 for (int y = 0; y < lines.size(); y++) {
 byte[] b;
 b = (byte[])(lines.elementAt(y));
 for (int x = 0; x < width; x++) {
 switch(b[x]) {
 case ' ': // empty part of maze
 g.setColor(Color.lightGray);
 g.fillRect(
 x*(canvasWidth/width),
 y*(canvasHeight/height),
 canvasWidth/width,
 canvasHeight/height);
 break;
 case '*': // a wall
 g.setColor(Color.darkGray);
 g.fillRect(
 x*(canvasWidth/width),
 y*(canvasHeight/height),
 (canvasWidth/width)-1,
 (canvasHeight/height)-1);
 break;
 default: // must be rat
 g.setColor(Color.red);
 g.fillOval(x*(canvasWidth/width),
 y*(canvasHeight/height),

149 z 157

 canvasWidth/width,
 canvasHeight/height);
 break;
 }
 }
 }
 }
} ///:~

//: projects:Rat.java
package projects;

public class Rat {
 static int ratCount = 0;
 private Maze prison;
 private int vertDir = 0;
 private int horizDir = 0;
 private int x,y;
 private int myRatNo = 0;
 public Rat(Maze maze, int xStart, int yStart) {
 myRatNo = ratCount++;
 System.out.println("Rat no." + myRatNo +
 " ready to scurry.");
 prison = maze;
 x = xStart;
 y = yStart;
 prison.setXY(x,y, (byte)'R');
 new Thread() {
 public void run(){ scurry(); }
 }.start();
 }
 public void scurry() {
 // Try and maintain direction if possible.
 // Horizontal backward
 boolean ratCanMove = true;
 while(ratCanMove) {
 ratCanMove = false;
 // South
 if (prison.isEmptyXY(x, y + 1)) {
 vertDir = 1; horizDir = 0;
 ratCanMove = true;
 }
 // North
 if (prison.isEmptyXY(x, y - 1))
 if (ratCanMove)
 new Rat(prison, x, y-1);
 // Rat can move already, so give
 // this choice to the next rat.
 else {
 vertDir = -1; horizDir = 0;
 ratCanMove = true;
 }
 // West
 if (prison.isEmptyXY(x-1, y))
 if (ratCanMove)
 new Rat(prison, x-1, y);
 // Rat can move already, so give
 // this choice to the next rat.
 else {
 vertDir = 0; horizDir = -1;
 ratCanMove = true;

150 z 157

 }
 // East
 if (prison.isEmptyXY(x+1, y))
 if (ratCanMove)
 new Rat(prison, x+1, y);
 // Rat can move already, so give
 // this choice to the next rat.
 else {
 vertDir = 0; horizDir = 1;
 ratCanMove = true;
 }
 if (ratCanMove) { // Move original rat.
 x += horizDir;
 y += vertDir;
 prison.setXY(x,y,(byte)'R');
 } // If not then the rat will die.
 try {
 Thread.sleep(2000);
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 System.out.println("Rat no." + myRatNo +
 " can't move..dying..aarrgggh.");
 }
} ///:~

The maze initialization file:

//:! projects:Amaze.txt
 * ** * * ** *
 *** * ******* * ****
 *** ***
 ***** ********** *****
 * * * * ** ** * * * ** *
 * * * * ** * * * * **
 * ** * **
 * ** * ** * ** * **
 *** * *** ***** * *** **
 * * * * * *
 * ** * * * ** * *
///:~

Other maze resources
A discussion of algorithms to create mazes as well as Java source code to implement them:

http://www.mazeworks.com/mazegen/mazegen.htm

A discussion of algorithms for collision detection and other individual/group moving
behavior for autonomous physical objects:

http://www.red3d.com/cwr/steer/

XML Decorator
Create a pair of decorators for I/O Readers and Writers that encode (for the Writer decorator)
and decode (for the reader decorator) XML

151 z 157

A: Tools
Contains tools needed to build the book etc. Some of these may be
temporary and disappear when the code base is moved to CVS.

Ant extensions
Ant comes with an extension API so that you can create your own tasks by writing them in
Java. You can find full details in the official Ant documentation and in the published books on
Ant.

As an alternative, you can simply write a Java program and call it from Ant; this way, you
don’t have to learn the extension API. For example, to compile the code in this book, we need
to verify that the version of Java that the user is running is JDK 1.3 or greater, so we created
the following program:

//: com:bruceeckel:tools:CheckVersion.java
// {RunByHand}
package com.bruceeckel.tools;

public class CheckVersion {
 public static void main(String[] args) {
 String version = System.getProperty("java.version");
 char minor = version.charAt(2);
 char point = version.charAt(4);
 if(minor < '3' || point < '0')
 throw new RuntimeException("JDK 1.3.0 or higher " +
 "is required to run the examples in this book.");
 System.out.println("JDK version "+ version + " found");
 }
} ///:~

This simply uses System.getProperty() to discover the Java version, and throws an
exception if it isn’t at least 1.3. When Ant sees the exception, it will halt. Now you can include
the following in any buildfile where you want to check the version number:

 <java
 taskname="CheckVersion"
 classname="com.bruceeckel.tools.CheckVersion"
 classpath="${basedir}"
 fork="true"
 failonerror="true"
 />

If you use this approach to adding tools, you can write them and test them quickly, and if it’s
justified, you can invest the extra effort and write an Ant extension.

Array utilities
Although useful, the Arrays class stops short of being fully functional. For example, it would
be nice to be able to easily print the elements of an array without having to code a for loop by
hand every time. And as you’ll see, the fill() method only takes a single value and places it in
the array, so if you wanted, for example, to fill an array with randomly generated numbers,
fill() is no help.

Thus it makes sense to supplement the Arrays class with some additional utilities, which will

152 z 157

pp y
be placed in the package com.bruceeckel.util for convenience. These will print an array
of any type and fill an array with values or objects that are created by an object called a
generator that you can define.

Because code needs to be created for each primitive type as well as Object, there’s a lot of
nearly duplicated code.[14] For example, a “generator” interface is required for each type
because the return type of next() must be different in each case:

//: com:bruceeckel:util:Generator.java
package com.bruceeckel.util;
public interface Generator { Object next(); } ///:~

//: com:bruceeckel:util:BooleanGenerator.java
package com.bruceeckel.util;
public interface BooleanGenerator { boolean next(); } ///:~

//: com:bruceeckel:util:ByteGenerator.java
package com.bruceeckel.util;
public interface ByteGenerator { byte next(); } ///:~

//: com:bruceeckel:util:CharGenerator.java
package com.bruceeckel.util;
public interface CharGenerator { char next(); } ///:~

//: com:bruceeckel:util:ShortGenerator.java
package com.bruceeckel.util;
public interface ShortGenerator { short next(); } ///:~

//: com:bruceeckel:util:IntGenerator.java
package com.bruceeckel.util;
public interface IntGenerator { int next(); } ///:~

//: com:bruceeckel:util:LongGenerator.java
package com.bruceeckel.util;
public interface LongGenerator { long next(); } ///:~

//: com:bruceeckel:util:FloatGenerator.java
package com.bruceeckel.util;
public interface FloatGenerator { float next(); } ///:~

//: com:bruceeckel:util:DoubleGenerator.java
package com.bruceeckel.util;
public interface DoubleGenerator { double next(); } ///:~

Arrays2 contains a variety of toString() methods, overloaded for each type. These
methods allow you to easily print an array. The toString() code introduces the use of
StringBuffer instead of String objects. This is a nod to efficiency; when you’re assembling
a string in a method that might be called a lot, it’s wiser to use the more efficient
StringBuffer rather than the more convenient String operations. Here, the StringBuffer
is created with an initial value, and Strings are appended. Finally, the result is converted to
a String as the return value:

//: com:bruceeckel:util:Arrays2.java
// A supplement to java.util.Arrays, to provide additional
// useful functionality when working with arrays. Allows
// any array to be converted to a String, and to be filled
// via a user-defined "generator" object.
package com.bruceeckel.util;
import java.util.*;

public class Arrays2 {
 public static String toString(boolean[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);

153 z 157

 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(byte[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(char[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(short[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(int[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(long[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(float[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)

154 z 157

 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(double[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 // Fill an array using a generator:
 public static void fill(Object[] a, Generator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(Object[] a, int from, int to, Generator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void
 fill(boolean[] a, BooleanGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(boolean[] a, int from, int to,BooleanGenerator gen){
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(byte[] a, ByteGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(byte[] a, int from, int to, ByteGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(char[] a, CharGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(char[] a, int from, int to, CharGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(short[] a, ShortGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(short[] a, int from, int to, ShortGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(int[] a, IntGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void

155 z 157

 fill(int[] a, int from, int to, IntGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(long[] a, LongGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(long[] a, int from, int to, LongGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(float[] a, FloatGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(float[] a, int from, int to, FloatGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(double[] a, DoubleGenerator gen){
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(double[] a, int from, int to, DoubleGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 private static Random r = new Random();
 public static class
 RandBooleanGenerator implements BooleanGenerator {
 public boolean next() { return r.nextBoolean(); }
 }
 public static class
 RandByteGenerator implements ByteGenerator {
 public byte next() { return (byte)r.nextInt(); }
 }
 private static String ssource =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 private static char[] src = ssource.toCharArray();
 public static class
 RandCharGenerator implements CharGenerator {
 public char next() {
 return src[r.nextInt(src.length)];
 }
 }
 public static class
 RandStringGenerator implements Generator {
 private int len;
 private RandCharGenerator cg = new RandCharGenerator();
 public RandStringGenerator(int length) {
 len = length;
 }
 public Object next() {
 char[] buf = new char[len];
 for(int i = 0; i < len; i++)
 buf[i] = cg.next();
 return new String(buf);
 }
 }
 public static class

156 z 157

 RandShortGenerator implements ShortGenerator {
 public short next() { return (short)r.nextInt(); }
 }
 public static class
 RandIntGenerator implements IntGenerator {
 private int mod = 10000;
 public RandIntGenerator() {}
 public RandIntGenerator(int modulo) { mod = modulo; }
 public int next() { return r.nextInt(mod); }
 }
 public static class
 RandLongGenerator implements LongGenerator {
 public long next() { return r.nextLong(); }
 }
 public static class
 RandFloatGenerator implements FloatGenerator {
 public float next() { return r.nextFloat(); }
 }
 public static class
 RandDoubleGenerator implements DoubleGenerator {
 public double next() {return r.nextDouble();}
 }
} ///:~

To fill an array of elements using a generator, the fill() method takes a reference to an
appropriate generator interface, which has a next() method that will somehow produce an
object of the right type (depending on how the interface is implemented). The fill() method
simply calls next() until the desired range has been filled. Now you can create any generator
by implementing the appropriate interface and use your generator with fill().

Random data generators are useful for testing, so a set of inner classes is created to
implement all the primitive generator interfaces, as well as a String generator to represent
Object. You can see that RandStringGenerator uses RandCharGenerator to fill an
array of characters, which is then turned into a String. The size of the array is determined by
the constructor argument.

To generate numbers that aren’t too large, RandIntGenerator defaults to a modulus of
10,000, but the overloaded constructor allows you to choose a smaller value.

[1] This is a tongue-in-cheek reference to an event in China after the death of Mao-Tze Tung, when
four persons including Mao’s widow made a power play, and were demonized by the Chinese
Communist Party under that name.

[2] From Mark Johnson.

[3] But be warned: the examples are in C++.

[4] A free email publication. See www.BruceEckel.com to subscribe.

[5] From an email from Kevlin Henney.

[6] Shalloway, Design Patterns Explained, and Alexandrescu, Advanced C++ Design (??)

[7] In the Python language, all functions are already objects and so the Command pattern is often
redundant.

[8] Page 235.

[9] The original version of this was called JPython, but the project changed and the name was changed
to emphasize the distinctness of the new version.

157 z 157

[10] Changing the registry setting python.security.respectJavaAccessibility = true to false
makes testing even more powerful because it allows the test script to use *all* methods, even protected
and package-private.

[11] No mice were harmed in the creation of this example.

[12] Addison-Wesley, 1999.

[13] This was a solution created by Jaroslav Tulach in a design patterns class that I gave in Prague.

[14] The C++ programmer will note how much the code could be collapsed with the use of default
arguments and templates. The Python programmer will note that this entire library would be largely
unnecessary in that language.

