
Autoconf:

[Top] [Contents] [Index] [?]

Autoconf

@insertcopying

1. Introduction Autoconf's purpose, strengths, and weaknesses

2. The GNU Build System A set of tools for portable software packages

3. Making configure Scripts How to organize and produce Autoconf scripts

4. Initialization and Output Files Initialization and output

5. Existing Tests Macros that check for particular features

6. Writing Tests How to write new feature checks

7. Results of Tests What to do with results from feature checks

8. Programming in M4 Layers on top of which Autoconf is written

9. Writing Autoconf Macros Adding new macros to Autoconf

10. Portable Shell Programming Shell script portability pitfalls

11. Manual Configuration Selecting features that can't be guessed

12. Site Configuration Local defaults for configure

13. Running configure Scripts How to use the Autoconf output

14. Recreating a Configuration Recreating a configuration

15. Obsolete Constructs Kept for backward compatibility

16. Generating Test Suites with Autotest Creating portable test suites

17. Frequent Autoconf Questions, with answers

18. History of Autoconf

A. Copying This Manual How to make copies of this manual

B. Indices Indices of symbols, concepts, etc.

 -- The Detailed Node Listing ---

The GNU Build System

2.1 Automake Escaping Makefile hell

2.2 Libtool Building libraries portably

2.3 Pointers More info on the GNU build system

Making configure Scripts

3.1 Writing `configure.ac' What to put in an Autoconf input file

3.2 Using autoscan to Create `configure.ac' Semi-automatic `configure.ac' writing

3.3 Using ifnames to List Conditionals Listing the conditionals in source code

3.4 Using autoconf to Create configure How to create configuration scripts

3.5 Using autoreconf to Update configure Scripts Remaking multiple configure scripts

Writing `configure.ac'

3.1.1 A Shell Script Compiler Autoconf as solution of a problem

file:///C|/pdfing/autoconf.html.htm (1 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC1
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC3
file:///C|/pdfing/autoconf.html#SEC4
file:///C|/pdfing/autoconf.html#SEC5
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC8

Autoconf:

3.1.2 The Autoconf Language Programming in Autoconf

3.1.3 Standard `configure.ac' Layout Standard organization of `configure.ac'

Initialization and Output Files

4.1 Initializing configure Option processing etc.

4.2 Notices in configure Copyright, version numbers in configure

4.3 Finding configure Input Where Autoconf should find files

4.4 Outputting Files Outputting results from the configuration

4.5 Performing Configuration Actions Preparing the output based on results

4.6 Creating Configuration Files Creating output files

4.7 Substitutions in Makefiles Using output variables in `Makefile's

4.8 Configuration Header Files Creating a configuration header file

4.9 Running Arbitrary Configuration Commands Running arbitrary instantiation commands

4.10 Creating Configuration Links Links depending on the configuration

4.11 Configuring Other Packages in Subdirectories Configuring independent packages together

4.12 Default Prefix Changing the default installation prefix

Substitutions in Makefiles

4.7.1 Preset Output Variables Output variables that are always set

4.7.2 Installation Directory Variables Other preset output variables

4.7.3 Build Directories Supporting multiple concurrent compiles

4.7.4 Automatic Remaking Makefile rules for configuring

Configuration Header Files

4.8.1 Configuration Header Templates Input for the configuration headers

4.8.2 Using autoheader to Create `config.h.in' How to create configuration templates

4.8.3 Autoheader Macros How to specify CPP templates

Existing Tests

5.1 Common Behavior Macros' standard schemes

5.2 Alternative Programs Selecting between alternative programs

5.3 Files Checking for the existence of files

5.4 Library Files Library archives that might be missing

5.5 Library Functions C library functions that might be missing

5.6 Header Files Header files that might be missing

5.7 Declarations Declarations that may be missing

5.8 Structures Structures or members that might be missing

5.9 Types Types that might be missing

5.10 Compilers and Preprocessors Checking for compiling programs

5.11 System Services Operating system services

5.12 UNIX Variants Special kludges for specific UNIX variants

Common Behavior

file:///C|/pdfing/autoconf.html.htm (2 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC10
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC25
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC68

Autoconf:

5.1.1 Standard Symbols Symbols defined by the macros

5.1.2 Default Includes Includes used by the generic macros

Alternative Programs

5.2.1 Particular Program Checks Special handling to find certain programs

5.2.2 Generic Program and File Checks How to find other programs

Library Functions

5.5.1 Portability of C Functions Pitfalls with usual functions

5.5.2 Particular Function Checks Special handling to find certain functions

5.5.3 Generic Function Checks How to find other functions

Header Files

5.6.1 Portability of Headers Collected knowledge on common headers

5.6.2 Particular Header Checks Special handling to find certain headers

5.6.3 Generic Header Checks How to find other headers

Declarations

5.7.1 Particular Declaration Checks Macros to check for certain declarations

5.7.2 Generic Declaration Checks How to find other declarations

Structures

5.8.1 Particular Structure Checks Macros to check for certain structure members

5.8.2 Generic Structure Checks How to find other structure members

Types

5.9.1 Particular Type Checks Special handling to find certain types

5.9.2 Generic Type Checks How to find other types

Compilers and Preprocessors

5.10.1 Specific Compiler Characteristics Some portability issues

5.10.2 Generic Compiler Characteristics Language independent tests

5.10.3 C Compiler Characteristics Checking its characteristics

5.10.4 C++ Compiler Characteristics Likewise

5.10.5 Fortran 77 Compiler Characteristics Likewise

Writing Tests

6.1 Language Choice Selecting which language to use for testing

6.2 Writing Test Programs Forging source files for compilers

6.3 Running the Preprocessor Detecting preprocessor symbols

6.4 Running the Compiler Detecting language or header features

6.5 Running the Linker Detecting library features

file:///C|/pdfing/autoconf.html.htm (3 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#SEC49
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#SEC53
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#SEC62
file:///C|/pdfing/autoconf.html#SEC63
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC77

Autoconf:

6.6 Checking Run Time Behavior Testing for run-time features

6.7 Systemology A zoology of operating systems

6.8 Multiple Cases Tests for several possible values

Writing Test Programs

6.2.1 Guidelines for Test Programs General rules for writing test programs

6.2.2 Test Functions Avoiding pitfalls in test programs

6.2.3 Generating Sources Source program boilerplate

Results of Tests

7.1 Defining C Preprocessor Symbols Defining C preprocessor symbols

7.2 Setting Output Variables Replacing variables in output files

7.3 Caching Results Speeding up subsequent configure runs

7.4 Printing Messages Notifying configure users

Caching Results

7.3.1 Cache Variable Names Shell variables used in caches

7.3.2 Cache Files Files configure uses for caching

7.3.3 Cache Checkpointing Loading and saving the cache file

Programming in M4

8.1 M4 Quotation Protecting macros from unwanted expansion

8.2 Using autom4te The Autoconf executables backbone

8.3 Programming in M4sugar Convenient pure M4 macros

8.4 Programming in M4sh Common shell Constructs

M4 Quotation

8.1.1 Active Characters Characters that change the behavior of M4

8.1.2 One Macro Call Quotation and one macro call

8.1.3 Quotation and Nested Macros Macros calling macros

8.1.4 changequote is Evil Worse than INTERCAL: M4 + changequote

8.1.5 Quadrigraphs Another way to escape special characters

8.1.6 Quotation Rule Of Thumb One parenthesis, one quote

Using autom4te

8.2.1 Invoking autom4te A GNU M4 wrapper

8.2.2 Customizing autom4te Customizing the Autoconf package

Programming in M4sugar

8.3.1 Redefined M4 Macros M4 builtins changed in M4sugar

8.3.2 Evaluation Macros More quotation and evaluation control

8.3.3 Forbidden Patterns Catching unexpanded macros

file:///C|/pdfing/autoconf.html.htm (4 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC80
file:///C|/pdfing/autoconf.html#SEC72
file:///C|/pdfing/autoconf.html#SEC73
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC91
file:///C|/pdfing/autoconf.html#SEC92
file:///C|/pdfing/autoconf.html#SEC93
file:///C|/pdfing/autoconf.html#SEC94
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC96
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC99
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#SEC103

Autoconf:

Writing Autoconf Macros

9.1 Macro Definitions Basic format of an Autoconf macro

9.2 Macro Names What to call your new macros

9.3 Reporting Messages Notifying autoconf users

9.4 Dependencies Between Macros What to do when macros depend on other macros

9.5 Obsoleting Macros Warning about old ways of doing things

9.6 Coding Style Writing Autoconf macros à la Autoconf

Dependencies Between Macros

9.4.1 Prerequisite Macros Ensuring required information

9.4.2 Suggested Ordering Warning about possible ordering problems

Portable Shell Programming

10.1 Shellology A zoology of shells

10.2 Here-Documents Quirks and tricks

10.3 File Descriptors FDs and redirections

10.4 File System Conventions File- and pathnames

10.5 Shell Substitutions Variable and command expansions

10.6 Assignments Varying side effects of assignments

10.7 Special Shell Variables Variables you should not change

10.8 Limitations of Shell Builtins Portable use of not so portable /bin/sh

10.9 Limitations of Usual Tools Portable use of portable tools

10.10 Limitations of Make Portable Makefiles

Manual Configuration

11.1 Specifying the System Type Specifying the system type

11.2 Getting the Canonical System Type Getting the canonical system type

11.3 Using the System Type What to do with the system type

Site Configuration

12.1 Working With External Software Working with other optional software

12.2 Choosing Package Options Selecting optional features

12.3 Making Your Help Strings Look Pretty Formatting help string

12.4 Configuring Site Details Configuring site details

12.5 Transforming Program Names When Installing Changing program names when installing

12.6 Setting Site Defaults Giving configure local defaults

Transforming Program Names When Installing

12.5.1 Transformation Options configure options to transform names

12.5.2 Transformation Examples Sample uses of transforming names

12.5.3 Transformation Rules `Makefile' uses of transforming names

Running configure Scripts

file:///C|/pdfing/autoconf.html.htm (5 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#SEC107
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC111
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#SEC116
file:///C|/pdfing/autoconf.html#SEC117
file:///C|/pdfing/autoconf.html#SEC118
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC120
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC128
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC133
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC135
file:///C|/pdfing/autoconf.html#SEC136
file:///C|/pdfing/autoconf.html#SEC137

Autoconf:

13.1 Basic Installation Instructions for typical cases

13.2 Compilers and Options Selecting compilers and optimization

13.3 Compiling For Multiple Architectures Compiling for multiple architectures at once

13.4 Installation Names Installing in different directories

13.5 Optional Features Selecting optional features

13.6 Specifying the System Type Specifying the system type

13.7 Sharing Defaults Setting site-wide defaults for configure

13.8 Defining Variables Specifying the compiler etc.

13.9 configure Invocation Changing how configure runs

Obsolete Constructs

15.1 Obsolete `config.status' Invocation Different calling convention

15.2 `acconfig.h' Additional entries in `config.h.in'

15.3 Using autoupdate to Modernize `configure.ac' Automatic update of `configure.ac'

15.4 Obsolete Macros Backward compatibility macros

15.5 Upgrading From Version 1 Tips for upgrading your files

15.6 Upgrading From Version 2.13 Some fresher tips

Upgrading From Version 1

15.5.1 Changed File Names Files you might rename

15.5.2 Changed Makefiles New things to put in `Makefile.in'

15.5.3 Changed Macros Macro calls you might replace

15.5.4 Changed Results Changes in how to check test results

15.5.5 Changed Macro Writing Better ways to write your own macros

Upgrading From Version 2.13

15.6.1 Changed Quotation Broken code which used to work

15.6.2 New Macros Interaction with foreign macros

15.6.3 Hosts and Cross-Compilation Bugward compatibility kludges

15.6.4 AC_LIBOBJ vs. LIBOBJS LIBOBJS is a forbidden token

15.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO A more generic scheme for testing sources

Generating Test Suites with Autotest

16.1 Using an Autotest Test Suite Autotest and the user

16.2 Writing `testsuite.at' Autotest macros

16.3 Running testsuite Scripts Running testsuite scripts

16.4 Making testsuite Scripts Using autom4te to create testsuite

Using an Autotest Test Suite

16.1.1 testsuite Scripts The concepts of Autotest

16.1.2 Autotest Logs Their contents

Frequent Autoconf Questions, with answers

file:///C|/pdfing/autoconf.html.htm (6 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC140
file:///C|/pdfing/autoconf.html#SEC141
file:///C|/pdfing/autoconf.html#SEC142
file:///C|/pdfing/autoconf.html#SEC143
file:///C|/pdfing/autoconf.html#SEC144
file:///C|/pdfing/autoconf.html#SEC145
file:///C|/pdfing/autoconf.html#SEC146
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC156
file:///C|/pdfing/autoconf.html#SEC157
file:///C|/pdfing/autoconf.html#SEC158
file:///C|/pdfing/autoconf.html#SEC159
file:///C|/pdfing/autoconf.html#SEC160
file:///C|/pdfing/autoconf.html#SEC162
file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#SEC166
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#SEC170

Autoconf:

17.1 Distributing configure Scripts Distributing configure scripts

17.2 Why Require GNU M4? Why not use the standard M4?

17.3 How Can I Bootstrap? Autoconf and GNU M4 require each other?

17.4 Why Not Imake? Why GNU uses configure instead of Imake

17.5 How Do I #define Installation Directories? Passing datadir to program

17.6 What is `autom4te.cache'? What is it? Can I remove it?

History of Autoconf

18.1 Genesis Prehistory and naming of configure

18.2 Exodus The plagues of M4 and Perl

18.3 Leviticus The priestly code of portability arrives

18.4 Numbers Growth and contributors

18.5 Deuteronomy Approaching the promises of easy configuration

Copying This Manual

A.1 GNU Free Documentation License License for copying this manual

Indices

B.1 Environment Variable Index Index of environment variables used

B.2 Output Variable Index Index of variables set in output files

B.3 Preprocessor Symbol Index Index of C preprocessor symbols defined

B.4 Autoconf Macro Index Index of Autoconf macros

B.5 M4 Macro Index Index of M4, M4sugar, and M4sh macros

B.6 Autotest Macro Index Index of Autotest macros

B.7 Program and Function Index Index of those with portability problems

B.8 Concept Index General index

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

1. Introduction

A physicist, an engineer, and a computer scientist were discussing the
nature of God. ``Surely a Physicist,'' said the physicist, ``because
early in the Creation, God made Light; and you know, Maxwell's
equations, the dual nature of electromagnetic waves, the relativistic
consequences...'' ``An Engineer!,'' said the engineer, ``because
before making Light, God split the Chaos into Land and Water; it takes a
hell of an engineer to handle that big amount of mud, and orderly
separation of solids from liquids...'' The computer scientist
shouted: ``And the Chaos, where do you think it was coming from, hmm?''

---Anonymous

Autoconf is a tool for producing shell scripts that automatically configure software source code packages to adapt to many kinds of

file:///C|/pdfing/autoconf.html.htm (7 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC175
file:///C|/pdfing/autoconf.html#SEC176
file:///C|/pdfing/autoconf.html#SEC177
file:///C|/pdfing/autoconf.html#SEC178
file:///C|/pdfing/autoconf.html#SEC179
file:///C|/pdfing/autoconf.html#SEC180
file:///C|/pdfing/autoconf.html#SEC182
file:///C|/pdfing/autoconf.html#SEC183
file:///C|/pdfing/autoconf.html#SEC184
file:///C|/pdfing/autoconf.html#SEC185
file:///C|/pdfing/autoconf.html#SEC186
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC191
file:///C|/pdfing/autoconf.html#SEC192
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC194
file:///C|/pdfing/autoconf.html#SEC195
file:///C|/pdfing/autoconf.html#SEC196
file:///C|/pdfing/autoconf.html#SEC197
file:///C|/pdfing/autoconf.html#SEC198
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

UNIX-like systems. The configuration scripts produced by Autoconf are independent of Autoconf when they are run, so their users
do not need to have Autoconf.

The configuration scripts produced by Autoconf require no manual user intervention when run; they do not normally even need an
argument specifying the system type. Instead, they individually test for the presence of each feature that the software package they
are for might need. (Before each check, they print a one-line message stating what they are checking for, so the user doesn't get too
bored while waiting for the script to finish.) As a result, they deal well with systems that are hybrids or customized from the more
common UNIX variants. There is no need to maintain files that list the features supported by each release of each variant of UNIX.

For each software package that Autoconf is used with, it creates a configuration script from a template file that lists the system
features that the package needs or can use. After the shell code to recognize and respond to a system feature has been written,
Autoconf allows it to be shared by many software packages that can use (or need) that feature. If it later turns out that the shell code
needs adjustment for some reason, it needs to be changed in only one place; all of the configuration scripts can be regenerated
automatically to take advantage of the updated code.

The Metaconfig package is similar in purpose to Autoconf, but the scripts it produces require manual user intervention, which is
quite inconvenient when configuring large source trees. Unlike Metaconfig scripts, Autoconf scripts can support cross-compiling, if
some care is taken in writing them.

Autoconf does not solve all problems related to making portable software packages--for a more complete solution, it should be
used in concert with other GNU build tools like Automake and Libtool. These other tools take on jobs like the creation of a
portable, recursive `Makefile' with all of the standard targets, linking of shared libraries, and so on. See section 2. The GNU
Build System, for more information.

Autoconf imposes some restrictions on the names of macros used with #if in C programs (see section B.3 Preprocessor Symbol
Index).

Autoconf requires GNU M4 in order to generate the scripts. It uses features that some UNIX versions of M4, including GNU M4
1.3, do not have. You must use version 1.4 or later of GNU M4.

See section 15.5 Upgrading From Version 1, for information about upgrading from version 1. See section 18. History of Autoconf,
for the story of Autoconf's development. See section 17. Frequent Autoconf Questions, with answers, for answers to some common
questions about Autoconf.

See the Autoconf web page for up-to-date information, details on the mailing lists, pointers to a list of known bugs, etc.

Mail suggestions to the Autoconf mailing list.

Bug reports should be preferably submitted to the Autoconf Gnats database, or sent to the Autoconf Bugs mailing list. If possible,
first check that your bug is not already solved in current development versions, and that it has not been reported yet. Be sure to
include all the needed information and a short `configure.ac' that demonstrates the problem.

Autoconf's development tree is accessible via CVS; see the Autoconf web page for details. There is also a CVSweb interface to the
Autoconf development tree. Patches relative to the current CVS version can be sent for review to the Autoconf Patches mailing list.

Because of its mission, Autoconf includes only a set of often-used macros that have already demonstrated their usefulness.
Nevertheless, if you wish to share your macros, or find existing ones, see the Autoconf Macro Archive, which is kindly run by
Peter Simons.

file:///C|/pdfing/autoconf.html.htm (8 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC174
http://www.gnu.org/software/autoconf/autoconf.html
mailto:autoconf@gnu.org
http://bugs.gnu.org/cgi-bin/gnatsweb.pl?database=autoconf
mailto:bug-autoconf@gnu.org
http://subversions.gnu.org/cgi-bin/cvsweb/autoconf/
http://subversions.gnu.org/cgi-bin/cvsweb/autoconf/
mailto:autoconf-patches@gnu.org
http://www.gnu.org/software/ac-archive/
mailto:simons@computer.org

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

2. The GNU Build System

Autoconf solves an important problem--reliable discovery of system-specific build and run-time information--but this is only one
piece of the puzzle for the development of portable software. To this end, the GNU project has developed a suite of integrated
utilities to finish the job Autoconf started: the GNU build system, whose most important components are Autoconf, Automake, and
Libtool. In this chapter, we introduce you to those tools, point you to sources of more information, and try to convince you to use
the entire GNU build system for your software.

2.1 Automake Escaping Makefile hell

2.2 Libtool Building libraries portably

2.3 Pointers More info on the GNU build system

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

2.1 Automake

The ubiquity of make means that a `Makefile' is almost the only viable way to distribute automatic build rules for software, but
one quickly runs into make's numerous limitations. Its lack of support for automatic dependency tracking, recursive builds in
subdirectories, reliable timestamps (e.g., for network filesystems), and so on, mean that developers must painfully (and often
incorrectly) reinvent the wheel for each project. Portability is non-trivial, thanks to the quirks of make on many systems. On top of
all this is the manual labor required to implement the many standard targets that users have come to expect (make install,
make distclean, make uninstall, etc.). Since you are, of course, using Autoconf, you also have to insert repetitive code
in your Makefile.in to recognize @CC@, @CFLAGS@, and other substitutions provided by configure. Into this mess steps
Automake.

Automake allows you to specify your build needs in a Makefile.am file with a vastly simpler and more powerful syntax than
that of a plain Makefile, and then generates a portable Makefile.in for use with Autoconf. For example, the Makefile.am
to build and install a simple "Hello world" program might look like:

bin_PROGRAMS = hello
hello_SOURCES = hello.c

The resulting Makefile.in (~400 lines) automatically supports all the standard targets, the substitutions provided by Autoconf,
automatic dependency tracking, VPATH building, and so on. make will build the hello program, and make install will
install it in `/usr/local/bin' (or whatever prefix was given to configure, if not `/usr/local').

Automake may require that additional tools be present on the developer's machine. For example, the Makefile.in that the
developer works with may not be portable (e.g., it might use special features of your compiler to automatically generate
dependency information). Running make dist, however, produces a `hello-1.0.tar.gz' package (or whatever the
program/version is) with a Makefile.in that will work on any system.

The benefits of Automake increase for larger packages (especially ones with subdirectories), but even for small programs the added
convenience and portability can be substantial. And that's not all....

file:///C|/pdfing/autoconf.html.htm (9 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC1
file:///C|/pdfing/autoconf.html#SEC3
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC3
file:///C|/pdfing/autoconf.html#SEC4
file:///C|/pdfing/autoconf.html#SEC5
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC4
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

2.2 Libtool

Very often, one wants to build not only programs, but libraries, so that other programs can benefit from the fruits of your labor.
Ideally, one would like to produce shared (dynamically linked) libraries, which can be used by multiple programs without
duplication on disk or in memory and can be updated independently of the linked programs. Producing shared libraries portably,
however, is the stuff of nightmares--each system has its own incompatible tools, compiler flags, and magic incantations.
Fortunately, GNU provides a solution: Libtool.

Libtool handles all the requirements of building shared libraries for you, and at this time seems to be the only way to do so with any
portability. It also handles many other headaches, such as: the interaction of Makefile rules with the variable suffixes of shared
libraries, linking reliably with shared libraries before they are installed by the superuser, and supplying a consistent versioning
system (so that different versions of a library can be installed or upgraded without breaking binary compatibility). Although
Libtool, like Autoconf, can be used on its own, it is most simply utilized in conjunction with Automake--there, Libtool is used
automatically whenever shared libraries are needed, and you need not know its syntax.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

2.3 Pointers

Developers who are used to the simplicity of make for small projects on a single system might be daunted at the prospect of
learning to use Automake and Autoconf. As your software is distributed to more and more users, however, you will otherwise
quickly find yourself putting lots of effort into reinventing the services that the GNU build tools provide, and making the same
mistakes that they once made and overcame. (Besides, since you're already learning Autoconf, Automake will be a piece of cake.)

There are a number of places that you can go to for more information on the GNU build tools.

● Web

The home pages for Autoconf, Automake, and Libtool.

● Automake Manual

See section `Automake' in GNU Automake, for more information on Automake.

● Books

The book GNU Autoconf, Automake and Libtool(1) describes the complete GNU build environment. You can also find the
entire book on-line at "The Goat Book" home page.

● Tutorials and Examples

The Autoconf Developer Page maintains links to a number of Autoconf/Automake tutorials online, and also links to the
Autoconf Macro Archive.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (10 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC3
file:///C|/pdfing/autoconf.html#SEC5
file:///C|/pdfing/autoconf.html#SEC5
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC4
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
file:///C|/pdfing/autoconf.html#FOOT1
http://sources.redhat.com/autobook/
http://sources.redhat.com/autoconf/
http://www.gnu.org/software/ac-archive/
file:///C|/pdfing/autoconf.html#SEC5
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

3. Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure. When run, configure creates several
files, replacing configuration parameters in them with appropriate values. The files that configure creates are:

● one or more `Makefile' files, usually one in each subdirectory of the package (see section 4.7 Substitutions in Makefiles);

● optionally, a C header file, the name of which is configurable, containing #define directives (see section 4.8
Configuration Header Files);

● a shell script called `config.status' that, when run, will recreate the files listed above (see section 14. Recreating a
Configuration);

● an optional shell script normally called `config.cache' (created when using `configure --config-cache') that
saves the results of running many of the tests (see section 7.3.2 Cache Files);

● a file called `config.log' containing any messages produced by compilers, to help debugging if configure makes a
mistake.

To create a configure script with Autoconf, you need to write an Autoconf input file `configure.ac' (or `configure.
in') and run autoconf on it. If you write your own feature tests to supplement those that come with Autoconf, you might also
write files called `aclocal.m4' and `acsite.m4'. If you use a C header file to contain #define directives, you might also run
autoheader, and you will distribute the generated file `config.h.in' with the package.

Here is a diagram showing how the files that can be used in configuration are produced. Programs that are executed are suffixed by
`*'. Optional files are enclosed in square brackets (`[]'). autoconf and autoheader also read the installed Autoconf macro
files (by reading `autoconf.m4').

Files used in preparing a software package for distribution:

your source files --> [autoscan*] --> [configure.scan] --> configure.ac

configure.ac --.
 | .------> autoconf* -----> configure
[aclocal.m4] --+---+
 | `-----> [autoheader*] --> [config.h.in]
[acsite.m4] ---'

Makefile.in -------------------------------> Makefile.in

Files used in configuring a software package:

file:///C|/pdfing/autoconf.html.htm (11 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC86

Autoconf:

 .-------------> [config.cache]
configure* ------------+-------------> config.log
 |
[config.h.in] -. v .-> [config.h] -.
 +--> config.status* -+ +--> make*
Makefile.in ---' `-> Makefile ---'

3.1 Writing `configure.ac' What to put in an Autoconf input file

3.2 Using autoscan to Create `configure.ac' Semi-automatic `configure.ac' writing

3.3 Using ifnames to List Conditionals Listing the conditionals in source code

3.4 Using autoconf to Create configure How to create configuration scripts

3.5 Using autoreconf to Update configure Scripts Remaking multiple configure scripts

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.1 Writing `configure.ac'

To produce a configure script for a software package, create a file called `configure.ac' that contains invocations of the
Autoconf macros that test the system features your package needs or can use. Autoconf macros already exist to check for many
features; see 5. Existing Tests, for their descriptions. For most other features, you can use Autoconf template macros to produce
custom checks; see 6. Writing Tests, for information about them. For especially tricky or specialized features, `configure.ac'
might need to contain some hand-crafted shell commands; see 10. Portable Shell Programming. The autoscan program can give
you a good start in writing `configure.ac' (see section 3.2 Using autoscan to Create `configure.ac', for more
information).

Previous versions of Autoconf promoted the name `configure.in', which is somewhat ambiguous (the tool needed to process
this file is not described by its extension), and introduces a slight confusion with `config.h.in' and so on (for which `.in'
means "to be processed by configure"). Using `configure.ac' is now preferred.

3.1.1 A Shell Script Compiler Autoconf as solution of a problem

3.1.2 The Autoconf Language Programming in Autoconf

3.1.3 Standard `configure.ac' Layout Standard organization of `configure.ac'

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.1.1 A Shell Script Compiler

Just as for any other computer language, in order to properly program `configure.ac' in Autoconf you must understand what
problem the language tries to address and how it does so.

The problem Autoconf addresses is that the world is a mess. After all, you are using Autoconf in order to have your package
compile easily on all sorts of different systems, some of them being extremely hostile. Autoconf itself bears the price for these
differences: configure must run on all those systems, and thus configure must limit itself to their lowest common
denominator of features.

file:///C|/pdfing/autoconf.html.htm (12 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC8
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC8
file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC10
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Naturally, you might then think of shell scripts; who needs autoconf? A set of properly written shell functions is enough to
make it easy to write configure scripts by hand. Sigh! Unfortunately, shell functions do not belong to the least common
denominator; therefore, where you would like to define a function and use it ten times, you would instead need to copy its body ten
times.

So, what is really needed is some kind of compiler, autoconf, that takes an Autoconf program, `configure.ac', and
transforms it into a portable shell script, configure.

How does autoconf perform this task?

There are two obvious possibilities: creating a brand new language or extending an existing one. The former option is very
attractive: all sorts of optimizations could easily be implemented in the compiler and many rigorous checks could be performed on
the Autoconf program (e.g., rejecting any non-portable construct). Alternatively, you can extend an existing language, such as the
sh (Bourne shell) language.

Autoconf does the latter: it is a layer on top of sh. It was therefore most convenient to implement autoconf as a macro
expander: a program that repeatedly performs macro expansions on text input, replacing macro calls with macro bodies and
producing a pure sh script in the end. Instead of implementing a dedicated Autoconf macro expander, it is natural to use an
existing general-purpose macro language, such as M4, and implement the extensions as a set of M4 macros.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.1.2 The Autoconf Language

The Autoconf language is very different from many other computer languages because it treats actual code the same as plain text.
Whereas in C, for instance, data and instructions have very different syntactic status, in Autoconf their status is rigorously the
same. Therefore, we need a means to distinguish literal strings from text to be expanded: quotation.

When calling macros that take arguments, there must not be any blank space between the macro name and the open parenthesis.
Arguments should be enclosed within the M4 quote characters `[' and `]', and be separated by commas. Any leading spaces in
arguments are ignored, unless they are quoted. You may safely leave out the quotes when the argument is simple text, but always
quote complex arguments such as other macro calls. This rule applies recursively for every macro call, including macros called
from other macros.

For instance:

AC_CHECK_HEADER([stdio.h],
 [AC_DEFINE([HAVE_STDIO_H])],
 [AC_MSG_ERROR([Sorry, can't do anything for you])])

is quoted properly. You may safely simplify its quotation to:

AC_CHECK_HEADER(stdio.h,
 [AC_DEFINE(HAVE_STDIO_H)],
 [AC_MSG_ERROR([Sorry, can't do anything for you])])

Notice that the argument of AC_MSG_ERROR is still quoted; otherwise, its comma would have been interpreted as an argument
separator.

file:///C|/pdfing/autoconf.html.htm (13 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC8
file:///C|/pdfing/autoconf.html#SEC10
file:///C|/pdfing/autoconf.html#SEC10
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

The following example is wrong and dangerous, as it is underquoted:

AC_CHECK_HEADER(stdio.h,
 AC_DEFINE(HAVE_STDIO_H),
 AC_MSG_ERROR([Sorry, can't do anything for you]))

In other cases, you may have to use text that also resembles a macro call. You must quote that text even when it is not passed as a
macro argument:

echo "Hard rock was here! --[AC_DC]"

which will result in

echo "Hard rock was here! --AC_DC"

When you use the same text in a macro argument, you must therefore have an extra quotation level (since one is stripped away by
the macro substitution). In general, then, it is a good idea to use double quoting for all literal string arguments:

AC_MSG_WARN([[AC_DC stinks --Iron Maiden]])

You are now able to understand one of the constructs of Autoconf that has been continually misunderstood... The rule of thumb is
that whenever you expect macro expansion, expect quote expansion; i.e., expect one level of quotes to be lost. For instance:

AC_COMPILE_IFELSE([char b[10];],, [AC_MSG_ERROR([you lose])])

is incorrect: here, the first argument of AC_COMPILE_IFELSE is `char b[10];' and will be expanded once, which results in
`char b10;'. (There was an idiom common in Autoconf's past to address this issue via the M4 changequote primitive, but do
not use it!) Let's take a closer look: the author meant the first argument to be understood as a literal, and therefore it must be quoted
twice:

AC_COMPILE_IFELSE([[char b[10];]],, [AC_MSG_ERROR([you lose])])

Voilà, you actually produce `char b[10];' this time!

The careful reader will notice that, according to these guidelines, the "properly" quoted AC_CHECK_HEADER example above is
actually lacking three pairs of quotes! Nevertheless, for the sake of readability, double quotation of literals is used only where
needed in this manual.

Some macros take optional arguments, which this documentation represents as [arg] (not to be confused with the quote characters).
You may just leave them empty, or use `[]' to make the emptiness of the argument explicit, or you may simply omit the trailing
commas. The three lines below are equivalent:

file:///C|/pdfing/autoconf.html.htm (14 of 250)27. 1. 2004 18:44:41

Autoconf:

AC_CHECK_HEADERS(stdio.h, [], [], [])
AC_CHECK_HEADERS(stdio.h,,,)
AC_CHECK_HEADERS(stdio.h)

It is best to put each macro call on its own line in `configure.ac'. Most of the macros don't add extra newlines; they rely on the
newline after the macro call to terminate the commands. This approach makes the generated configure script a little easier to
read by not inserting lots of blank lines. It is generally safe to set shell variables on the same line as a macro call, because the shell
allows assignments without intervening newlines.

You can include comments in `configure.ac' files by starting them with the `#'. For example, it is helpful to begin
`configure.ac' files with a line like this:

Process this file with autoconf to produce a configure script.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.1.3 Standard `configure.ac' Layout

The order in which `configure.ac' calls the Autoconf macros is not important, with a few exceptions. Every `configure.
ac' must contain a call to AC_INIT before the checks, and a call to AC_OUTPUT at the end (see section 4.4 Outputting Files).
Additionally, some macros rely on other macros having been called first, because they check previously set values of some
variables to decide what to do. These macros are noted in the individual descriptions (see section 5. Existing Tests), and they also
warn you when configure is created if they are called out of order.

To encourage consistency, here is a suggested order for calling the Autoconf macros. Generally speaking, the things near the end of
this list are those that could depend on things earlier in it. For example, library functions could be affected by types and libraries.

Autoconf requirements
AC_INIT(package, version, bug-report-address)
information on the package
checks for programs
checks for libraries
checks for header files
checks for types
checks for structures
checks for compiler characteristics
checks for library functions
checks for system services
AC_CONFIG_FILES([file...])
AC_OUTPUT

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.2 Using autoscan to Create `configure.ac'

file:///C|/pdfing/autoconf.html.htm (15 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC10
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

The autoscan program can help you create and/or maintain a `configure.ac' file for a software package. autoscan
examines source files in the directory tree rooted at a directory given as a command line argument, or the current directory if none
is given. It searches the source files for common portability problems and creates a file `configure.scan' which is a
preliminary `configure.ac' for that package, and checks a possibly existing `configure.ac' for completeness.

When using autoscan to create a `configure.ac', you should manually examine `configure.scan' before renaming it to
`configure.ac'; it will probably need some adjustments. Occasionally, autoscan outputs a macro in the wrong order relative
to another macro, so that autoconf produces a warning; you need to move such macros manually. Also, if you want the package
to use a configuration header file, you must add a call to AC_CONFIG_HEADERS (see section 4.8 Configuration Header Files).
You might also have to change or add some #if directives to your program in order to make it work with Autoconf (see section
3.3 Using ifnames to List Conditionals, for information about a program that can help with that job).

When using autoscan to maintain a `configure.ac', simply consider adding its suggestions. The file `autoscan.log' will
contain detailed information on why a macro is requested.

autoscan uses several data files (installed along with Autoconf) to determine which macros to output when it finds particular
symbols in a package's source files. These data files all have the same format: each line consists of a symbol, whitespace, and the
Autoconf macro to output if that symbol is encountered. Lines starting with `#' are comments.

autoscan accepts the following options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--verbose'
`-v'

Print the names of the files it examines and the potentially interesting symbols it finds in them. This output can be
voluminous.

`--include=dir'
`-I dir'

Append dir to the include path. Multiple invocations accumulate.

`--prepend-include=dir'
`-B dir'

Prepend dir to the include path. Multiple invocations accumulate.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.3 Using ifnames to List Conditionals

ifnames can help you write `configure.ac' for a software package. It prints the identifiers that the package already uses in C
preprocessor conditionals. If a package has already been set up to have some portability, ifnames can thus help you figure out
what its configure needs to check for. It may help fill in some gaps in a `configure.ac' generated by autoscan (see
section 3.2 Using autoscan to Create `configure.ac').

file:///C|/pdfing/autoconf.html.htm (16 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC11

Autoconf:

ifnames scans all of the C source files named on the command line (or the standard input, if none are given) and writes to the
standard output a sorted list of all the identifiers that appear in those files in #if, #elif, #ifdef, or #ifndef directives. It
prints each identifier on a line, followed by a space-separated list of the files in which that identifier occurs.

ifnames accepts the following options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

3.4 Using autoconf to Create configure

To create configure from `configure.ac', run the autoconf program with no arguments. autoconf processes
`configure.ac' with the M4 macro processor, using the Autoconf macros. If you give autoconf an argument, it reads that
file instead of `configure.ac' and writes the configuration script to the standard output instead of to configure. If you give
autoconf the argument `-', it reads from the standard input instead of `configure.ac' and writes the configuration script to
the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with Autoconf; autoconf reads them first.
Then it looks for the optional file `acsite.m4' in the directory that contains the distributed Autoconf macro files, and for the
optional file `aclocal.m4' in the current directory. Those files can contain your site's or the package's own Autoconf macro
definitions (see section 9. Writing Autoconf Macros, for more information). If a macro is defined in more than one of the files that
autoconf reads, the last definition it reads overrides the earlier ones.

autoconf accepts the following options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--verbose'
`-v'

Report processing steps.

`--debug'
`-d'

Don't remove the temporary files.

`--force'

file:///C|/pdfing/autoconf.html.htm (17 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC105

Autoconf:

`-f'
Remake `configure' even if newer than its input files.

`--include=dir'
`-I dir'

Append dir to the include path. Multiple invocations accumulate.

`--prepend-include=dir'
`-B dir'

Prepend dir to the include path. Multiple invocations accumulate.

`--output=file'
`-o file'

Save output (script or trace) to file. The file `-' stands for the standard output.

`--warnings=category'
`-W category'

Report the warnings related to category (which can actually be a comma separated list). See section 9.3 Reporting
Messages, macro AC_DIAGNOSE, for a comprehensive list of categories. Special values include:

`all'
report all the warnings

`none'
report none

`error'
treats warnings as errors

`no-category'
disable warnings falling into category

Warnings about `syntax' are enabled by default, and the environment variable WARNINGS, a comma separated list of
categories, is honored. Passing `-W category' will actually behave as if you had passed `--warnings=syntax,
$WARNINGS,category'. If you want to disable the defaults and WARNINGS, but (for example) enable the warnings
about obsolete constructs, you would use `-W none,obsolete'.

Because autoconf uses autom4te behind the scenes, it displays a back trace for errors, but not for warnings; if you
want them, just pass `-W error'. See section 8.2.1 Invoking autom4te, for some examples.

`--trace=macro[:format]'
`-t macro[:format]'

Do not create the configure script, but list the calls to macro according to the format. Multiple `--trace' arguments
can be used to list several macros. Multiple `--trace' arguments for a single macro are not cumulative; instead, you
should just make format as long as needed.

The format is a regular string, with newlines if desired, and several special escape codes. It defaults to `$f:$l:$n:$%';
see 8.2.1 Invoking autom4te, for details on the format.

`--initialization'
`-i'

By default, `--trace' does not trace the initialization of the Autoconf macros (typically the AC_DEFUN definitions). This

file:///C|/pdfing/autoconf.html.htm (18 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC98

Autoconf:

results in a noticeable speedup, but can be disabled by this option.

It is often necessary to check the content of a `configure.ac' file, but parsing it yourself is extremely fragile and error-prone. It
is suggested that you rely upon `--trace' to scan `configure.ac'. For instance, to find the list of variables that are
substituted, use:

$ autoconf -t AC_SUBST
configure.ac:2:AC_SUBST:ECHO_C
configure.ac:2:AC_SUBST:ECHO_N
configure.ac:2:AC_SUBST:ECHO_T
More traces deleted

The example below highlights the difference between `$@', `$*', and $%.

$ cat configure.ac
AC_DEFINE(This, is, [an
[example]])
$ autoconf -t 'AC_DEFINE:@: $@
: $
$: $%'
@: [This],[is],[an
[example]]
*: This,is,an
[example]
$: This:is:an [example]

The format gives you a lot of freedom:

$ autoconf -t 'AC_SUBST:$$ac_subst{"$1"} = "$f:$l";'
$ac_subst{"ECHO_C"} = "configure.ac:2";
$ac_subst{"ECHO_N"} = "configure.ac:2";
$ac_subst{"ECHO_T"} = "configure.ac:2";
More traces deleted

A long separator can be used to improve the readability of complex structures, and to ease their parsing (for instance when no
single character is suitable as a separator):

$ autoconf -t 'AM_MISSING_PROG:${|:::::|}*'
ACLOCAL|:::::|aclocal|:::::|$missing_dir
AUTOCONF|:::::|autoconf|:::::|$missing_dir
AUTOMAKE|:::::|automake|:::::|$missing_dir
More traces deleted

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (19 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

3.5 Using autoreconf to Update configure Scripts

Installing the various components of the GNU Build System can be tedious: running autopoint for Gettext, automake for
`Makefile.in' etc. in each directory. It may be needed either because some tools such as automake have been updated on
your system, or because some of the sources such as `configure.ac' have been updated, or finally, simply in order to install the
GNU Build System in a fresh tree.

autoreconf runs autoconf, autoheader, aclocal, automake, libtoolize, and autopoint (when appropriate)
repeatedly to update the GNU Build System in the specified directories and their subdirectories (see section 4.11 Configuring Other
Packages in Subdirectories). By default, it only remakes those files that are older than their sources.

If you install a new version of some tool, you can make autoreconf remake all of the files by giving it the `--force' option.

See section 4.7.4 Automatic Remaking, for `Makefile' rules to automatically remake configure scripts when their source
files change. That method handles the timestamps of configuration header templates properly, but does not pass `--autoconf-
dir=dir' or `--localdir=dir'.

autoreconf accepts the following options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--verbose'
Print the name of each directory where autoreconf runs autoconf (and autoheader, if appropriate).

`--debug'
`-d'

Don't remove the temporary files.

`--force'
`-f'

Remake even `configure' scripts and configuration headers that are newer than their input files (`configure.ac' and,
if present, `aclocal.m4').

`--install'
`-i'

Install the missing auxiliary files in the package. By default, files are copied; this can be changed with `--symlink'.

This option triggers calls to `automake --add-missing', `libtoolize', `autopoint', etc.

`--symlink'
`-s'

When used with `--install', install symbolic links to the missing auxiliary files instead of copying them.

`--make'
`-m'

file:///C|/pdfing/autoconf.html.htm (20 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC26

Autoconf:

When the directories were configured, update the configuration by running `./config.status --recheck && ./
config.status', and then run `make'.

`--include=dir'
`-I dir'

Append dir to the include path. Multiple invocations accumulate.

`--prepend-include=dir'
`-B dir'

Prepend dir to the include path. Multiple invocations accumulate.

`--warnings=category'
`-W category'

Report the warnings related to category (which can actually be a comma separated list).

`cross'
related to cross compilation issues.

`obsolete'
report the uses of obsolete constructs.

`portability'
portability issues

`syntax'
dubious syntactic constructs.

`all'
report all the warnings

`none'
report none

`error'
treats warnings as errors

`no-category'
disable warnings falling into category

Warnings about `syntax' are enabled by default, and the environment variable WARNINGS, a comma separated list of
categories, is honored. Passing `-W category' will actually behave as if you had passed `--warnings=syntax,
$WARNINGS,category'. If you want to disable the defaults and WARNINGS, but (for example) enable the warnings
about obsolete constructs, you would use `-W none,obsolete'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4. Initialization and Output Files

Autoconf-generated configure scripts need some information about how to initialize, such as how to find the package's source
files and about the output files to produce. The following sections describe the initialization and the creation of output files.

file:///C|/pdfing/autoconf.html.htm (21 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

4.1 Initializing configure Option processing etc.

4.2 Notices in configure Copyright, version numbers in configure

4.3 Finding configure Input Where Autoconf should find files

4.4 Outputting Files Outputting results from the configuration

4.5 Performing Configuration Actions Preparing the output based on results

4.6 Creating Configuration Files Creating output files

4.7 Substitutions in Makefiles Using output variables in `Makefile's

4.8 Configuration Header Files Creating a configuration header file

4.9 Running Arbitrary Configuration Commands Running arbitrary instantiation commands

4.10 Creating Configuration Links Links depending on the configuration

4.11 Configuring Other Packages in Subdirectories Configuring independent packages together

4.12 Default Prefix Changing the default installation prefix

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.1 Initializing configure

Every configure script must call AC_INIT before doing anything else. The only other required macro is AC_OUTPUT (see
section 4.4 Outputting Files).

Macro: AC_INIT (package, version, [bug-report], [tarname])
Process any command-line arguments and perform various initializations and verifications.

Set the name of the package and its version. These are typically used in `--version' support, including that of
configure. The optional argument bug-report should be the email to which users should send bug reports. The package
tarname differs from package: the latter designates the full package name (e.g., `GNU Autoconf'), while the former is
meant for distribution tar ball names (e.g., `autoconf'). It defaults to package with `GNU ' stripped, lower-cased, and all
characters other than alphanumerics and underscores are changed to `-'.

It is preferable that the arguments of AC_INIT be static, i.e., there should not be any shell computation, but they can be
computed by M4.

The following M4 macros (e.g., AC_PACKAGE_NAME), output variables (e.g., PACKAGE_NAME), and preprocessor
symbols (e.g., PACKAGE_NAME) are defined by AC_INIT:

AC_PACKAGE_NAME, PACKAGE_NAME
Exactly package.

AC_PACKAGE_TARNAME, PACKAGE_TARNAME
Exactly tarname.

AC_PACKAGE_VERSION, PACKAGE_VERSION
Exactly version.

AC_PACKAGE_STRING, PACKAGE_STRING
Exactly `package version'.

file:///C|/pdfing/autoconf.html.htm (22 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC19

Autoconf:

AC_PACKAGE_BUGREPORT, PACKAGE_BUGREPORT
Exactly bug-report.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.2 Notices in configure

The following macros manage version numbers for configure scripts. Using them is optional.

Macro: AC_PREREQ (version)
Ensure that a recent enough version of Autoconf is being used. If the version of Autoconf being used to create configure
is earlier than version, print an error message to the standard error output and do not create configure. For example:

AC_PREREQ(2.57)

This macro is the only macro that may be used before AC_INIT, but for consistency, you are invited not to do so.

Macro: AC_COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation's copyright on the Autoconf macros, parts of your configure are
covered by the copyright-notice.

The copyright-notice will show up in both the head of configure and in `configure --version'.

Macro: AC_REVISION (revision-info)
Copy revision stamp revision-info into the configure script, with any dollar signs or double-quotes removed. This macro
lets you put a revision stamp from `configure.ac' into configure without RCS or CVS changing it when you check
in configure. That way, you can determine easily which revision of `configure.ac' a particular configure
corresponds to.

For example, this line in `configure.ac':

AC_REVISION($Revision: 1.1 $)

produces this in configure:

#! /bin/sh
From configure.ac Revision: 1.30

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.3 Finding configure Input

Macro: AC_CONFIG_SRCDIR (unique-file-in-source-dir)
unique-file-in-source-dir is some file that is in the package's source directory; configure checks for this file's existence

file:///C|/pdfing/autoconf.html.htm (23 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

to make sure that the directory that it is told contains the source code in fact does. Occasionally people accidentally specify
the wrong directory with `--srcdir'; this is a safety check. See section 13.9 configure Invocation, for more
information.

Packages that do manual configuration or use the install program might need to tell configure where to find some other
shell scripts by calling AC_CONFIG_AUX_DIR, though the default places it looks are correct for most cases.

Macro: AC_CONFIG_AUX_DIR (dir)
Use the auxiliary build tools (e.g., `install-sh', `config.sub', `config.guess', Cygnus configure, Automake
and Libtool scripts etc.) that are in directory dir. These are auxiliary files used in configuration. dir can be either absolute or
relative to `srcdir'. The default is `srcdir' or `srcdir/..' or `srcdir/../..', whichever is the first that contains
`install-sh'. The other files are not checked for, so that using AC_PROG_INSTALL does not automatically require
distributing the other auxiliary files. It checks for `install.sh' also, but that name is obsolete because some make have
a rule that creates `install' from it if there is no `Makefile'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.4 Outputting Files

Every Autoconf script, e.g., `configure.ac', should finish by calling AC_OUTPUT. That is the macro that generates `config.
status', which will create the `Makefile's and any other files resulting from configuration. This is the only required macro
besides AC_INIT (see section 4.3 Finding configure Input).

Macro: AC_OUTPUT
Generate `config.status' and launch it. Call this macro once, at the end of `configure.ac'.

`config.status' will perform all the configuration actions: all the output files (see 4.6 Creating Configuration Files,
macro AC_CONFIG_FILES), header files (see 4.8 Configuration Header Files, macro AC_CONFIG_HEADERS),
commands (see 4.9 Running Arbitrary Configuration Commands, macro AC_CONFIG_COMMANDS), links (see 4.10
Creating Configuration Links, macro AC_CONFIG_LINKS), subdirectories to configure (see 4.11 Configuring Other
Packages in Subdirectories, macro AC_CONFIG_SUBDIRS) are honored.

Historically, the usage of AC_OUTPUT was somewhat different. See section 15.4 Obsolete Macros, for a description of the
arguments that AC_OUTPUT used to support.

If you run make in subdirectories, you should run it using the make variable MAKE. Most versions of make set MAKE to the name
of the make program plus any options it was given. (But many do not include in it the values of any variables set on the command
line, so those are not passed on automatically.) Some old versions of make do not set this variable. The following macro allows
you to use it even with those versions.

Macro: AC_PROG_MAKE_SET
If make predefines the Make variable MAKE, define output variable SET_MAKE to be empty. Otherwise, define SET_MAKE
to contain `MAKE=make'. Calls AC_SUBST for SET_MAKE.

If you use this macro, place a line like this in each `Makefile.in' that runs MAKE on other directories:

@SET_MAKE@

file:///C|/pdfing/autoconf.html.htm (24 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC154

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.5 Performing Configuration Actions

`configure' is designed so that it appears to do everything itself, but there is actually a hidden slave: `config.status'.
`configure' is in charge of examining your system, but it is `config.status' that actually takes the proper actions based on
the results of `configure'. The most typical task of `config.status' is to instantiate files.

This section describes the common behavior of the four standard instantiating macros: AC_CONFIG_FILES,
AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and AC_CONFIG_LINKS. They all have this prototype:

AC_CONFIG_FOOS(tag..., [commands], [init-cmds])

where the arguments are:

tag...
A whitespace-separated list of tags, which are typically the names of the files to instantiate.

You are encouraged to use literals as tags. In particular, you should avoid

... && my_foos="$my_foos fooo"

... && my_foos="$my_foos foooo"
AC_CONFIG_FOOS($my_foos)

and use this instead:

... && AC_CONFIG_FOOS(fooo)
... && AC_CONFIG_FOOS(foooo)

The macros AC_CONFIG_FILES and AC_CONFIG_HEADERS use special tags: they may have the form `output' or
`output:inputs'. The file output is instantiated from its templates, inputs (defaulting to `output.in').

For instance `AC_CONFIG_FILES(Makefile:boiler/top.mk:boiler/bot.mk)' asks for the creation of
`Makefile' that will be the expansion of the output variables in the concatenation of `boiler/top.mk' and `boiler/
bot.mk'.

The special value `-' might be used to denote the standard output when used in output, or the standard input when used in
the inputs. You most probably don't need to use this in `configure.ac', but it is convenient when using the command
line interface of `./config.status', see 14. Recreating a Configuration, for more details.

The inputs may be absolute or relative filenames. In the latter case they are first looked for in the build tree, and then in the
source tree.

commands
Shell commands output literally into `config.status', and associated with a tag that the user can use to tell `config.
status' which the commands to run. The commands are run each time a tag request is given to `config.status',

file:///C|/pdfing/autoconf.html.htm (25 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC149

Autoconf:

typically each time the file `tag' is created.

The variables set during the execution of configure are not available here: you first need to set them via the init-cmds.
Nonetheless the following variables are precomputed:

srcdir
The path from the top build directory to the top source directory. This is what configure's option `--srcdir'
sets.

ac_top_srcdir
The path from the current build directory to the top source directory.

ac_top_builddir
The path from the current build directory to the top build directory. It can be empty, or else ends with a slash, so that
you may concatenate it.

ac_srcdir
The path from the current build directory to the corresponding source directory.

The current directory refers to the directory (or pseudo-directory) containing the input part of tags. For instance, running

AC_CONFIG_COMMANDS([deep/dir/out:in/in.in], [...], [...])

with `--srcdir=../package' produces the following values:

Argument of --srcdir
srcdir='../package'
Reversing deep/dir
ac_top_builddir='../../'
Concatenation of $ac_top_builddir and srcdir
ac_top_srcdir='../../../package'
Concatenation of $ac_top_srcdir and deep/dir
ac_srcdir='../../../package/deep/dir'

independently of `in/in.in'.

init-cmds
Shell commands output unquoted near the beginning of `config.status', and executed each time `config.status'
runs (regardless of the tag). Because they are unquoted, for example, `$var' will be output as the value of var. init-cmds is
typically used by `configure' to give `config.status' some variables it needs to run the commands.

You should be extremely cautious in your variable names: all the init-cmds share the same name space and may overwrite
each other in unpredictable ways. Sorry....

All these macros can be called multiple times, with different tags, of course!

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (26 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

4.6 Creating Configuration Files

Be sure to read the previous section, 4.5 Performing Configuration Actions.

Macro: AC_CONFIG_FILES (file..., [cmds], [init-cmds])
Make AC_OUTPUT create each `file' by copying an input file (by default `file.in'), substituting the output variable
values. This macro is one of the instantiating macros; see 4.5 Performing Configuration Actions. See section 4.7
Substitutions in Makefiles, for more information on using output variables. See section 7.2 Setting Output Variables, for
more information on creating them. This macro creates the directory that the file is in if it doesn't exist. Usually,
`Makefile's are created this way, but other files, such as `.gdbinit', can be specified as well.

Typical calls to AC_CONFIG_FILES look like this:

AC_CONFIG_FILES([Makefile src/Makefile man/Makefile X/Imakefile])
AC_CONFIG_FILES([autoconf], [chmod +x autoconf])

You can override an input file name by appending to file a colon-separated list of input files. Examples:

AC_CONFIG_FILES([Makefile:boiler/top.mk:boiler/bot.mk]
 [lib/Makefile:boiler/lib.mk])

Doing this allows you to keep your file names acceptable to MS-DOS, or to prepend and/or append boilerplate to the file.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.7 Substitutions in Makefiles

Each subdirectory in a distribution that contains something to be compiled or installed should come with a file `Makefile.in',
from which configure will create a `Makefile' in that directory. To create a `Makefile', configure performs a simple
variable substitution, replacing occurrences of `@variable@' in `Makefile.in' with the value that configure has
determined for that variable. Variables that are substituted into output files in this way are called output variables. They are
ordinary shell variables that are set in configure. To make configure substitute a particular variable into the output files, the
macro AC_SUBST must be called with that variable name as an argument. Any occurrences of `@variable@' for other variables
are left unchanged. See section 7.2 Setting Output Variables, for more information on creating output variables with AC_SUBST.

A software package that uses a configure script should be distributed with a file `Makefile.in', but no `Makefile'; that
way, the user has to properly configure the package for the local system before compiling it.

See section `Makefile Conventions' in The GNU Coding Standards, for more information on what to put in `Makefile's.

4.7.1 Preset Output Variables Output variables that are always set

4.7.2 Installation Directory Variables Other preset output variables

4.7.3 Build Directories Supporting multiple concurrent compiles

4.7.4 Automatic Remaking Makefile rules for configuring

file:///C|/pdfing/autoconf.html.htm (27 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC25
file:///C|/pdfing/autoconf.html#SEC26

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.7.1 Preset Output Variables

Some output variables are preset by the Autoconf macros. Some of the Autoconf macros set additional output variables, which are
mentioned in the descriptions for those macros. See section B.2 Output Variable Index, for a complete list of output variables. See
section 4.7.2 Installation Directory Variables, for the list of the preset ones related to installation directories. Below are listed the
other preset ones. They all are precious variables (see section 7.2 Setting Output Variables, AC_ARG_VAR).

Variable: CFLAGS
Debugging and optimization options for the C compiler. If it is not set in the environment when configure runs, the
default value is set when you call AC_PROG_CC (or empty if you don't). configure uses this variable when compiling
programs to test for C features.

Variable: configure_input
A comment saying that the file was generated automatically by configure and giving the name of the input file.
AC_OUTPUT adds a comment line containing this variable to the top of every `Makefile' it creates. For other files, you
should reference this variable in a comment at the top of each input file. For example, an input shell script should begin like
this:

#! /bin/sh
@configure_input@

The presence of that line also reminds people editing the file that it needs to be processed by configure in order to be
used.

Variable: CPPFLAGS
Header file search directory (`-Idir') and any other miscellaneous options for the C and C++ preprocessors and compilers.
If it is not set in the environment when configure runs, the default value is empty. configure uses this variable when
compiling or preprocessing programs to test for C and C++ features.

Variable: CXXFLAGS
Debugging and optimization options for the C++ compiler. If it is not set in the environment when configure runs, the
default value is set when you call AC_PROG_CXX (or empty if you don't). configure uses this variable when compiling
programs to test for C++ features.

Variable: DEFS
`-D' options to pass to the C compiler. If AC_CONFIG_HEADERS is called, configure replaces `@DEFS@' with `-
DHAVE_CONFIG_H' instead (see section 4.8 Configuration Header Files). This variable is not defined while configure
is performing its tests, only when creating the output files. See section 7.2 Setting Output Variables, for how to check the
results of previous tests.

Variable: ECHO_C
Variable: ECHO_N
Variable: ECHO_T

How does one suppress the trailing newline from echo for question-answer message pairs? These variables provide a way:

file:///C|/pdfing/autoconf.html.htm (28 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC192
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC83

Autoconf:

echo $ECHO_N "And the winner is... $ECHO_C"
sleep 100000000000
echo "${ECHO_T}dead."

Some old and uncommon echo implementations offer no means to achieve this, in which case ECHO_T is set to tab. You
might not want to use it.

Variable: FFLAGS
Debugging and optimization options for the Fortran 77 compiler. If it is not set in the environment when configure runs,
the default value is set when you call AC_PROG_F77 (or empty if you don't). configure uses this variable when
compiling programs to test for Fortran 77 features.

Variable: LDFLAGS
Stripping (`-s'), path (`-L'), and any other miscellaneous options for the linker. Don't use this variable to pass library names
(`-l') to the linker, use LIBS instead. If it is not set in the environment when configure runs, the default value is empty.
configure uses this variable when linking programs to test for C, C++ and Fortran 77 features.

Variable: LIBS
`-l' options to pass to the linker. The default value is empty, but some Autoconf macros may prepend extra libraries to this
variable if those libraries are found and provide necessary functions, see 5.4 Library Files. configure uses this variable
when linking programs to test for C, C++ and Fortran 77 features.

Variable: builddir
Rigorously equal to `.'. Added for symmetry only.

Variable: abs_builddir
Absolute path of builddir.

Variable: top_builddir
The relative path to the top-level of the current build tree. In the top-level directory, this is the same as builddir.

Variable: abs_top_builddir
Absolute path of top_builddir.

Variable: srcdir
The relative path to the directory that contains the source code for that `Makefile'.

Variable: abs_srcdir
Absolute path of srcdir.

Variable: top_srcdir
The relative path to the top-level source code directory for the package. In the top-level directory, this is the same as
srcdir.

Variable: abs_top_srcdir
Absolute path of top_srcdir.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (29 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#SEC25
file:///C|/pdfing/autoconf.html#SEC25
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

4.7.2 Installation Directory Variables

The following variables specify the directories where the package will be installed, see section `Variables for Installation
Directories' in The GNU Coding Standards, for more information. See the end of this section for details on when and how to use
these variables.

Variable: bindir
The directory for installing executables that users run.

Variable: datadir
The directory for installing read-only architecture-independent data.

Variable: exec_prefix
The installation prefix for architecture-dependent files. By default it's the same as prefix. You should avoid installing
anything directly to exec_prefix. However, the default value for directories containing architecture-dependent files should be
relative to exec_prefix.

Variable: includedir
The directory for installing C header files.

Variable: infodir
The directory for installing documentation in Info format.

Variable: libdir
The directory for installing object code libraries.

Variable: libexecdir
The directory for installing executables that other programs run.

Variable: localstatedir
The directory for installing modifiable single-machine data.

Variable: mandir
The top-level directory for installing documentation in man format.

Variable: oldincludedir
The directory for installing C header files for non-GCC compilers.

Variable: prefix
The common installation prefix for all files. If exec_prefix is defined to a different value, prefix is used only for architecture-
independent files.

Variable: sbindir
The directory for installing executables that system administrators run.

Variable: sharedstatedir
The directory for installing modifiable architecture-independent data.

Variable: sysconfdir
The directory for installing read-only single-machine data.

Most of these variables have values that rely on prefix or exec_prefix. It is deliberate that the directory output variables

file:///C|/pdfing/autoconf.html.htm (30 of 250)27. 1. 2004 18:44:41

Autoconf:

keep them unexpanded: typically `@datadir@' will be replaced by `${prefix}/share', not `/usr/local/share'.

This behavior is mandated by the GNU coding standards, so that when the user runs:

`make'
she can still specify a different prefix from the one specified to configure, in which case, if needed, the package shall
hard code dependencies corresponding to the make-specified prefix.

`make install'
she can specify a different installation location, in which case the package must still depend on the location which was
compiled in (i.e., never recompile when `make install' is run). This is an extremely important feature, as many people
may decide to install all the files of a package grouped together, and then install links from the final locations to there.

In order to support these features, it is essential that datadir remains being defined as `${prefix}/share' to depend upon
the current value of prefix.

A corollary is that you should not use these variables except in Makefiles. For instance, instead of trying to evaluate datadir in
`configure' and hard-coding it in Makefiles using e.g., `AC_DEFINE_UNQUOTED(DATADIR, "$datadir")', you should
add `-DDATADIR="$(datadir)"' to your CPPFLAGS.

Similarly you should not rely on AC_OUTPUT_FILES to replace datadir and friends in your shell scripts and other files, rather
let make manage their replacement. For instance Autoconf ships templates of its shell scripts ending with `.in', and uses a
Makefile snippet similar to:

edit = sed \
 -e 's,@datadir\@,$(pkgdatadir),g' \
 -e 's,@prefix\@,$(prefix),g'

autoconf: Makefile $(srcdir)/autoconf.in
 rm -f autoconf autoconf.tmp
 $(edit) $(srcdir)/autoconf.in >autoconf.tmp
 chmod +x autoconf.tmp
 mv autoconf.tmp autoconf

autoheader: Makefile $(srcdir)/autoheader.in
 rm -f autoheader autoheader.tmp
 $(edit) $(srcdir)/autoconf.in >autoheader.tmp
 chmod +x autoheader.tmp
 mv autoheader.tmp autoheader

Some details are noteworthy:

`@datadir\@'
The backslash prevents configure from replacing `@datadir@' in the sed expression itself.

`$(pkgdatadir)'
Don't use `@pkgdatadir@'! Use the matching makefile variable instead.

`,'
Don't use `/' in the sed expression(s) since most likely the variables you use, such as `$(pkgdatadir)', will contain
some.

file:///C|/pdfing/autoconf.html.htm (31 of 250)27. 1. 2004 18:44:41

Autoconf:

`Dependency on `Makefile''
Since edit uses values that depend on the configuration specific values (prefix etc.) and not only on VERSION and so
forth, the output depends on `Makefile', not `configure.ac'.

`Separated dependencies and Single Suffix Rules'
You can't use them! The above snippet cannot be (portably) rewritten as:

autoconf autoheader: Makefile
.in:
 rm -f $@ $@.tmp
 $(edit) $< >$@.tmp
 chmod +x $@.tmp
 mv $@.tmp $@

See section 10.10 Limitations of Make, for details.

``$(srcdir)''
Be sure to specify the path to the sources, otherwise the package won't support separated builds.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.7.3 Build Directories

You can support compiling a software package for several architectures simultaneously from the same copy of the source code. The
object files for each architecture are kept in their own directory.

To support doing this, make uses the VPATH variable to find the files that are in the source directory. GNU Make and most other
recent make programs can do this. Older make programs do not support VPATH; when using them, the source code must be in the
same directory as the object files.

To support VPATH, each `Makefile.in' should contain two lines that look like:

srcdir = @srcdir@
VPATH = @srcdir@

Do not set VPATH to the value of another variable, for example `VPATH = $(srcdir)', because some versions of make do not
do variable substitutions on the value of VPATH.

configure substitutes the correct value for srcdir when it produces `Makefile'.

Do not use the make variable $<, which expands to the file name of the file in the source directory (found with VPATH), except in
implicit rules. (An implicit rule is one such as `.c.o', which tells how to create a `.o' file from a `.c' file.) Some versions of
make do not set $< in explicit rules; they expand it to an empty value.

Instead, `Makefile' command lines should always refer to source files by prefixing them with `$(srcdir)/'. For example:

file:///C|/pdfing/autoconf.html.htm (32 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

time.info: time.texinfo
 $(MAKEINFO) $(srcdir)/time.texinfo

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.7.4 Automatic Remaking

You can put rules like the following in the top-level `Makefile.in' for a package to automatically update the configuration
information when you change the configuration files. This example includes all of the optional files, such as `aclocal.m4' and
those related to configuration header files. Omit from the `Makefile.in' rules for any of these files that your package does not
use.

The `$(srcdir)/' prefix is included because of limitations in the VPATH mechanism.

The `stamp-' files are necessary because the timestamps of `config.h.in' and `config.h' will not be changed if remaking
them does not change their contents. This feature avoids unnecessary recompilation. You should include the file `stamp-h.in'
your package's distribution, so make will consider `config.h.in' up to date. Don't use touch (see section 10.9 Limitations of
Usual Tools), rather use echo (using date would cause needless differences, hence CVS conflicts etc.).

$(srcdir)/configure: configure.ac aclocal.m4
 cd $(srcdir) && autoconf

autoheader might not change config.h.in, so touch a stamp file.
$(srcdir)/config.h.in: stamp-h.in
$(srcdir)/stamp-h.in: configure.ac aclocal.m4
 cd $(srcdir) && autoheader
 echo timestamp > $(srcdir)/stamp-h.in

config.h: stamp-h
stamp-h: config.h.in config.status
 ./config.status

Makefile: Makefile.in config.status
 ./config.status

config.status: configure
 ./config.status --recheck

(Be careful if you copy these lines directly into your Makefile, as you will need to convert the indented lines to start with the tab
character.)

In addition, you should use `AC_CONFIG_FILES([stamp-h], [echo timestamp > stamp-h])' so `config.
status' will ensure that `config.h' is considered up to date. See section 4.4 Outputting Files, for more information about
AC_OUTPUT.

See section 14. Recreating a Configuration, for more examples of handling configuration-related dependencies.

file:///C|/pdfing/autoconf.html.htm (33 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC25
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC149

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.8 Configuration Header Files

When a package contains more than a few tests that define C preprocessor symbols, the command lines to pass `-D' options to the
compiler can get quite long. This causes two problems. One is that the make output is hard to visually scan for errors. More
seriously, the command lines can exceed the length limits of some operating systems. As an alternative to passing `-D' options to
the compiler, configure scripts can create a C header file containing `#define' directives. The AC_CONFIG_HEADERS
macro selects this kind of output. It should be called right after AC_INIT.

The package should `#include' the configuration header file before any other header files, to prevent inconsistencies in
declarations (for example, if it redefines const). Use `#include <config.h>' instead of `#include "config.h"', and
pass the C compiler a `-I.' option (or `-I..'; whichever directory contains `config.h'). That way, even if the source directory
is configured itself (perhaps to make a distribution), other build directories can also be configured without finding the `config.h'
from the source directory.

Macro: AC_CONFIG_HEADERS (header ..., [cmds], [init-cmds])
This macro is one of the instantiating macros; see 4.5 Performing Configuration Actions. Make AC_OUTPUT create the file
(s) in the whitespace-separated list header containing C preprocessor #define statements, and replace `@DEFS@' in
generated files with `-DHAVE_CONFIG_H' instead of the value of DEFS. The usual name for header is `config.h'.

If header already exists and its contents are identical to what AC_OUTPUT would put in it, it is left alone. Doing this allows
making some changes in the configuration without needlessly causing object files that depend on the header file to be
recompiled.

Usually the input file is named `header.in'; however, you can override the input file name by appending to header a
colon-separated list of input files. Examples:

AC_CONFIG_HEADERS([config.h:config.hin])
AC_CONFIG_HEADERS([defines.h:defs.pre:defines.h.in:defs.post])

Doing this allows you to keep your file names acceptable to MS-DOS, or to prepend and/or append boilerplate to the file.

See section 4.5 Performing Configuration Actions, for more details on header.

4.8.1 Configuration Header Templates Input for the configuration headers

4.8.2 Using autoheader to Create `config.h.in' How to create configuration templates

4.8.3 Autoheader Macros How to specify CPP templates

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.8.1 Configuration Header Templates

Your distribution should contain a template file that looks as you want the final header file to look, including comments, with
#undef statements which are used as hooks. For example, suppose your `configure.ac' makes these calls:

file:///C|/pdfing/autoconf.html.htm (34 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

AC_CONFIG_HEADERS([conf.h])
AC_CHECK_HEADERS([unistd.h])

Then you could have code like the following in `conf.h.in'. On systems that have `unistd.h', configure will `#define'
`HAVE_UNISTD_H' to 1. On other systems, the whole line will be commented out (in case the system predefines that symbol).

/* Define as 1 if you have unistd.h. */
#undef HAVE_UNISTD_H

Pay attention that `#undef' is in the first column, and there is nothing behind `HAVE_UNISTD_H', not even white spaces. You
can then decode the configuration header using the preprocessor directives:

#include <conf.h>

#if HAVE_UNISTD_H
include <unistd.h>
#else
/* We are in trouble. */
#endif

The use of old form templates, with `#define' instead of `#undef' is strongly discouraged. Similarly with old templates with
comments on the same line as the `#undef'. Anyway, putting comments in preprocessor macros has never been a good idea.

Since it is a tedious task to keep a template header up to date, you may use autoheader to generate it, see 4.8.2 Using
autoheader to Create `config.h.in'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.8.2 Using autoheader to Create `config.h.in'

The autoheader program can create a template file of C `#define' statements for configure to use. If `configure.ac'
invokes AC_CONFIG_HEADERS(file), autoheader creates `file.in'; if multiple file arguments are given, the first one is
used. Otherwise, autoheader creates `config.h.in'.

In order to do its job, autoheader needs you to document all of the symbols that you might use; i.e., there must be at least one
AC_DEFINE or one AC_DEFINE_UNQUOTED call with a third argument for each symbol (see section 7.1 Defining C
Preprocessor Symbols). An additional constraint is that the first argument of AC_DEFINE must be a literal. Note that all symbols
defined by Autoconf's builtin tests are already documented properly; you only need to document those that you define yourself.

You might wonder why autoheader is needed: after all, why would configure need to "patch" a `config.h.in' to
produce a `config.h' instead of just creating `config.h' from scratch? Well, when everything rocks, the answer is just that we
are wasting our time maintaining autoheader: generating `config.h' directly is all that is needed. When things go wrong,
however, you'll be thankful for the existence of autoheader.

The fact that the symbols are documented is important in order to check that `config.h' makes sense. The fact that there is a well-
defined list of symbols that should be #define'd (or not) is also important for people who are porting packages to environments

file:///C|/pdfing/autoconf.html.htm (35 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC82

Autoconf:

where configure cannot be run: they just have to fill in the blanks.

But let's come back to the point: autoheader's invocation...

If you give autoheader an argument, it uses that file instead of `configure.ac' and writes the header file to the standard
output instead of to `config.h.in'. If you give autoheader an argument of `-', it reads the standard input instead of
`configure.ac' and writes the header file to the standard output.

autoheader accepts the following options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--verbose'
`-v'

Report processing steps.

`--debug'
`-d'

Don't remove the temporary files.

`--force'
`-f'

Remake the template file even if newer than its input files.

`--include=dir'
`-I dir'

Append dir to include path. Multiple invocations accumulate.

`--prepend-include=dir'
`-B dir'

Prepend dir to include path. Multiple invocations accumulate.

`--warnings=category'
`-W category'

Report the warnings related to category (which can actually be a comma separated list). Current categories include:

`obsolete'
report the uses of obsolete constructs

`all'
report all the warnings

`none'
report none

`error'

file:///C|/pdfing/autoconf.html.htm (36 of 250)27. 1. 2004 18:44:41

Autoconf:

treats warnings as errors

`no-category'
disable warnings falling into category

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.8.3 Autoheader Macros

autoheader scans `configure.ac' and figures out which C preprocessor symbols it might define. It knows how to generate
templates for symbols defined by AC_CHECK_HEADERS, AC_CHECK_FUNCS etc., but if you AC_DEFINE any additional
symbol, you must define a template for it. If there are missing templates, autoheader fails with an error message.

The simplest way to create a template for a symbol is to supply the description argument to an `AC_DEFINE(symbol)'; see 7.1
Defining C Preprocessor Symbols. You may also use one of the following macros.

Macro: AH_VERBATIM (key, template)
Tell autoheader to include the template as-is in the header template file. This template is associated with the key, which
is used to sort all the different templates and guarantee their uniqueness. It should be a symbol that can be AC_DEFINE'd.

For example:

AH_VERBATIM([_GNU_SOURCE],
[/* Enable GNU extensions on systems that have them. */
#ifndef _GNU_SOURCE
define _GNU_SOURCE
#endif])

Macro: AH_TEMPLATE (key, description)
Tell autoheader to generate a template for key. This macro generates standard templates just like AC_DEFINE when a
description is given.

For example:

AH_TEMPLATE([CRAY_STACKSEG_END],
 [Define to one of _getb67, GETB67, getb67
 for Cray-2 and Cray-YMP systems. This
 function is required for alloca.c support
 on those systems.])

will generate the following template, with the description properly justified.

/* Define to one of _getb67, GETB67, getb67 for Cray-2 and
 Cray-YMP systems. This function is required for alloca.c
 support on those systems. */
#undef CRAY_STACKSEG_END

file:///C|/pdfing/autoconf.html.htm (37 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC82

Autoconf:

Macro: AH_TOP (text)
Include text at the top of the header template file.

Macro: AH_BOTTOM (text)
Include text at the bottom of the header template file.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.9 Running Arbitrary Configuration Commands

You can execute arbitrary commands before, during, and after `config.status' is run. The three following macros accumulate
the commands to run when they are called multiple times. AC_CONFIG_COMMANDS replaces the obsolete macro
AC_OUTPUT_COMMANDS; see 15.4 Obsolete Macros, for details.

Macro: AC_CONFIG_COMMANDS (tag..., [cmds], [init-cmds])
Specify additional shell commands to run at the end of `config.status', and shell commands to initialize any variables
from configure. Associate the commands with tag. Since typically the cmds create a file, tag should naturally be the
name of that file. This macro is one of the instantiating macros; see 4.5 Performing Configuration Actions.

Here is an unrealistic example:

fubar=42
AC_CONFIG_COMMANDS([fubar],
 [echo this is extra $fubar, and so on.],
 [fubar=$fubar])

Here is a better one:

AC_CONFIG_COMMANDS([time-stamp], [date >time-stamp])

Macro: AC_CONFIG_COMMANDS_PRE (cmds)
Execute the cmds right before creating `config.status'.

Macro: AC_CONFIG_COMMANDS_POST (cmds)
Execute the cmds right after creating `config.status'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.10 Creating Configuration Links

You may find it convenient to create links whose destinations depend upon results of tests. One can use AC_CONFIG_COMMANDS
but the creation of relative symbolic links can be delicate when the package is built in a directory different from the source
directory.

file:///C|/pdfing/autoconf.html.htm (38 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_CONFIG_LINKS (dest:source..., [cmds], [init-cmds])
Make AC_OUTPUT link each of the existing files source to the corresponding link name dest. Makes a symbolic link if
possible, otherwise a hard link if possible, otherwise a copy. The dest and source names should be relative to the top level
source or build directory. This macro is one of the instantiating macros; see 4.5 Performing Configuration Actions.

For example, this call:

AC_CONFIG_LINKS(host.h:config/$machine.h
 object.h:config/$obj_format.h)

creates in the current directory `host.h' as a link to `srcdir/config/$machine.h', and `object.h' as a link to
`srcdir/config/$obj_format.h'.

The tempting value `.' for dest is invalid: it makes it impossible for `config.status' to guess the links to establish.

One can then run:

./config.status host.h object.h

to create the links.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.11 Configuring Other Packages in Subdirectories

In most situations, calling AC_OUTPUT is sufficient to produce `Makefile's in subdirectories. However, configure scripts
that control more than one independent package can use AC_CONFIG_SUBDIRS to run configure scripts for other packages in
subdirectories.

Macro: AC_CONFIG_SUBDIRS (dir ...)
Make AC_OUTPUT run configure in each subdirectory dir in the given whitespace-separated list. Each dir should be a
literal, i.e., please do not use:

if test "$package_foo_enabled" = yes; then
 $my_subdirs="$my_subdirs foo"
fi
AC_CONFIG_SUBDIRS($my_subdirs)

because this prevents `./configure --help=recursive' from displaying the options of the package foo. Rather,
you should write:

if test "$package_foo_enabled" = yes; then
 AC_CONFIG_SUBDIRS(foo)
fi

file:///C|/pdfing/autoconf.html.htm (39 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

If a given dir is not found, an error is reported: if the subdirectory is optional, write:

if test -d $srcdir/foo; then
 AC_CONFIG_SUBDIRS(foo)
fi

If a given dir contains configure.gnu, it is run instead of configure. This is for packages that might use a non-
Autoconf script Configure, which can't be called through a wrapper configure since it would be the same file on case-
insensitive filesystems. Likewise, if a dir contains `configure.in' but no configure, the Cygnus configure script
found by AC_CONFIG_AUX_DIR is used.

The subdirectory configure scripts are given the same command line options that were given to this configure script,
with minor changes if needed, which include:

❍ adjusting a relative path for the cache file;

❍ adjusting a relative path for the source directory;

❍ propagating the current value of $prefix, including if it was defaulted, and if the default values of the top level
and of the subdirectory `configure' differ.

This macro also sets the output variable subdirs to the list of directories `dir ...'. `Makefile' rules can use this
variable to determine which subdirectories to recurse into.

This macro may be called multiple times.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

4.12 Default Prefix

By default, configure sets the prefix for files it installs to `/usr/local'. The user of configure can select a different
prefix using the `--prefix' and `--exec-prefix' options. There are two ways to change the default: when creating
configure, and when running it.

Some software packages might want to install in a directory other than `/usr/local' by default. To accomplish that, use the
AC_PREFIX_DEFAULT macro.

Macro: AC_PREFIX_DEFAULT (prefix)
Set the default installation prefix to prefix instead of `/usr/local'.

It may be convenient for users to have configure guess the installation prefix from the location of a related program that they
have already installed. If you wish to do that, you can call AC_PREFIX_PROGRAM.

Macro: AC_PREFIX_PROGRAM (program)
If the user did not specify an installation prefix (using the `--prefix' option), guess a value for it by looking for program
in PATH, the way the shell does. If program is found, set the prefix to the parent of the directory containing program, else
default the prefix as described above (`/usr/local' or AC_PREFIX_DEFAULT). For example, if program is gcc and
the PATH contains `/usr/local/gnu/bin/gcc', set the prefix to `/usr/local/gnu'.

file:///C|/pdfing/autoconf.html.htm (40 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5. Existing Tests

These macros test for particular system features that packages might need or want to use. If you need to test for a kind of feature
that none of these macros check for, you can probably do it by calling primitive test macros with appropriate arguments (see
section 6. Writing Tests).

These tests print messages telling the user which feature they're checking for, and what they find. They cache their results for future
configure runs (see section 7.3 Caching Results).

Some of these macros set output variables. See section 4.7 Substitutions in Makefiles, for how to get their values. The phrase
"define name" is used below as a shorthand to mean "define C preprocessor symbol name to the value 1". See section 7.1 Defining
C Preprocessor Symbols, for how to get those symbol definitions into your program.

5.1 Common Behavior Macros' standard schemes

5.2 Alternative Programs Selecting between alternative programs

5.3 Files Checking for the existence of files

5.4 Library Files Library archives that might be missing

5.5 Library Functions C library functions that might be missing

5.6 Header Files Header files that might be missing

5.7 Declarations Declarations that may be missing

5.8 Structures Structures or members that might be missing

5.9 Types Types that might be missing

5.10 Compilers and Preprocessors Checking for compiling programs

5.11 System Services Operating system services

5.12 UNIX Variants Special kludges for specific UNIX variants

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.1 Common Behavior

Much effort has been expended to make Autoconf easy to learn. The most obvious way to reach this goal is simply to enforce
standard interfaces and behaviors, avoiding exceptions as much as possible. Because of history and inertia, unfortunately, there are
still too many exceptions in Autoconf; nevertheless, this section describes some of the common rules.

5.1.1 Standard Symbols Symbols defined by the macros

5.1.2 Default Includes Includes used by the generic macros

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.1.1 Standard Symbols

file:///C|/pdfing/autoconf.html.htm (41 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

All the generic macros that AC_DEFINE a symbol as a result of their test transform their arguments to a standard alphabet. First,
argument is converted to upper case and any asterisks (`*') are each converted to `P'. Any remaining characters that are not
alphanumeric are converted to underscores.

For instance,

AC_CHECK_TYPES(struct $Expensive*)

will define the symbol `HAVE_STRUCT__EXPENSIVEP' if the check succeeds.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.1.2 Default Includes

Several tests depend upon a set of header files. Since these headers are not universally available, tests actually have to provide a set
of protected includes, such as:

#if TIME_WITH_SYS_TIME
include <sys/time.h>
include <time.h>
#else
if HAVE_SYS_TIME_H
include <sys/time.h>
else
include <time.h>
endif
#endif

Unless you know exactly what you are doing, you should avoid using unconditional includes, and check the existence of the
headers you include beforehand (see section 5.6 Header Files).

Most generic macros provide the following default set of includes:

#include <stdio.h>
#if HAVE_SYS_TYPES_H
include <sys/types.h>
#endif
#if HAVE_SYS_STAT_H
include <sys/stat.h>
#endif
#if STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
if HAVE_STDLIB_H
include <stdlib.h>
endif
#endif

file:///C|/pdfing/autoconf.html.htm (42 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC48

Autoconf:

#if HAVE_STRING_H
if !STDC_HEADERS && HAVE_MEMORY_H
include <memory.h>
endif
include <string.h>
#endif
#if HAVE_STRINGS_H
include <strings.h>
#endif
#if HAVE_INTTYPES_H
include <inttypes.h>
#else
if HAVE_STDINT_H
include <stdint.h>
endif
#endif
#if HAVE_UNISTD_H
include <unistd.h>
#endif

If the default includes are used, then Autoconf will automatically check for the presence of these headers and their compatibility, i.
e., you don't need to run AC_HEADERS_STDC, nor check for `stdlib.h' etc.

These headers are checked for in the same order as they are included. For instance, on some systems `string.h' and `strings.
h' both exist, but conflict. Then HAVE_STRING_H will be defined, but HAVE_STRINGS_H won't.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.2 Alternative Programs

These macros check for the presence or behavior of particular programs. They are used to choose between several alternative
programs and to decide what to do once one has been chosen. If there is no macro specifically defined to check for a program you
need, and you don't need to check for any special properties of it, then you can use one of the general program-check macros.

5.2.1 Particular Program Checks Special handling to find certain programs

5.2.2 Generic Program and File Checks How to find other programs

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.2.1 Particular Program Checks

These macros check for particular programs--whether they exist, and in some cases whether they support certain features.

Macro: AC_PROG_AWK
Check for gawk, mawk, nawk, and awk, in that order, and set output variable AWK to the first one that is found. It tries
gawk first because that is reported to be the best implementation.

file:///C|/pdfing/autoconf.html.htm (43 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_PROG_EGREP
Check for grep -E and egrep, in that order, and set output variable EGREP to the first one that is found.

Macro: AC_PROG_FGREP
Check for grep -F and fgrep, in that order, and set output variable FGREP to the first one that is found.

Macro: AC_PROG_INSTALL
Set output variable INSTALL to the path of a BSD-compatible install program, if one is found in the current PATH.
Otherwise, set INSTALL to `dir/install-sh -c', checking the directories specified to AC_CONFIG_AUX_DIR (or
its default directories) to determine dir (see section 4.4 Outputting Files). Also set the variables INSTALL_PROGRAM and
INSTALL_SCRIPT to `${INSTALL}' and INSTALL_DATA to `${INSTALL} -m 644'.

This macro screens out various instances of install known not to work. It prefers to find a C program rather than a shell
script, for speed. Instead of `install-sh', it can also use `install.sh', but that name is obsolete because some make
programs have a rule that creates `install' from it if there is no `Makefile'.

Autoconf comes with a copy of `install-sh' that you can use. If you use AC_PROG_INSTALL, you must include either
`install-sh' or `install.sh' in your distribution, or configure will produce an error message saying it can't find
them--even if the system you're on has a good install program. This check is a safety measure to prevent you from
accidentally leaving that file out, which would prevent your package from installing on systems that don't have a BSD-
compatible install program.

If you need to use your own installation program because it has features not found in standard install programs, there is
no reason to use AC_PROG_INSTALL; just put the file name of your program into your `Makefile.in' files.

Macro: AC_PROG_LEX
If flex is found, set output variable LEX to `flex' and LEXLIB to `-lfl', if that library is in a standard place. Otherwise
set LEX to `lex' and LEXLIB to `-ll'.

Define YYTEXT_POINTER if yytext is a `char *' instead of a `char []'. Also set output variable
LEX_OUTPUT_ROOT to the base of the file name that the lexer generates; usually `lex.yy', but sometimes something
else. These results vary according to whether lex or flex is being used.

You are encouraged to use Flex in your sources, since it is both more pleasant to use than plain Lex and the C source it
produces is portable. In order to ensure portability, however, you must either provide a function yywrap or, if you don't use
it (e.g., your scanner has no `#include'-like feature), simply include a `%noyywrap' statement in the scanner's source.
Once this done, the scanner is portable (unless you felt free to use nonportable constructs) and does not depend on any
library. In this case, and in this case only, it is suggested that you use this Autoconf snippet:

AC_PROG_LEX
if test "$LEX" != flex; then
 LEX="$SHELL $missing_dir/missing flex"
 AC_SUBST(LEX_OUTPUT_ROOT, lex.yy)
 AC_SUBST(LEXLIB, '')
fi

The shell script missing can be found in the Automake distribution.

To ensure backward compatibility, Automake's AM_PROG_LEX invokes (indirectly) this macro twice, which will cause an
annoying but benign "AC_PROG_LEX invoked multiple times" warning. Future versions of Automake will fix this issue;
meanwhile, just ignore this message.

file:///C|/pdfing/autoconf.html.htm (44 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC19

Autoconf:

Macro: AC_PROG_LN_S
If `ln -s' works on the current file system (the operating system and file system support symbolic links), set the output
variable LN_S to `ln -s'; otherwise, if `ln' works, set LN_S to `ln', and otherwise set it to `cp -p'.

If you make a link in a directory other than the current directory, its meaning depends on whether `ln' or `ln -s' is used.
To safely create links using `$(LN_S)', either find out which form is used and adjust the arguments, or always invoke ln
in the directory where the link is to be created.

In other words, it does not work to do:

$(LN_S) foo /x/bar

Instead, do:

(cd /x && $(LN_S) foo bar)

Macro: AC_PROG_RANLIB
Set output variable RANLIB to `ranlib' if ranlib is found, and otherwise to `:' (do nothing).

Macro: AC_PROG_YACC
If bison is found, set output variable YACC to `bison -y'. Otherwise, if byacc is found, set YACC to `byacc'.
Otherwise set YACC to `yacc'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.2.2 Generic Program and File Checks

These macros are used to find programs not covered by the "particular" test macros. If you need to check the behavior of a program
as well as find out whether it is present, you have to write your own test for it (see section 6. Writing Tests). By default, these
macros use the environment variable PATH. If you need to check for a program that might not be in the user's PATH, you can pass
a modified path to use instead, like this:

AC_PATH_PROG([INETD], [inetd], [/usr/libexec/inetd],
 [$PATH:/usr/libexec:/usr/sbin:/usr/etc:etc])

You are strongly encouraged to declare the variable passed to AC_CHECK_PROG etc. as precious, See section 7.2 Setting Output
Variables, AC_ARG_VAR, for more details.

Macro: AC_CHECK_PROG (variable, prog-to-check-for, value-if-found, [value-if-not-found], [path], [reject])
Check whether program prog-to-check-for exists in PATH. If it is found, set variable to value-if-found, otherwise to value-if-
not-found, if given. Always pass over reject (an absolute file name) even if it is the first found in the search path; in that
case, set variable using the absolute file name of the prog-to-check-for found that is not reject. If variable was already set,
do nothing. Calls AC_SUBST for variable.

Macro: AC_CHECK_PROGS (variable, progs-to-check-for, [value-if-not-found], [path])

file:///C|/pdfing/autoconf.html.htm (45 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC83

Autoconf:

Check for each program in the whitespace-separated list progs-to-check-for existing in the PATH. If one is found, set
variable to the name of that program. Otherwise, continue checking the next program in the list. If none of the programs in
the list are found, set variable to value-if-not-found; if value-if-not-found is not specified, the value of variable is not
changed. Calls AC_SUBST for variable.

Macro: AC_CHECK_TOOL (variable, prog-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_PROG, but first looks for prog-to-check-for with a prefix of the host type as determined by
AC_CANONICAL_HOST, followed by a dash (see section 11.2 Getting the Canonical System Type). For example, if the
user runs `configure --host=i386-gnu', then this call:

AC_CHECK_TOOL(RANLIB, ranlib, :)

sets RANLIB to `i386-gnu-ranlib' if that program exists in PATH, or otherwise to `ranlib' if that program exists in
PATH, or to `:' if neither program exists.

Macro: AC_CHECK_TOOLS (variable, progs-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_TOOL, each of the tools in the list progs-to-check-for are checked with a prefix of the host type as
determined by AC_CANONICAL_HOST, followed by a dash (see section 11.2 Getting the Canonical System Type). If none
of the tools can be found with a prefix, then the first one without a prefix is used. If a tool is found, set variable to the name
of that program. If none of the tools in the list are found, set variable to value-if-not-found; if value-if-not-found is not
specified, the value of variable is not changed. Calls AC_SUBST for variable.

Macro: AC_PATH_PROG (variable, prog-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_PROG, but set variable to the entire path of prog-to-check-for if found.

Macro: AC_PATH_PROGS (variable, progs-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_PROGS, but if any of progs-to-check-for are found, set variable to the entire path of the program found.

Macro: AC_PATH_TOOL (variable, prog-to-check-for, [value-if-not-found], [path])
Like AC_CHECK_TOOL, but set variable to the entire path of the program if it is found.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.3 Files

You might also need to check for the existence of files. Before using these macros, ask yourself whether a run-time test might not
be a better solution. Be aware that, like most Autoconf macros, they test a feature of the host machine, and therefore, they die when
cross-compiling.

Macro: AC_CHECK_FILE (file, [action-if-found], [action-if-not-found])
Check whether file file exists on the native system. If it is found, execute action-if-found, otherwise do action-if-not-found,
if given.

Macro: AC_CHECK_FILES (files, [action-if-found], [action-if-not-found])
Executes AC_CHECK_FILE once for each file listed in files. Additionally, defines `HAVE_file' (see section 5.1.1
Standard Symbols) for each file found.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (46 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

5.4 Library Files

The following macros check for the presence of certain C, C++, or Fortran 77 library archive files.

Macro: AC_CHECK_LIB (library, function, [action-if-found], [action-if-not-found], [other-libraries])
Depending on the current language(see section 6.1 Language Choice), try to ensure that the C, C++, or Fortran 77 function
function is available by checking whether a test program can be linked with the library library to get the function. library is
the base name of the library; e.g., to check for `-lmp', use `mp' as the library argument.

action-if-found is a list of shell commands to run if the link with the library succeeds; action-if-not-found is a list of shell
commands to run if the link fails. If action-if-found is not specified, the default action will prepend `-llibrary' to LIBS
and define `HAVE_LIBlibrary' (in all capitals). This macro is intended to support building LIBS in a right-to-left (least-
dependent to most-dependent) fashion such that library dependencies are satisfied as a natural side-effect of consecutive
tests. Some linkers are very sensitive to library ordering so the order in which LIBS is generated is important to reliable
detection of libraries.

If linking with library results in unresolved symbols that would be resolved by linking with additional libraries, give those
libraries as the other-libraries argument, separated by spaces: e.g., `-lXt -lX11'. Otherwise, this macro will fail to detect
that library is present, because linking the test program will always fail with unresolved symbols. The other-libraries
argument should be limited to cases where it is desirable to test for one library in the presence of another that is not already
in LIBS.

Macro: AC_SEARCH_LIBS (function, search-libs, [action-if-found], [action-if-not-found], [other-libraries])
Search for a library defining function if it's not already available. This equates to calling `AC_LINK_IFELSE
([AC_LANG_CALL([], [function])])' first with no libraries, then for each library listed in search-libs.

Add `-llibrary' to LIBS for the first library found to contain function, and run action-if-found. If the function is not
found, run action-if-not-found.

If linking with library results in unresolved symbols that would be resolved by linking with additional libraries, give those
libraries as the other-libraries argument, separated by spaces: e.g., `-lXt -lX11'. Otherwise, this macro will fail to detect
that function is present, because linking the test program will always fail with unresolved symbols.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.5 Library Functions

The following macros check for particular C library functions. If there is no macro specifically defined to check for a function you
need, and you don't need to check for any special properties of it, then you can use one of the general function-check macros.

5.5.1 Portability of C Functions Pitfalls with usual functions

5.5.2 Particular Function Checks Special handling to find certain functions

5.5.3 Generic Function Checks How to find other functions

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.5.1 Portability of C Functions

file:///C|/pdfing/autoconf.html.htm (47 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Most usual functions can either be missing, or be buggy, or be limited on some architectures. This section tries to make an
inventory of these portability issues. By definition, this list will always require additions. Please help us keeping it as complete as
possible.

exit
Did you know that, on some older hosts, exit returns int? This is because exit predates void, and there was a long
tradition of it returning int.

snprintf
The ISO C99 standard says that if the output array isn't big enough and if no other errors occur, snprintf and
vsnprintf truncate the output and return the number of bytes that ought to have been produced. Some older systems
return the truncated length (e.g., GNU C Library 2.0.x or IRIX 6.5), some a negative value (e.g., earlier GNU C Library
versions), and some the buffer length without truncation (e.g., 32-bit Solaris 7). Also, some buggy older systems ignore the
length and overrun the buffer (e.g., 64-bit Solaris 7).

sprintf
The ISO C standard says sprintf and vsprintf return the number of bytes written, but on some old systems (SunOS 4
for instance) they return the buffer pointer instead.

sscanf
On various old systems, e.g., HP-UX 9, sscanf requires that its input string be writable (though it doesn't actually change
it). This can be a problem when using gcc since it normally puts constant strings in read-only memory (see section
`Incompatibilities' in Using and Porting the GNU Compiler Collection). Apparently in some cases even having format
strings read-only can be a problem.

strnlen
AIX 4.3 provides a broken version which produces the following results:

strnlen ("foobar", 0) = 0
strnlen ("foobar", 1) = 3
strnlen ("foobar", 2) = 2
strnlen ("foobar", 3) = 1
strnlen ("foobar", 4) = 0
strnlen ("foobar", 5) = 6
strnlen ("foobar", 6) = 6
strnlen ("foobar", 7) = 6
strnlen ("foobar", 8) = 6
strnlen ("foobar", 9) = 6

unlink
The POSIX spec says that unlink causes the given file to be removed only after there are no more open file handles for it.
Not all OS's support this behavior though. So even on systems that provide unlink, you cannot portably assume it is OK
to call it on files that are open. For example, on Windows 9x and ME, such a call would fail; on DOS it could even lead to
file system corruption, as the file might end up being written to after the OS has removed it.

va_copy
The ISO C99 standard provides va_copy for copying va_list variables. It may be available in older environments too,
though possibly as __va_copy (e.g., gcc in strict C89 mode). These can be tested with #ifdef. A fallback to memcpy
(&dst, &src, sizeof(va_list)) will give maximum portability.

va_list

file:///C|/pdfing/autoconf.html.htm (48 of 250)27. 1. 2004 18:44:41

Autoconf:

va_list is not necessarily just a pointer. It can be a struct (e.g., gcc on Alpha), which means NULL is not portable. Or
it can be an array (e.g., gcc in some PowerPC configurations), which means as a function parameter it can be effectively
call-by-reference and library routines might modify the value back in the caller (e.g., vsnprintf in the GNU C Library
2.1).

Signed >>
Normally the C >> right shift of a signed type replicates the high bit, giving a so-called "arithmetic" shift. But care should
be taken since the ISO C standard doesn't require that behavior. On those few processors without a native arithmetic shift
(for instance Cray vector systems) zero bits may be shifted in, the same as a shift of an unsigned type.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.5.2 Particular Function Checks

These macros check for particular C functions--whether they exist, and in some cases how they respond when given certain
arguments.

Macro: AC_FUNC_ALLOCA
Check how to get alloca. Tries to get a builtin version by checking for `alloca.h' or the predefined C preprocessor
macros __GNUC__ and _AIX. If this macro finds `alloca.h', it defines HAVE_ALLOCA_H.

If those attempts fail, it looks for the function in the standard C library. If any of those methods succeed, it defines
HAVE_ALLOCA. Otherwise, it sets the output variable ALLOCA to `alloca.o' and defines C_ALLOCA (so programs can
periodically call `alloca(0)' to garbage collect). This variable is separate from LIBOBJS so multiple programs can share
the value of ALLOCA without needing to create an actual library, in case only some of them use the code in LIBOBJS.

This macro does not try to get alloca from the System V R3 `libPW' or the System V R4 `libucb' because those
libraries contain some incompatible functions that cause trouble. Some versions do not even contain alloca or contain a
buggy version. If you still want to use their alloca, use ar to extract `alloca.o' from them instead of compiling
`alloca.c'.

Source files that use alloca should start with a piece of code like the following, to declare it properly. In some versions of
AIX, the declaration of alloca must precede everything else except for comments and preprocessor directives. The
#pragma directive is indented so that pre-ANSI C compilers will ignore it, rather than choke on it.

/* AIX requires this to be the first thing in the file. */
#ifndef __GNUC__
if HAVE_ALLOCA_H
include <alloca.h>
else
ifdef _AIX
 #pragma alloca
else
ifndef alloca /* predefined by HP cc +Olibcalls */
char *alloca ();
endif
endif
endif
#endif

file:///C|/pdfing/autoconf.html.htm (49 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_FUNC_CHOWN
If the chown function is available and works (in particular, it should accept `-1' for uid and gid), define HAVE_CHOWN.

Macro: AC_FUNC_CLOSEDIR_VOID
If the closedir function does not return a meaningful value, define CLOSEDIR_VOID. Otherwise, callers ought to check
its return value for an error indicator.

Macro: AC_FUNC_ERROR_AT_LINE
If the error_at_line function is not found, require an AC_LIBOBJ replacement of `error'.

Macro: AC_FUNC_FNMATCH
If the fnmatch function conforms to POSIX, define HAVE_FNMATCH. Detect common implementation bugs, for example,
the bugs in Solaris 2.4.

Note that for historical reasons, contrary to the other specific AC_FUNC macros, AC_FUNC_FNMATCH does not replace a
broken/missing fnmatch. See AC_REPLACE_FNMATCH below.

Macro: AC_FUNC_FNMATCH_GNU
Behave like AC_REPLACE_FNMATCH (replace) but also test whether fnmatch supports GNU extensions. Detect common
implementation bugs, for example, the bugs in the GNU C Library 2.1.

Macro: AC_FUNC_FORK
This macro checks for the fork and vfork functions. If a working fork is found, define HAVE_WORKING_FORK. This
macro checks whether fork is just a stub by trying to run it.

If `vfork.h' is found, define HAVE_VFORK_H. If a working vfork is found, define HAVE_WORKING_VFORK.
Otherwise, define vfork to be fork for backward compatibility with previous versions of autoconf. This macro checks
for several known errors in implementations of vfork and considers the system to not have a working vfork if it detects
any of them. It is not considered to be an implementation error if a child's invocation of signal modifies the parent's
signal handler, since child processes rarely change their signal handlers.

Since this macro defines vfork only for backward compatibility with previous versions of autoconf you're encouraged
to define it yourself in new code:

#if !HAVE_WORKING_VFORK
define vfork fork
#endif

Macro: AC_FUNC_FSEEKO
If the fseeko function is available, define HAVE_FSEEKO. Define _LARGEFILE_SOURCE if necessary.

Macro: AC_FUNC_GETGROUPS
If the getgroups function is available and works (unlike on Ultrix 4.3, where `getgroups (0, 0)' always fails),
define HAVE_GETGROUPS. Set GETGROUPS_LIBS to any libraries needed to get that function. This macro runs
AC_TYPE_GETGROUPS.

Macro: AC_FUNC_GETLOADAVG
Check how to get the system load averages. To perform its tests properly, this macro needs the file `getloadavg.c';
therefore, be sure to set the AC_LIBOBJ replacement directory properly (see 5.5.3 Generic Function Checks,
AC_CONFIG_LIBOBJ_DIR).

file:///C|/pdfing/autoconf.html.htm (50 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC47

Autoconf:

If the system has the getloadavg function, define HAVE_GETLOADAVG, and set GETLOADAVG_LIBS to any libraries
needed to get that function. Also add GETLOADAVG_LIBS to LIBS. Otherwise, require an AC_LIBOBJ replacement for
`getloadavg' with source code in `dir/getloadavg.c', and possibly define several other C preprocessor macros and
output variables:

1. Define C_GETLOADAVG.

2. Define SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.

3. If `nlist.h' is found, define HAVE_NLIST_H.

4. If `struct nlist' has an `n_un.n_name' member, define HAVE_STRUCT_NLIST_N_UN_N_NAME. The
obsolete symbol NLIST_NAME_UNION is still defined, but do not depend upon it.

5. Programs may need to be installed setgid (or setuid) for getloadavg to work. In this case, define
GETLOADAVG_PRIVILEGED, set the output variable NEED_SETGID to `true' (and otherwise to `false'), and
set KMEM_GROUP to the name of the group that should own the installed program.

Macro: AC_FUNC_GETMNTENT
Check for getmntent in the `sun', `seq', and `gen' libraries, for IRIX 4, PTX, and Unixware, respectively. Then, if
getmntent is available, define HAVE_GETMNTENT.

Macro: AC_FUNC_GETPGRP
Define GETPGRP_VOID if it is an error to pass 0 to getpgrp; this is the POSIX behavior. On older BSD systems, you
must pass 0 to getpgrp, as it takes an argument and behaves like POSIX's getpgid.

#if GETPGRP_VOID
 pid = getpgrp ();
#else
 pid = getpgrp (0);
#endif

This macro does not check whether getpgrp exists at all; if you need to work in that situation, first call
AC_CHECK_FUNC for getpgrp.

Macro: AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK
If `link' is a symbolic link, then lstat should treat `link/' the same as `link/.'. However, many older lstat
implementations incorrectly ignore trailing slashes.

It is safe to assume that if lstat incorrectly ignores trailing slashes, then other symbolic-link-aware functions like
unlink also incorrectly ignore trailing slashes.

If lstat behaves properly, define LSTAT_FOLLOWS_SLASHED_SYMLINK, otherwise require an AC_LIBOBJ
replacement of lstat.

Macro: AC_FUNC_MALLOC
If the malloc function is compatible with the GNU C library malloc (i.e., `malloc (0)' returns a valid pointer), define
HAVE_MALLOC to 1. Otherwise define HAVE_MALLOC to 0, ask for an AC_LIBOBJ replacement for `malloc', and
define malloc to rpl_malloc so that the native malloc is not used in the main project.

Typically, the replacement file `malloc.c' should look like (note the `#undef malloc'):

file:///C|/pdfing/autoconf.html.htm (51 of 250)27. 1. 2004 18:44:41

Autoconf:

@verbatim #if HAVE_CONFIG_H # include <config.h> #endif #undef malloc

#include <sys/types.h>

void *malloc ();

/* Allocate an N-byte block of memory from the heap. If N is zero, allocate a 1-byte block. */

void * rpl_malloc (size_t n) { if (n == 0) n = 1; return malloc (n); }

Macro: AC_FUNC_MEMCMP
If the memcmp function is not available, or does not work on 8-bit data (like the one on SunOS 4.1.3), or fails when
comparing 16 bytes or more and with at least one buffer not starting on a 4-byte boundary (such as the one on NeXT x86
OpenStep), require an AC_LIBOBJ replacement for `memcmp'.

Macro: AC_FUNC_MBRTOWC
Define HAVE_MBRTOWC to 1 if the function mbrtowc and the type mbstate_t are properly declared.

Macro: AC_FUNC_MKTIME
If the mktime function is not available, or does not work correctly, require an AC_LIBOBJ replacement for `mktime'.

Macro: AC_FUNC_MMAP
If the mmap function exists and works correctly, define HAVE_MMAP. Only checks private fixed mapping of already-
mapped memory.

Macro: AC_FUNC_OBSTACK
If the obstacks are found, define HAVE_OBSTACK, else require an AC_LIBOBJ replacement for `obstack'.

Macro: AC_FUNC_REALLOC
If the realloc function is compatible with the GNU C library realloc (i.e., `realloc (0, 0)' returns a valid
pointer), define HAVE_REALLOC to 1. Otherwise define HAVE_REALLOC to 0, ask for an AC_LIBOBJ replacement for
`realloc', and define realloc to rpl_realloc so that the native realloc is not used in the main project. See
AC_FUNC_MALLOC for details.

Macro: AC_FUNC_SELECT_ARGTYPES
Determines the correct type to be passed for each of the select function's arguments, and defines those types in
SELECT_TYPE_ARG1, SELECT_TYPE_ARG234, and SELECT_TYPE_ARG5 respectively. SELECT_TYPE_ARG1
defaults to `int', SELECT_TYPE_ARG234 defaults to `int *', and SELECT_TYPE_ARG5 defaults to `struct
timeval *'.

Macro: AC_FUNC_SETPGRP
If setpgrp takes no argument (the POSIX version), define SETPGRP_VOID. Otherwise, it is the BSD version, which
takes two process IDs as arguments. This macro does not check whether setpgrp exists at all; if you need to work in that
situation, first call AC_CHECK_FUNC for setpgrp.

Macro: AC_FUNC_STAT
Macro: AC_FUNC_LSTAT

Determine whether stat or lstat have the bug that it succeeds when given the zero-length file name as argument. The
stat and lstat from SunOS 4.1.4 and the Hurd (as of 1998-11-01) do this.

If it does, then define HAVE_STAT_EMPTY_STRING_BUG (or HAVE_LSTAT_EMPTY_STRING_BUG) and ask for an

file:///C|/pdfing/autoconf.html.htm (52 of 250)27. 1. 2004 18:44:41

Autoconf:

AC_LIBOBJ replacement of it.

Macro: AC_FUNC_SETVBUF_REVERSED
If setvbuf takes the buffering type as its second argument and the buffer pointer as the third, instead of the other way
around, define SETVBUF_REVERSED.

Macro: AC_FUNC_STRCOLL
If the strcoll function exists and works correctly, define HAVE_STRCOLL. This does a bit more than
`AC_CHECK_FUNCS(strcoll)', because some systems have incorrect definitions of strcoll that should not be used.

Macro: AC_FUNC_STRTOD
If the strtod function does not exist or doesn't work correctly, ask for an AC_LIBOBJ replacement of `strtod'. In this
case, because `strtod.c' is likely to need `pow', set the output variable POW_LIB to the extra library needed.

Macro: AC_FUNC_STRERROR_R
If strerror_r is available, define HAVE_STRERROR_R, and if it is declared, define HAVE_DECL_STRERROR_R. If it
returns a char * message, define STRERROR_R_CHAR_P; otherwise it returns an int error number. The Thread-Safe
Functions option of POSIX requires strerror_r to return int, but many systems (including, for example, version 2.2.4
of the GNU C Library) return a char * value that is not necessarily equal to the buffer argument.

Macro: AC_FUNC_STRFTIME
Check for strftime in the `intl' library, for SCO UNIX. Then, if strftime is available, define HAVE_STRFTIME.

Macro: AC_FUNC_STRNLEN
If the strnlen function is not available, or is buggy (like the one from AIX 4.3), require an AC_LIBOBJ replacement for
it.

Macro: AC_FUNC_UTIME_NULL
If `utime(file, NULL)' sets file's timestamp to the present, define HAVE_UTIME_NULL.

Macro: AC_FUNC_VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found, define HAVE_DOPRNT. (If vprintf is
available, you may assume that vfprintf and vsprintf are also available.)

Macro: AC_REPLACE_FNMATCH
If the fnmatch function does not conform to POSIX (see AC_FUNC_FNMATCH), ask for its AC_LIBOBJ replacement.

The files `fnmatch.c', `fnmatch_loop.c', and `fnmatch_.h' in the AC_LIBOBJ replacement directory are
assumed to contain a copy of the source code of GNU fnmatch. If necessary, this source code is compiled as an
AC_LIBOBJ replacement, and the `fnmatch_.h' file is linked to `fnmatch.h' so that it can be included in place of the
system <fnmatch.h>.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.5.3 Generic Function Checks

These macros are used to find functions not covered by the "particular" test macros. If the functions might be in libraries other than
the default C library, first call AC_CHECK_LIB for those libraries. If you need to check the behavior of a function as well as find
out whether it is present, you have to write your own test for it (see section 6. Writing Tests).

file:///C|/pdfing/autoconf.html.htm (53 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC69

Autoconf:

Macro: AC_CHECK_FUNC (function, [action-if-found], [action-if-not-found])
If C function function is available, run shell commands action-if-found, otherwise action-if-not-found. If you just want to
define a symbol if the function is available, consider using AC_CHECK_FUNCS instead. This macro checks for functions
with C linkage even when AC_LANG(C++) has been called, since C is more standardized than C++. (see section 6.1
Language Choice, for more information about selecting the language for checks.)

Macro: AC_CHECK_FUNCS (function..., [action-if-found], [action-if-not-found])
For each function in the whitespace-separated argument list, define HAVE_function (in all capitals) if it is available. If
action-if-found is given, it is additional shell code to execute when one of the functions is found. You can give it a value of
`break' to break out of the loop on the first match. If action-if-not-found is given, it is executed when one of the functions
is not found.

Autoconf follows a philosophy that was formed over the years by those who have struggled for portability: isolate the portability
issues in specific files, and then program as if you were in a POSIX environment. Some functions may be missing or unfixable, and
your package must be ready to replace them.

Macro: AC_LIBOBJ (function)
Specify that `function.c' must be included in the executables to replace a missing or broken implementation of function.

Technically, it adds `function.$ac_objext' to the output variable LIBOBJS and calls AC_LIBSOURCE for
`function.c'. You should not directly change LIBOBJS, since this is not traceable.

Macro: AC_LIBSOURCE (file)
Specify that file might be needed to compile the project. If you need to know what files might be needed by a
`configure.ac', you should trace AC_LIBSOURCE. file must be a literal.

This macro is called automatically from AC_LIBOBJ, but you must call it explicitly if you pass a shell variable to
AC_LIBOBJ. In that case, since shell variables cannot be traced statically, you must pass to AC_LIBSOURCE any possible
files that the shell variable might cause AC_LIBOBJ to need. For example, if you want to pass a variable $foo_or_bar
to AC_LIBOBJ that holds either "foo" or "bar", you should do:

AC_LIBSOURCE(foo.c)
AC_LIBSOURCE(bar.c)
AC_LIBOBJ($foo_or_bar)

There is usually a way to avoid this, however, and you are encouraged to simply call AC_LIBOBJ with literal arguments.

Note that this macro replaces the obsolete AC_LIBOBJ_DECL, with slightly different semantics: the old macro took the
function name, e.g., foo, as its argument rather than the file name.

Macro: AC_LIBSOURCES (files)
Like AC_LIBSOURCE, but accepts one or more files in a comma-separated M4 list. Thus, the above example might be
rewritten:

AC_LIBSOURCES([foo.c, bar.c])
AC_LIBOBJ($foo_or_bar)

Macro: AC_CONFIG_LIBOBJ_DIR (directory)
Specify that AC_LIBOBJ replacement files are to be found in directory, a relative path starting from the top level of the

file:///C|/pdfing/autoconf.html.htm (54 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC70

Autoconf:

source tree. The replacement directory defaults to `.', the top level directory, and the most typical value is `lib',
corresponding to `AC_CONFIG_LIBOBJ_DIR(lib)'.

configure might need to know the replacement directory for the following reasons: (i) some checks use the replacement
files, (ii) some macros bypass broken system headers by installing links to the replacement headers, etc.

It is common to merely check for the existence of a function, and ask for its AC_LIBOBJ replacement if missing. The following
macro is a convenient shorthand.

Macro: AC_REPLACE_FUNCS (function...)
Like AC_CHECK_FUNCS, but uses `AC_LIBOBJ(function)' as action-if-not-found. You can declare your replacement
function by enclosing the prototype in `#if !HAVE_function'. If the system has the function, it probably declares it in
a header file you should be including, so you shouldn't redeclare it lest your declaration conflict.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.6 Header Files

The following macros check for the presence of certain C header files. If there is no macro specifically defined to check for a
header file you need, and you don't need to check for any special properties of it, then you can use one of the general header-file
check macros.

5.6.1 Portability of Headers Collected knowledge on common headers

5.6.2 Particular Header Checks Special handling to find certain headers

5.6.3 Generic Header Checks How to find other headers

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.6.1 Portability of Headers

This section tries to collect knowledge about common headers, and the problems they cause. By definition, this list will always
require additions. Please help us keeping it as complete as possible.

`inttypes.h' vs. `stdint.h'
Paul Eggert notes that: ISO C 1999 says that `inttypes.h' includes `stdint.h', so there's no need to include
`stdint.h' separately in a standard environment. Many implementations have `inttypes.h' but not `stdint.h' (e.g.,
Solaris 7), but I don't know of any implementation that has `stdint.h' but not `inttypes.h'. Nor do I know of any free
software that includes `stdint.h'; `stdint.h' seems to be a creation of the committee.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.6.2 Particular Header Checks

These macros check for particular system header files--whether they exist, and in some cases whether they declare certain symbols.

Macro: AC_HEADER_DIRENT

file:///C|/pdfing/autoconf.html.htm (55 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#SEC49
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC49
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC49
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Check for the following header files. For the first one that is found and defines `DIR', define the listed C preprocessor
macro:

`dirent.h' HAVE_DIRENT_H

`sys/ndir.
h'

HAVE_SYS_NDIR_H

`sys/dir.h' HAVE_SYS_DIR_H

`ndir.h' HAVE_NDIR_H

The directory-library declarations in your source code should look something like the following:

#if HAVE_DIRENT_H
include <dirent.h>
define NAMLEN(dirent) strlen((dirent)->d_name)
#else
define dirent direct
define NAMLEN(dirent) (dirent)->d_namlen
if HAVE_SYS_NDIR_H
include <sys/ndir.h>
endif
if HAVE_SYS_DIR_H
include <sys/dir.h>
endif
if HAVE_NDIR_H
include <ndir.h>
endif
#endif

Using the above declarations, the program would declare variables to be of type struct dirent, not struct
direct, and would access the length of a directory entry name by passing a pointer to a struct dirent to the
NAMLEN macro.

This macro also checks for the SCO Xenix `dir' and `x' libraries.

Macro: AC_HEADER_MAJOR
If `sys/types.h' does not define major, minor, and makedev, but `sys/mkdev.h' does, define
MAJOR_IN_MKDEV; otherwise, if `sys/sysmacros.h' does, define MAJOR_IN_SYSMACROS.

Macro: AC_HEADER_STAT
If the macros S_ISDIR, S_ISREG, etc. defined in `sys/stat.h' do not work properly (returning false positives), define
STAT_MACROS_BROKEN. This is the case on Tektronix UTekV, Amdahl UTS and Motorola System V/88.

Macro: AC_HEADER_STDBOOL
If `stdbool.h' exists and is conformant to C99, define HAVE_STDBOOL_H to 1; if the type _Bool is defined, define
HAVE__BOOL to 1. To fulfill the C99 requirements, your `system.h' should contain the following code:

@verbatim #if HAVE_STDBOOL_H # include <stdbool.h> #else # if ! HAVE__BOOL # ifdef __cplusplus typedef bool
_Bool; # else typedef unsigned char _Bool; # endif # endif # define bool _Bool # define false 0 # define true 1 # define
__bool_true_false_are_defined 1 #endif

file:///C|/pdfing/autoconf.html.htm (56 of 250)27. 1. 2004 18:44:41

Autoconf:

Macro: AC_HEADER_STDC
Define STDC_HEADERS if the system has ANSI C header files. Specifically, this macro checks for `stdlib.h',
`stdarg.h', `string.h', and `float.h'; if the system has those, it probably has the rest of the ANSI C header files.
This macro also checks whether `string.h' declares memchr (and thus presumably the other mem functions), whether
`stdlib.h' declare free (and thus presumably malloc and other related functions), and whether the `ctype.h'
macros work on characters with the high bit set, as ANSI C requires.

Use STDC_HEADERS instead of __STDC__ to determine whether the system has ANSI-compliant header files (and
probably C library functions) because many systems that have GCC do not have ANSI C header files.

On systems without ANSI C headers, there is so much variation that it is probably easier to declare the functions you use
than to figure out exactly what the system header files declare. Some systems contain a mix of functions from ANSI and
BSD; some are mostly ANSI but lack `memmove'; some define the BSD functions as macros in `string.h' or `strings.
h'; some have only the BSD functions but `string.h'; some declare the memory functions in `memory.h', some in
`string.h'; etc. It is probably sufficient to check for one string function and one memory function; if the library has the
ANSI versions of those then it probably has most of the others. If you put the following in `configure.ac':

AC_HEADER_STDC
AC_CHECK_FUNCS(strchr memcpy)

then, in your code, you can use declarations like this:

#if STDC_HEADERS
include <string.h>
#else
if !HAVE_STRCHR
define strchr index
define strrchr rindex
endif
char *strchr (), *strrchr ();
if !HAVE_MEMCPY
define memcpy(d, s, n) bcopy ((s), (d), (n))
define memmove(d, s, n) bcopy ((s), (d), (n))
endif
#endif

If you use a function like memchr, memset, strtok, or strspn, which have no BSD equivalent, then macros won't
suffice; you must provide an implementation of each function. An easy way to incorporate your implementations only when
needed (since the ones in system C libraries may be hand optimized) is to, taking memchr for example, put it in `memchr.
c' and use `AC_REPLACE_FUNCS(memchr)'.

Macro: AC_HEADER_SYS_WAIT
If `sys/wait.h' exists and is compatible with POSIX, define HAVE_SYS_WAIT_H. Incompatibility can occur if `sys/
wait.h' does not exist, or if it uses the old BSD union wait instead of int to store a status value. If `sys/wait.h' is
not POSIX compatible, then instead of including it, define the POSIX macros with their usual interpretations. Here is an
example:

file:///C|/pdfing/autoconf.html.htm (57 of 250)27. 1. 2004 18:44:41

Autoconf:

#include <sys/types.h>
#if HAVE_SYS_WAIT_H
include <sys/wait.h>
#endif
#ifndef WEXITSTATUS
define WEXITSTATUS(stat_val) ((unsigned)(stat_val) >> 8)
#endif
#ifndef WIFEXITED
define WIFEXITED(stat_val) (((stat_val) & 255) == 0)
#endif

_POSIX_VERSION is defined when `unistd.h' is included on POSIX systems. If there is no `unistd.h', it is definitely not a
POSIX system. However, some non-POSIX systems do have `unistd.h'.

The way to check if the system supports POSIX is:

#if HAVE_UNISTD_H
include <sys/types.h>
include <unistd.h>
#endif

#ifdef _POSIX_VERSION
/* Code for POSIX systems. */
#endif

Macro: AC_HEADER_TIME
If a program may include both `time.h' and `sys/time.h', define TIME_WITH_SYS_TIME. On some older systems,
`sys/time.h' includes `time.h', but `time.h' is not protected against multiple inclusion, so programs should not
explicitly include both files. This macro is useful in programs that use, for example, struct timeval as well as
struct tm. It is best used in conjunction with HAVE_SYS_TIME_H, which can be checked for using
AC_CHECK_HEADERS(sys/time.h).

#if TIME_WITH_SYS_TIME
include <sys/time.h>
include <time.h>
#else
if HAVE_SYS_TIME_H
include <sys/time.h>
else
include <time.h>
endif
#endif

Macro: AC_HEADER_TIOCGWINSZ
If the use of TIOCGWINSZ requires `<sys/ioctl.h>', then define GWINSZ_IN_SYS_IOCTL. Otherwise
TIOCGWINSZ can be found in `<termios.h>'.

Use:

file:///C|/pdfing/autoconf.html.htm (58 of 250)27. 1. 2004 18:44:41

Autoconf:

#if HAVE_TERMIOS_H
include <termios.h>
#endif

#if GWINSZ_IN_SYS_IOCTL
include <sys/ioctl.h>
#endif

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.6.3 Generic Header Checks

These macros are used to find system header files not covered by the "particular" test macros. If you need to check the contents of a
header as well as find out whether it is present, you have to write your own test for it (see section 6. Writing Tests).

Macro: AC_CHECK_HEADER (header-file, [action-if-found], [action-if-not-found], [includes = `default-includes'])
If the system header file header-file is compilable, execute shell commands action-if-found, otherwise execute action-if-not-
found. If you just want to define a symbol if the header file is available, consider using AC_CHECK_HEADERS instead.

For compatibility issues with older versions of Autoconf, please read below.

Macro: AC_CHECK_HEADERS (header-file..., [action-if-found], [action-if-not-found], [includes = `default-includes'])
For each given system header file header-file in the whitespace-separated argument list that exists, define HAVE_header-
file (in all capitals). If action-if-found is given, it is additional shell code to execute when one of the header files is found.
You can give it a value of `break' to break out of the loop on the first match. If action-if-not-found is given, it is executed
when one of the header files is not found.

For compatibility issues with older versions of Autoconf, please read below.

Previous versions of Autoconf merely checked whether the header was accepted by the preprocessor. This was changed because
the old test was inappropriate for typical uses. Headers are typically used to compile, not merely to preprocess, and the old behavior
sometimes accepted headers that clashed at compile-time. If you need to check whether a header is preprocessable, you can use
AC_PREPROC_IFELSE (see section 6.3 Running the Preprocessor).

This scheme, which improves the robustness of the test, also requires that you make sure that headers that must be included before
the header-file be part of the includes, (see section 5.1.2 Default Includes). If looking for `bar.h', which requires that `foo.h' be
included before if it exists, we suggest the following scheme:

@verbatim AC_CHECK_HEADERS([foo.h]) AC_CHECK_HEADERS([bar.h], [], [], [#if HAVE_FOO_H # include <foo.h> #
endif])

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.7 Declarations

The following macros check for the declaration of variables and functions. If there is no macro specifically defined to check for a
symbol you need, then you can use the general macros (see section 5.7.2 Generic Declaration Checks) or, for more complex tests,

file:///C|/pdfing/autoconf.html.htm (59 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#SEC53
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC54

Autoconf:

you may use AC_COMPILE_IFELSE (see section 6.4 Running the Compiler).

5.7.1 Particular Declaration Checks Macros to check for certain declarations

5.7.2 Generic Declaration Checks How to find other declarations

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.7.1 Particular Declaration Checks

There are no specific macros for declarations.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.7.2 Generic Declaration Checks

These macros are used to find declarations not covered by the "particular" test macros.

Macro: AC_CHECK_DECL (symbol, [action-if-found], [action-if-not-found], [includes = `default-includes'])
If symbol (a function or a variable) is not declared in includes and a declaration is needed, run the shell commands action-if-
not-found, otherwise action-if-found. If no includes are specified, the default includes are used (see section 5.1.2 Default
Includes).

This macro actually tests whether it is valid to use symbol as an r-value, not if it is really declared, because it is much safer
to avoid introducing extra declarations when they are not needed.

Macro: AC_CHECK_DECLS (symbols, [action-if-found], [action-if-not-found], [includes = `default-includes'])
For each of the symbols (comma-separated list), define HAVE_DECL_symbol (in all capitals) to `1' if symbol is declared,
otherwise to `0'. If action-if-not-found is given, it is additional shell code to execute when one of the function declarations is
needed, otherwise action-if-found is executed.

This macro uses an m4 list as first argument:

AC_CHECK_DECLS(strdup)
AC_CHECK_DECLS([strlen])
AC_CHECK_DECLS([malloc, realloc, calloc, free])

Unlike the other `AC_CHECK_*S' macros, when a symbol is not declared, HAVE_DECL_symbol is defined to `0' instead
of leaving HAVE_DECL_symbol undeclared. When you are sure that the check was performed, use
HAVE_DECL_symbol just like any other result of Autoconf:

#if !HAVE_DECL_SYMBOL
extern char *symbol;
#endif

If the test may have not been performed, however, because it is safer not to declare a symbol than to use a declaration that

file:///C|/pdfing/autoconf.html.htm (60 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC53
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC53
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC38

Autoconf:

conflicts with the system's one, you should use:

#if defined HAVE_DECL_MALLOC && !HAVE_DECL_MALLOC
void *malloc (size_t *s);
#endif

You fall into the second category only in extreme situations: either your files may be used without being configured, or they
are used during the configuration. In most cases the traditional approach is enough.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.8 Structures

The following macros check for the presence of certain members in C structures. If there is no macro specifically defined to check
for a member you need, then you can use the general structure-member macros (see section 5.8.2 Generic Structure Checks) or, for
more complex tests, you may use AC_COMPILE_IFELSE (see section 6.4 Running the Compiler).

5.8.1 Particular Structure Checks Macros to check for certain structure members

5.8.2 Generic Structure Checks How to find other structure members

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.8.1 Particular Structure Checks

The following macros check for certain structures or structure members.

Macro: AC_STRUCT_ST_BLKSIZE
If struct stat contains an st_blksize member, define HAVE_STRUCT_STAT_ST_BLKSIZE. The former name,
HAVE_ST_BLKSIZE is to be avoided, as its support will cease in the future. This macro is obsoleted, and should be
replaced by

AC_CHECK_MEMBERS([struct stat.st_blksize])

Macro: AC_STRUCT_ST_BLOCKS
If struct stat contains an st_blocks member, define HAVE_STRUCT STAT_ST_BLOCKS. Otherwise, require an
AC_LIBOBJ replacement of `fileblocks'. The former name, HAVE_ST_BLOCKS is to be avoided, as its support will
cease in the future.

Macro: AC_STRUCT_ST_RDEV
If struct stat contains an st_rdev member, define HAVE_STRUCT_STAT_ST_RDEV. The former name for this
macro, HAVE_ST_RDEV, is to be avoided as it will cease to be supported in the future. Actually, even the new macro is
obsolete and should be replaced by:

AC_CHECK_MEMBERS([struct stat.st_rdev])

file:///C|/pdfing/autoconf.html.htm (61 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_STRUCT_TM
If `time.h' does not define struct tm, define TM_IN_SYS_TIME, which means that including `sys/time.h' had
better define struct tm.

Macro: AC_STRUCT_TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone member, define
HAVE_STRUCT_TM_TM_ZONE (and the obsoleted HAVE_TM_ZONE). Otherwise, if the external array tzname is found,
define HAVE_TZNAME.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.8.2 Generic Structure Checks

These macros are used to find structure members not covered by the "particular" test macros.

Macro: AC_CHECK_MEMBER (aggregate.member, [action-if-found], [action-if-not-found], [includes = `default-
includes'])

Check whether member is a member of the aggregate aggregate. If no includes are specified, the default includes are used
(see section 5.1.2 Default Includes).

AC_CHECK_MEMBER(struct passwd.pw_gecos,,
 [AC_MSG_ERROR([We need `passwd.pw_gecos'!])],
 [#include <pwd.h>])

You can use this macro for sub-members:

AC_CHECK_MEMBER(struct top.middle.bot)

Macro: AC_CHECK_MEMBERS (members, [action-if-found], [action-if-not-found], [includes = `default-includes'])
Check for the existence of each `aggregate.member' of members using the previous macro. When member belongs to
aggregate, define HAVE_aggregate_member (in all capitals, with spaces and dots replaced by underscores).

This macro uses m4 lists:

AC_CHECK_MEMBERS([struct stat.st_rdev, struct stat.st_blksize])

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.9 Types

The following macros check for C types, either builtin or typedefs. If there is no macro specifically defined to check for a type you
need, and you don't need to check for any special properties of it, then you can use a general type-check macro.

file:///C|/pdfing/autoconf.html.htm (62 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

5.9.1 Particular Type Checks Special handling to find certain types

5.9.2 Generic Type Checks How to find other types

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.9.1 Particular Type Checks

These macros check for particular C types in `sys/types.h', `stdlib.h' and others, if they exist.

Macro: AC_TYPE_GETGROUPS
Define GETGROUPS_T to be whichever of gid_t or int is the base type of the array argument to getgroups.

Macro: AC_TYPE_MBSTATE_T
Define HAVE_MBSTATE_T if <wchar.h> declares the mbstate_t type. Also, define mbstate_t to be a type if
<wchar.h> does not declare it.

Macro: AC_TYPE_MODE_T
Equivalent to `AC_CHECK_TYPE(mode_t, int)'.

Macro: AC_TYPE_OFF_T
Equivalent to `AC_CHECK_TYPE(off_t, long)'.

Macro: AC_TYPE_PID_T
Equivalent to `AC_CHECK_TYPE(pid_t, int)'.

Macro: AC_TYPE_SIGNAL
If `signal.h' declares signal as returning a pointer to a function returning void, define RETSIGTYPE to be void;
otherwise, define it to be int.

Define signal handlers as returning type RETSIGTYPE:

RETSIGTYPE
hup_handler ()
{
...

}

Macro: AC_TYPE_SIZE_T
Equivalent to `AC_CHECK_TYPE(size_t, unsigned)'.

Macro: AC_TYPE_UID_T
If uid_t is not defined, define uid_t to be int and gid_t to be int.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.9.2 Generic Type Checks

file:///C|/pdfing/autoconf.html.htm (63 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

These macros are used to check for types not covered by the "particular" test macros.

Macro: AC_CHECK_TYPE (type, [action-if-found], [action-if-not-found], [includes = `default-includes'])
Check whether type is defined. It may be a compiler builtin type or defined by the includes (see section 5.1.2 Default
Includes).

Macro: AC_CHECK_TYPES (types, [action-if-found], [action-if-not-found], [includes = `default-includes'])
For each type of the types that is defined, define HAVE_type (in all capitals). If no includes are specified, the default
includes are used (see section 5.1.2 Default Includes). If action-if-found is given, it is additional shell code to execute when
one of the types is found. If action-if-not-found is given, it is executed when one of the types is not found.

This macro uses m4 lists:

AC_CHECK_TYPES(ptrdiff_t)
AC_CHECK_TYPES([unsigned long long, uintmax_t])

Autoconf, up to 2.13, used to provide to another version of AC_CHECK_TYPE, broken by design. In order to keep backward
compatibility, a simple heuristics, quite safe but not totally, is implemented. In case of doubt, read the documentation of the former
AC_CHECK_TYPE, see 15.4 Obsolete Macros.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.10 Compilers and Preprocessors

All the tests for compilers (AC_PROG_CC, AC_PROG_CXX, AC_PROG_F77) define the output variable EXEEXT based on the
output of the compiler, typically to the empty string if Unix and `.exe' if Win32 or OS/2.

They also define the output variable OBJEXT based on the output of the compiler, after `.c' files have been excluded, typically to
`o' if Unix, `obj' if Win32.

If the compiler being used does not produce executables, the tests fail. If the executables can't be run, and cross-compilation is not
enabled, they fail too. See section 11. Manual Configuration, for more on support for cross compiling.

5.10.1 Specific Compiler Characteristics Some portability issues

5.10.2 Generic Compiler Characteristics Language independent tests

5.10.3 C Compiler Characteristics Checking its characteristics

5.10.4 C++ Compiler Characteristics Likewise

5.10.5 Fortran 77 Compiler Characteristics Likewise

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.10.1 Specific Compiler Characteristics

Some compilers exhibit different behaviors.

file:///C|/pdfing/autoconf.html.htm (64 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#SEC62
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC62
file:///C|/pdfing/autoconf.html#SEC63
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC63
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Static/Dynamic Expressions
Autoconf relies on a trick to extract one bit of information from the C compiler: using negative array sizes. For instance the
following excerpt of a C source demonstrates how to test whether `int's are 4 bytes long:

int
main (void)
{
 static int test_array [sizeof (int) == 4 ? 1 : -1];
 test_array [0] = 0
 return 0;
}

To our knowledge, there is a single compiler that does not support this trick: the HP C compilers (the real one, not only the
"bundled") on HP-UX 11.00:

$ cc -c -Ae +O2 +Onolimit conftest.c
cc: "conftest.c": error 1879: Variable-length arrays cannot \
 have static storage.

Autoconf works around this problem by casting sizeof (int) to long before comparing it.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.10.2 Generic Compiler Characteristics

Macro: AC_CHECK_SIZEOF (type, [unused], [includes = `default-includes'])
Define SIZEOF_type (see section 5.1.1 Standard Symbols) to be the size in bytes of type. If `type' is unknown, it gets a
size of 0. If no includes are specified, the default includes are used (see section 5.1.2 Default Includes). If you provide
include, be sure to include `stdio.h' which is required for this macro to run.

This macro now works even when cross-compiling. The unused argument was used when cross-compiling.

For example, the call

AC_CHECK_SIZEOF(int *)

defines SIZEOF_INT_P to be 8 on DEC Alpha AXP systems.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.10.3 C Compiler Characteristics

The following macros provide ways to find and exercise a C Compiler. There are a few constructs that ought to be avoided, but do
not deserve being checked for, since they can easily be worked around.

file:///C|/pdfing/autoconf.html.htm (65 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC62
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC63
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Don't use lines containing solitary backslashes
They tickle a bug in the HP-UX C compiler (checked on HP-UX 10.20, 11.00, and 11i). Running the compiler on the
following source,

#ifdef __STDC__
/\
* A comment with backslash-newlines in it. %{ %} *\
\
/
char str[] = "\\
" A string with backslash-newlines in it %{ %} \\
"";
char apostrophe = '\\
\
'\
';
#endif

yields

error-->cpp: "foo.c", line 13: error 4048: Non-terminating comment at end of file.
error-->cpp: "foo.c", line 13: error 4033: Missing #endif at end of file.

Removing the lines with solitary backslashes solves the problem.

Don't compile several files at once if output matters to you
Some compilers, such as the HP's, reports the name of the file it is compiling when they are several. For instance:

$ cc a.c b.c
a.c:
b.c:

This can cause problems if you observe the output of the compiler to detect failures. Invoking `cc -c a.c -o a.o;
cc -c b.c -o b.o; cc a.o b.o -o c' solves the issue.

Macro: AC_PROG_CC ([compiler-search-list])
Determine a C compiler to use. If CC is not already set in the environment, check for gcc and cc, then for other C
compilers. Set output variable CC to the name of the compiler found.

This macro may, however, be invoked with an optional first argument which, if specified, must be a space separated list of
C compilers to search for. This just gives the user an opportunity to specify an alternative search list for the C compiler. For
example, if you didn't like the default order, then you could invoke AC_PROG_CC like this:

AC_PROG_CC(cl egcs gcc cc)

If the C compiler is not in ANSI C mode by default, try to add an option to output variable CC to make it so. This macro tries

file:///C|/pdfing/autoconf.html.htm (66 of 250)27. 1. 2004 18:44:41

Autoconf:

various options that select ANSI C on some system or another. It considers the compiler to be in ANSI C mode if it handles
function prototypes correctly.

After calling this macro you can check whether the C compiler has been set to accept ANSI C; if not, the shell variable
ac_cv_prog_cc_stdc is set to `no'. If you wrote your source code in ANSI C, you can make an un-ANSIfied copy of it
by using the program ansi2knr, which comes with Automake. See also under AC_C_PROTOTYPES below.

If using the GNU C compiler, set shell variable GCC to `yes'. If output variable CFLAGS was not already set, set it to `-g -
O2' for the GNU C compiler (`-O2' on systems where GCC does not accept `-g'), or `-g' for other compilers.

Macro: AC_PROG_CC_C_O
If the C compiler does not accept the `-c' and `-o' options simultaneously, define NO_MINUS_C_MINUS_O. This macro
actually tests both the compiler found by AC_PROG_CC, and, if different, the first cc in the path. The test fails if one fails.
This macro was created for GNU Make to choose the default C compilation rule.

Macro: AC_PROG_CPP
Set output variable CPP to a command that runs the C preprocessor. If `$CC -E' doesn't work, `/lib/cpp' is used. It is
only portable to run CPP on files with a `.c' extension.

Some preprocessors don't indicate missing include files by the error status. For such preprocessors an internal variable is set
that causes other macros to check the standard error from the preprocessor and consider the test failed if any warnings have
been reported.

The following macros check for C compiler or machine architecture features. To check for characteristics not listed here, use
AC_COMPILE_IFELSE (see section 6.4 Running the Compiler) or AC_RUN_IFELSE (see section 6.6 Checking Run Time
Behavior).

Macro: AC_C_BACKSLASH_A
Define `HAVE_C_BACKSLASH_A' to 1 if the C compiler understands `\a'.

Macro: AC_C_BIGENDIAN ([action-if-true], [action-if-false], [action-if-unknown])
If words are stored with the most significant byte first (like Motorola and SPARC CPUs), execute action-if-true. If words
are stored with the least significant byte first (like Intel and VAX CPUs), execute action-if-false.

This macro runs a test-case if endianness cannot be determined from the system header files. When cross-compiling, the test-
case is not run but grep'ed for some magic values. action-if-unknown is executed if the latter case fails to determine the byte
sex of the host system.

The default for action-if-true is to define `WORDS_BIGENDIAN'. The default for action-if-false is to do nothing. And
finally, the default for action-if-unknown is to abort configure and tell the installer which variable he should preset to bypass
this test.

Macro: AC_C_CONST
If the C compiler does not fully support the ANSI C qualifier const, define const to be empty. Some C compilers that do
not define __STDC__ do support const; some compilers that define __STDC__ do not completely support const.
Programs can simply use const as if every C compiler supported it; for those that don't, the `Makefile' or configuration
header file will define it as empty.

Occasionally installers use a C++ compiler to compile C code, typically because they lack a C compiler. This causes
problems with const, because C and C++ treat const differently. For example:

file:///C|/pdfing/autoconf.html.htm (67 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC78

Autoconf:

const int foo;

is valid in C but not in C++. These differences unfortunately cannot be papered over by defining const to be empty.

If autoconf detects this situation, it leaves const alone, as this generally yields better results in practice. However, using
a C++ compiler to compile C code is not recommended or supported, and installers who run into trouble in this area should
get a C compiler like GCC to compile their C code.

Macro: AC_C_VOLATILE
If the C compiler does not understand the keyword volatile, define volatile to be empty. Programs can simply use
volatile as if every C compiler supported it; for those that do not, the `Makefile' or configuration header will define it
as empty.

If the correctness of your program depends on the semantics of volatile, simply defining it to be empty does, in a sense,
break your code. However, given that the compiler does not support volatile, you are at its mercy anyway. At least your
program will compile, when it wouldn't before.

In general, the volatile keyword is a feature of ANSI C, so you might expect that volatile is available only when
__STDC__ is defined. However, Ultrix 4.3's native compiler does support volatile, but does not defined __STDC__.

Macro: AC_C_INLINE
If the C compiler supports the keyword inline, do nothing. Otherwise define inline to __inline__ or __inline if
it accepts one of those, otherwise define inline to be empty.

Macro: AC_C_CHAR_UNSIGNED
If the C type char is unsigned, define __CHAR_UNSIGNED__, unless the C compiler predefines it.

Macro: AC_C_LONG_DOUBLE
If the C compiler supports a working long double type with more range or precision than the double type, define
HAVE_LONG_DOUBLE.

Macro: AC_C_STRINGIZE
If the C preprocessor supports the stringizing operator, define HAVE_STRINGIZE. The stringizing operator is `#' and is
found in macros such as this:

#define x(y) #y

Macro: AC_C_PROTOTYPES
If function prototypes are understood by the compiler (as determined by AC_PROG_CC), define PROTOTYPES and
__PROTOTYPES. In the case the compiler does not handle prototypes, you should use ansi2knr, which comes with the
Automake distribution, to unprotoize function definitions. For function prototypes, you should first define PARAMS:

file:///C|/pdfing/autoconf.html.htm (68 of 250)27. 1. 2004 18:44:41

Autoconf:

#ifndef PARAMS
if PROTOTYPES
define PARAMS(protos) protos
else /* no PROTOTYPES */
define PARAMS(protos) ()
endif /* no PROTOTYPES */
#endif

then use it this way:

size_t my_strlen PARAMS ((const char *));

This macro also defines __PROTOTYPES; this is for the benefit of header files that cannot use macros that infringe on user name
space.

Macro: AC_PROG_GCC_TRADITIONAL
Add `-traditional' to output variable CC if using the GNU C compiler and ioctl does not work properly without `-
traditional'. That usually happens when the fixed header files have not been installed on an old system. Since recent
versions of the GNU C compiler fix the header files automatically when installed, this is becoming a less prevalent problem.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.10.4 C++ Compiler Characteristics

Macro: AC_PROG_CXX ([compiler-search-list])
Determine a C++ compiler to use. Check if the environment variable CXX or CCC (in that order) is set; if so, then set output
variable CXX to its value.

Otherwise, if the macro is invoked without an argument, then search for a C++ compiler under the likely names (first g++
and c++ then other names). If none of those checks succeed, then as a last resort set CXX to g++.

This macro may, however, be invoked with an optional first argument which, if specified, must be a space separated list of C
++ compilers to search for. This just gives the user an opportunity to specify an alternative search list for the C++ compiler.
For example, if you didn't like the default order, then you could invoke AC_PROG_CXX like this:

AC_PROG_CXX(cl KCC CC cxx cc++ xlC aCC c++ g++ egcs gcc)

If using the GNU C++ compiler, set shell variable GXX to `yes'. If output variable CXXFLAGS was not already set, set it to
`-g -O2' for the GNU C++ compiler (`-O2' on systems where G++ does not accept `-g'), or `-g' for other compilers.

Macro: AC_PROG_CXXCPP
Set output variable CXXCPP to a command that runs the C++ preprocessor. If `$CXX -E' doesn't work, `/lib/cpp' is
used. It is only portable to run CXXCPP on files with a `.c', `.C', or `.cc' extension.

Some preprocessors don't indicate missing include files by the error status. For such preprocessors an internal variable is set
that causes other macros to check the standard error from the preprocessor and consider the test failed if any warnings have

file:///C|/pdfing/autoconf.html.htm (69 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

been reported. However, it is not known whether such broken preprocessors exist for C++.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.10.5 Fortran 77 Compiler Characteristics

Macro: AC_PROG_F77 ([compiler-search-list])
Determine a Fortran 77 compiler to use. If F77 is not already set in the environment, then check for g77 and f77, and then
some other names. Set the output variable F77 to the name of the compiler found.

This macro may, however, be invoked with an optional first argument which, if specified, must be a space separated list of
Fortran 77 compilers to search for. This just gives the user an opportunity to specify an alternative search list for the Fortran
77 compiler. For example, if you didn't like the default order, then you could invoke AC_PROG_F77 like this:

AC_PROG_F77(fl32 f77 fort77 xlf g77 f90 xlf90)

If using g77 (the GNU Fortran 77 compiler), then AC_PROG_F77 will set the shell variable G77 to `yes'. If the output
variable FFLAGS was not already set in the environment, then set it to `-g -02' for g77 (or `-O2' where g77 does not
accept `-g'). Otherwise, set FFLAGS to `-g' for all other Fortran 77 compilers.

Macro: AC_PROG_F77_C_O
Test if the Fortran 77 compiler accepts the options `-c' and `-o' simultaneously, and define
F77_NO_MINUS_C_MINUS_O if it does not.

The following macros check for Fortran 77 compiler characteristics. To check for characteristics not listed here, use
AC_COMPILE_IFELSE (see section 6.4 Running the Compiler) or AC_RUN_IFELSE (see section 6.6 Checking Run Time
Behavior), making sure to first set the current language to Fortran 77 AC_LANG(Fortran 77) (see section 6.1 Language
Choice).

Macro: AC_F77_LIBRARY_LDFLAGS
Determine the linker flags (e.g., `-L' and `-l') for the Fortran 77 intrinsic and run-time libraries that are required to
successfully link a Fortran 77 program or shared library. The output variable FLIBS is set to these flags.

This macro is intended to be used in those situations when it is necessary to mix, e.g., C++ and Fortran 77 source code into a
single program or shared library (see section `Mixing Fortran 77 With C and C++' in GNU Automake).

For example, if object files from a C++ and Fortran 77 compiler must be linked together, then the C++ compiler/linker must
be used for linking (since special C++-ish things need to happen at link time like calling global constructors, instantiating
templates, enabling exception support, etc.).

However, the Fortran 77 intrinsic and run-time libraries must be linked in as well, but the C++ compiler/linker doesn't know
by default how to add these Fortran 77 libraries. Hence, the macro AC_F77_LIBRARY_LDFLAGS was created to
determine these Fortran 77 libraries.

The macro AC_F77_DUMMY_MAIN or AC_F77_MAIN will probably also be necessary to link C/C++ with Fortran; see
below.

Macro: AC_F77_DUMMY_MAIN ([action-if-found], [action-if-not-found])
With many compilers, the Fortran libraries detected by AC_F77_LIBRARY_LDFLAGS provide their own main entry

file:///C|/pdfing/autoconf.html.htm (70 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC70

Autoconf:

function that initializes things like Fortran I/O, and which then calls a user-provided entry function named (say) MAIN__ to
run the user's program. The AC_F77_DUMMY_MAIN or AC_F77_MAIN macro figures out how to deal with this
interaction.

When using Fortran for purely numerical functions (no I/O, etc.) often one prefers to provide one's own main and skip the
Fortran library initializations. In this case, however, one may still need to provide a dummy MAIN__ routine in order to
prevent linking errors on some systems. AC_F77_DUMMY_MAIN detects whether any such routine is required for linking,
and what its name is; the shell variable F77_DUMMY_MAIN holds this name, unknown when no solution was found, and
none when no such dummy main is needed.

By default, action-if-found defines F77_DUMMY_MAIN to the name of this routine (e.g., MAIN__) if it is required. [action-
if-not-found] defaults to exiting with an error.

In order to link with Fortran routines, the user's C/C++ program should then include the following code to define the
dummy main if it is needed:

#ifdef F77_DUMMY_MAIN
ifdef __cplusplus
 extern "C"
endif
 int F77_DUMMY_MAIN() { return 1; }
#endif

Note that AC_F77_DUMMY_MAIN is called automatically from AC_F77_WRAPPERS; there is generally no need to call it
explicitly unless one wants to change the default actions.

Macro: AC_F77_MAIN
As discussed above for AC_F77_DUMMY_MAIN, many Fortran libraries allow you to provide an entry point called (say)
MAIN__ instead of the usual main, which is then called by a main function in the Fortran libraries that initializes things
like Fortran I/O. The AC_F77_MAIN macro detects whether it is possible to utilize such an alternate main function, and
defines F77_MAIN to the name of the function. (If no alternate main function name is found, F77_MAIN is simply defined
to main.)

Thus, when calling Fortran routines from C that perform things like I/O, one should use this macro and name the "main"
function F77_MAIN instead of main.

Macro: AC_F77_WRAPPERS
Defines C macros F77_FUNC(name,NAME) and F77_FUNC_(name,NAME) to properly mangle the names of C/C++
identifiers, and identifiers with underscores, respectively, so that they match the name-mangling scheme used by the Fortran
77 compiler.

Fortran 77 is case-insensitive, and in order to achieve this the Fortran 77 compiler converts all identifiers into a canonical
case and format. To call a Fortran 77 subroutine from C or to write a C function that is callable from Fortran 77, the C
program must explicitly use identifiers in the format expected by the Fortran 77 compiler. In order to do this, one simply
wraps all C identifiers in one of the macros provided by AC_F77_WRAPPERS. For example, suppose you have the
following Fortran 77 subroutine:

file:///C|/pdfing/autoconf.html.htm (71 of 250)27. 1. 2004 18:44:41

Autoconf:

 subroutine foobar(x,y)
 double precision x, y
 y = 3.14159 * x
 return
 end

You would then declare its prototype in C or C++ as:

#define FOOBAR_F77 F77_FUNC(foobar,FOOBAR)
#ifdef __cplusplus
extern "C" /* prevent C++ name mangling */
#endif
void FOOBAR_F77(double *x, double *y);

Note that we pass both the lowercase and uppercase versions of the function name to F77_FUNC so that it can select the
right one. Note also that all parameters to Fortran 77 routines are passed as pointers (see section `Mixing Fortran 77 With C
and C++' in GNU Automake).

Although Autoconf tries to be intelligent about detecting the name-mangling scheme of the Fortran 77 compiler, there may
be Fortran 77 compilers that it doesn't support yet. In this case, the above code will generate a compile-time error, but some
other behavior (e.g., disabling Fortran-related features) can be induced by checking whether the F77_FUNC macro is
defined.

Now, to call that routine from a C program, we would do something like:

{
 double x = 2.7183, y;
 FOOBAR_F77(&x, &y);
}

If the Fortran 77 identifier contains an underscore (e.g., foo_bar), you should use F77_FUNC_ instead of F77_FUNC
(with the same arguments). This is because some Fortran 77 compilers mangle names differently if they contain an
underscore.

Macro: AC_F77_FUNC (name, [shellvar])
Given an identifier name, set the shell variable shellvar to hold the mangled version name according to the rules of the
Fortran 77 linker (see also AC_F77_WRAPPERS). shellvar is optional; if it is not supplied, the shell variable will be simply
name. The purpose of this macro is to give the caller a way to access the name-mangling information other than through the
C preprocessor as above, for example, to call Fortran routines from some language other than C/C++.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.11 System Services

The following macros check for operating system services or capabilities.

file:///C|/pdfing/autoconf.html.htm (72 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_PATH_X
Try to locate the X Window System include files and libraries. If the user gave the command line options `--x-
includes=dir' and `--x-libraries=dir', use those directories. If either or both were not given, get the missing
values by running xmkmf on a trivial `Imakefile' and examining the `Makefile' that it produces. If that fails (such as
if xmkmf is not present), look for the files in several directories where they often reside. If either method is successful, set
the shell variables x_includes and x_libraries to their locations, unless they are in directories the compiler searches
by default.

If both methods fail, or the user gave the command line option `--without-x', set the shell variable no_x to `yes';
otherwise set it to the empty string.

Macro: AC_PATH_XTRA
An enhanced version of AC_PATH_X. It adds the C compiler flags that X needs to output variable X_CFLAGS, and the X
linker flags to X_LIBS. Define X_DISPLAY_MISSING if X is not available.

This macro also checks for special libraries that some systems need in order to compile X programs. It adds any that the
system needs to output variable X_EXTRA_LIBS. And it checks for special X11R6 libraries that need to be linked with
before `-lX11', and adds any found to the output variable X_PRE_LIBS.

Macro: AC_SYS_INTERPRETER
Check whether the system supports starting scripts with a line of the form `#! /bin/csh' to select the interpreter to use
for the script. After running this macro, shell code in `configure.ac' can check the shell variable interpval; it will
be set to `yes' if the system supports `#!', `no' if not.

Macro: AC_SYS_LARGEFILE
Arrange for large-file support. On some hosts, one must use special compiler options to build programs that can access large
files. Append any such options to the output variable CC. Define _FILE_OFFSET_BITS and _LARGE_FILES if
necessary.

Large-file support can be disabled by configuring with the `--disable-largefile' option.

If you use this macro, check that your program works even when off_t is longer than long, since this is common when
large-file support is enabled. For example, it is not correct to print an arbitrary off_t value X with printf ("%ld",
(long) X).

Macro: AC_SYS_LONG_FILE_NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_FILE_NAMES.

Macro: AC_SYS_POSIX_TERMIOS
Check to see if the POSIX termios headers and functions are available on the system. If so, set the shell variable
ac_cv_sys_posix_termios to `yes'. If not, set the variable to `no'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

5.12 UNIX Variants

The following macros check for certain operating systems that need special treatment for some programs, due to exceptional
oddities in their header files or libraries. These macros are warts; they will be replaced by a more systematic approach, based on the
functions they make available or the environments they provide.

file:///C|/pdfing/autoconf.html.htm (73 of 250)27. 1. 2004 18:44:41

http://www.sas.com/standards/large.file/x_open.20Mar96.html
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_AIX
If on AIX, define _ALL_SOURCE. Allows the use of some BSD functions. Should be called before any macros that run the
C compiler.

Macro: AC_GNU_SOURCE
If using the GNU C library, define _GNU_SOURCE. Allows the use of some GNU functions. Should be called before any
macros that run the C compiler.

Macro: AC_ISC_POSIX
For INTERACTIVE UNIX (ISC), add `-lcposix' to output variable LIBS if necessary for POSIX facilities. Call this after
AC_PROG_CC and before any other macros that use POSIX interfaces. INTERACTIVE UNIX is no longer sold, and Sun
says that they will drop support for it on 2006-07-23, so this macro is becoming obsolescent.

Macro: AC_MINIX
If on Minix, define _MINIX and _POSIX_SOURCE and define _POSIX_1_SOURCE to be 2. This allows the use of
POSIX facilities. Should be called before any macros that run the C compiler.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6. Writing Tests

If the existing feature tests don't do something you need, you have to write new ones. These macros are the building blocks. They
provide ways for other macros to check whether various kinds of features are available and report the results.

This chapter contains some suggestions and some of the reasons why the existing tests are written the way they are. You can also
learn a lot about how to write Autoconf tests by looking at the existing ones. If something goes wrong in one or more of the
Autoconf tests, this information can help you understand the assumptions behind them, which might help you figure out how to
best solve the problem.

These macros check the output of the compiler system of the current language (see section 6.1 Language Choice). They do not
cache the results of their tests for future use (see section 7.3 Caching Results), because they don't know enough about the
information they are checking for to generate a cache variable name. They also do not print any messages, for the same reason. The
checks for particular kinds of features call these macros and do cache their results and print messages about what they're checking
for.

When you write a feature test that could be applicable to more than one software package, the best thing to do is encapsulate it in a
new macro. See section 9. Writing Autoconf Macros, for how to do that.

6.1 Language Choice Selecting which language to use for testing

6.2 Writing Test Programs Forging source files for compilers

6.3 Running the Preprocessor Detecting preprocessor symbols

6.4 Running the Compiler Detecting language or header features

6.5 Running the Linker Detecting library features

6.6 Checking Run Time Behavior Testing for run-time features

6.7 Systemology A zoology of operating systems

6.8 Multiple Cases Tests for several possible values

file:///C|/pdfing/autoconf.html.htm (74 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC80

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.1 Language Choice

Autoconf-generated configure scripts check for the C compiler and its features by default. Packages that use other
programming languages (maybe more than one, e.g., C and C++) need to test features of the compilers for the respective languages.
The following macros determine which programming language is used in the subsequent tests in `configure.ac'.

Macro: AC_LANG (language)
Do compilation tests using the compiler, preprocessor, and file extensions for the specified language.

Supported languages are:

`C'
Do compilation tests using CC and CPP and use extension `.c' for test programs.

`C++'
Do compilation tests using CXX and CXXCPP and use extension `.C' for test programs.

`Fortran 77'
Do compilation tests using F77 and use extension `.f' for test programs.

Macro: AC_LANG_PUSH (language)
Remember the current language (as set by AC_LANG) on a stack, and then select the language. Use this macro and
AC_LANG_POP in macros that need to temporarily switch to a particular language.

Macro: AC_LANG_POP ([language])
Select the language that is saved on the top of the stack, as set by AC_LANG_PUSH, and remove it from the stack.

If given, language specifies the language we just quit. It is a good idea to specify it when it's known (which should be the
case...), since Autoconf will detect inconsistencies.

AC_LANG_PUSH(Fortran 77)
Perform some tests on Fortran 77.
...
AC_LANG_POP(Fortran 77)

Macro: AC_REQUIRE_CPP
Ensure that whichever preprocessor would currently be used for tests has been found. Calls AC_REQUIRE (see section
9.4.1 Prerequisite Macros) with an argument of either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which
language is current.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.2 Writing Test Programs

Autoconf tests follow is common scheme: feeding some program with some input, and most of the time, feeding a compiler with
some source file. This section is dedicated to these source samples.

file:///C|/pdfing/autoconf.html.htm (75 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC72
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

6.2.1 Guidelines for Test Programs General rules for writing test programs

6.2.2 Test Functions Avoiding pitfalls in test programs

6.2.3 Generating Sources Source program boilerplate

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.2.1 Guidelines for Test Programs

The most important rule to follow when writing testing samples is:

Look for realism.

This motto means that testing samples must be written with the same strictness as real programs are written. In particular, you
should avoid "shortcuts" and simplifications.

Don't just play with the preprocessor if you want to prepare a compilation. For instance, using cpp to check if a header is
functional might let your configure accept a header which will cause some compiler error. Do not hesitate checking header with
other headers included before, especially required headers.

Make sure the symbols you use are properly defined, i.e., refrain for simply declaring a function yourself instead of including the
proper header.

Test programs should not write anything to the standard output. They should return 0 if the test succeeds, nonzero otherwise, so
that success can be distinguished easily from a core dump or other failure; segmentation violations and other failures produce a
nonzero exit status. Test programs should exit, not return, from main, because on some systems (old Suns, at least) the
argument to return in main is ignored.

Test programs can use #if or #ifdef to check the values of preprocessor macros defined by tests that have already run. For
example, if you call AC_HEADER_STDC, then later on in `configure.ac' you can have a test program that includes an ANSI C
header file conditionally:

#if STDC_HEADERS
include <stdlib.h>
#endif

If a test program needs to use or create a data file, give it a name that starts with `conftest', such as `conftest.data'. The
configure script cleans up by running `rm -rf conftest*' after running test programs and if the script is interrupted.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.2.2 Test Functions

Function declarations in test programs should have a prototype conditionalized for C++. In practice, though, test programs rarely
need functions that take arguments.

file:///C|/pdfing/autoconf.html.htm (76 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC72
file:///C|/pdfing/autoconf.html#SEC73
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC73
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC72
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

#ifdef __cplusplus
foo (int i)
#else
foo (i) int i;
#endif

Functions that test programs declare should also be conditionalized for C++, which requires `extern "C"' prototypes. Make sure
to not include any header files containing clashing prototypes.

#ifdef __cplusplus
extern "C" void *malloc (size_t);
#else
void *malloc ();
#endif

If a test program calls a function with invalid parameters (just to see whether it exists), organize the program to ensure that it never
invokes that function. You can do this by calling it in another function that is never invoked. You can't do it by putting it after a call
to exit, because GCC version 2 knows that exit never returns and optimizes out any code that follows it in the same block.

If you include any header files, be sure to call the functions relevant to them with the correct number of arguments, even if they are
just 0, to avoid compilation errors due to prototypes. GCC version 2 has internal prototypes for several functions that it
automatically inlines; for example, memcpy. To avoid errors when checking for them, either pass them the correct number of
arguments or redeclare them with a different return type (such as char).

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.2.3 Generating Sources

Autoconf provides a set of macros that can be used to generate test source files. They are written to be language generic, i.e., they
actually depend on the current language (see section 6.1 Language Choice) to "format" the output properly.

Macro: AC_LANG_CONFTEST (source)
Save the source text in the current test source file: `conftest.extension' where the extension depends on the current
language.

Note that the source is evaluated exactly once, like regular Autoconf macro arguments, and therefore (i) you may pass a
macro invocation, (ii) if not, be sure to double quote if needed.

Macro: AC_LANG_SOURCE (source)
Expands into the source, with proper definition of the current location (e.g., `#line 1234 "configure"' in C), and
definition of all the AC_DEFINE performed so far.

For instance executing (observe the double quotation!):

file:///C|/pdfing/autoconf.html.htm (77 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC73
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC71
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC70

Autoconf:

AC_INIT(Autoconf Documentation, 2.57, bug-autoconf@gnu.org)
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"])
AC_LANG_CONFTEST(
 [AC_LANG_SOURCE([[const char hw[] = "Hello, World\n";]])])
gcc -E -dD conftest.c -o -

results in:

1 "conftest.c"
1169 "configure"

1 "confdefs.h" 1

#define PACKAGE_NAME "Autoconf Documentation"
#define PACKAGE_TARNAME "autoconf-documentation"
#define PACKAGE_VERSION "2.57"
#define PACKAGE_STRING "Autoconf Documentation 2.57"
#define PACKAGE_BUGREPORT "bug-autoconf@gnu.org"
#define HELLO_WORLD "Hello, World\n"
1170 "configure" 2

const char hw[] = "Hello, World\n";

Macro: AC_LANG_PROGRAM (prologue, body)
Expands into a source file which consists of the prologue, and then body as body of the main function (e.g., main in C).
Since it uses AC_LANG_SOURCE, the feature of the latter are available.

For instance:

AC_INIT(Autoconf Documentation, 2.57, bug-autoconf@gnu.org)
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"])
AC_LANG_CONFTEST(
[AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],
 [[fputs (hw, stdout);]])])
gcc -E -dD conftest.c -o -

results in:

file:///C|/pdfing/autoconf.html.htm (78 of 250)27. 1. 2004 18:44:41

Autoconf:

1 "conftest.c"
1169 "configure"

1 "confdefs.h" 1

#define PACKAGE_NAME "Autoconf Documentation"
#define PACKAGE_TARNAME "autoconf-documentation"
#define PACKAGE_VERSION "2.57"
#define PACKAGE_STRING "Autoconf Documentation 2.57"
#define PACKAGE_BUGREPORT "bug-autoconf@gnu.org"
#define HELLO_WORLD "Hello, World\n"
1170 "configure" 2

const char hw[] = "Hello, World\n";
int
main ()
{
fputs (hw, stdout);
 ;
 return 0;
}

Macro: AC_LANG_CALL (prologue, function)
Expands into a source file which consists of the prologue, and then a call to the function as body of the main function (e.g.,
main in C). Since it uses AC_LANG_PROGRAMS, the feature of the latter are available.

This function will probably be replaced in the feature by a version which would enable specifying the arguments. The use of
this macro is not encouraged, as it violates strongly the typing system.

Macro: AC_LANG_FUNC_LINK_TRY (function)
Expands into a source file which consists of a pseudo use of the function as body of the main function (e.g., main in C): a
simple (function pointer) assignment. Since it uses AC_LANG_PROGRAMS, the feature of the latter are available.

As AC_LANG_CALL, this macro is documented only for completeness. It is considered to be severely broken, and in the
future will be removed in favor of actual function calls (with properly typed arguments).

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.3 Running the Preprocessor

Sometimes one might need to run the preprocessor on some source file. Usually it is a bad idea, as you typically need to compile
your project, not merely run the preprocessor on it; therefore you certainly want to run the compiler, not the preprocessor. Resist to
the temptation of following the easiest path.

Nevertheless, if you need to run the preprocessor, then use AC_PREPROC_IFELSE.

Macro: AC_PREPROC_IFELSE (input, [action-if-true], [action-if-false])
Run the preprocessor of the current language (see section 6.1 Language Choice) on the input, run the shell commands
action-if-true on success, action-if-false otherwise. The input can be made by AC_LANG_PROGRAM and friends.

file:///C|/pdfing/autoconf.html.htm (79 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC70

Autoconf:

This macro uses CPPFLAGS, but not CFLAGS, because `-g', `-O', etc. are not valid options to many C preprocessors.

It is customary to report unexpected failures with AC_MSG_FAILURE.

For instance:

AC_INIT(Autoconf Documentation, 2.57, bug-autoconf@gnu.org)
AC_DEFINE([HELLO_WORLD], ["Hello, World\n"])
AC_PREPROC_IFELSE(
 [AC_LANG_PROGRAM([[const char hw[] = "Hello, World\n";]],
 [[fputs (hw, stdout);]])],
 [AC_MSG_RESULT([OK])],
 [AC_MSG_FAILURE([unexpected preprocessor failure])])

results in:

checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ANSI C... none needed
checking how to run the C preprocessor... gcc -E
OK

The macro AC_TRY_CPP (see section 15.4 Obsolete Macros) used to play the role of AC_PREPROC_IFELSE, but double quotes
its argument, making it impossible to use it to ellaborate sources. You are encouraged to get rid of your old use of the macro
AC_TRY_CPP in favor of AC_PREPROC_IFELSE, but, in the first place, are you sure you need to run the preprocessor and not
the compiler?

Macro: AC_EGREP_HEADER (pattern, header-file, action-if-found, [action-if-not-found])
If the output of running the preprocessor on the system header file header-file matches the extended regular expression
pattern, execute shell commands action-if-found, otherwise execute action-if-not-found.

Macro: AC_EGREP_CPP (pattern, program, [action-if-found], [action-if-not-found])
program is the text of a C or C++ program, on which shell variable, back quote, and backslash substitutions are performed.
If the output of running the preprocessor on program matches the extended regular expression pattern, execute shell
commands action-if-found, otherwise execute action-if-not-found.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.4 Running the Compiler

To check for a syntax feature of the (C, C++, or Fortran 77) compiler, such as whether it recognizes a certain keyword, or simply to

file:///C|/pdfing/autoconf.html.htm (80 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

try some library feature, use AC_COMPILE_IFELSE to try to compile a small program that uses that feature.

Macro: AC_COMPILE_IFELSE (input, [action-if-found], [action-if-not-found])
Run the compiler of the current language (see section 6.1 Language Choice) on the input, run the shell commands action-if-
true on success, action-if-false otherwise. The input can be made by AC_LANG_PROGRAM and friends.

This macro uses CFLAGS or CXXFLAGS if either C or C++ is the currently selected language, as well as CPPFLAGS, when
compiling. If Fortran 77 is the currently selected language then FFLAGS will be used when compiling.

It is customary to report unexpected failures with AC_MSG_FAILURE. This macro does not try to link; use
AC_LINK_IFELSE if you need to do that (see section 6.5 Running the Linker).

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.5 Running the Linker

To check for a library, a function, or a global variable, Autoconf configure scripts try to compile and link a small program that
uses it. This is unlike Metaconfig, which by default uses nm or ar on the C library to try to figure out which functions are
available. Trying to link with the function is usually a more reliable approach because it avoids dealing with the variations in the
options and output formats of nm and ar and in the location of the standard libraries. It also allows configuring for cross-
compilation or checking a function's run-time behavior if needed. On the other hand, it can be slower than scanning the libraries
once, but accuracy is more important than speed.

AC_LINK_IFELSE is used to compile test programs to test for functions and global variables. It is also used by AC_CHECK_LIB
to check for libraries (see section 5.4 Library Files), by adding the library being checked for to LIBS temporarily and trying to link
a small program.

Macro: AC_LINK_IFELSE (input, [action-if-found], [action-if-not-found])
Run the compiler and the linker of the current language (see section 6.1 Language Choice) on the input, run the shell
commands action-if-true on success, action-if-false otherwise. The input can be made by AC_LANG_PROGRAM and friends.

This macro uses CFLAGS or CXXFLAGS if either C or C++ is the currently selected language, as well as CPPFLAGS, when
compiling. If Fortran 77 is the currently selected language then FFLAGS will be used when compiling.

It is customary to report unexpected failures with AC_MSG_FAILURE. This macro does not try to execute the program; use
AC_RUN_IFELSE if you need to do that (see section 6.6 Checking Run Time Behavior).

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.6 Checking Run Time Behavior

Sometimes you need to find out how a system performs at run time, such as whether a given function has a certain capability or
bug. If you can, make such checks when your program runs instead of when it is configured. You can check for things like the
machine's endianness when your program initializes itself.

If you really need to test for a run-time behavior while configuring, you can write a test program to determine the result, and
compile and run it using AC_RUN_IFELSE. Avoid running test programs if possible, because this prevents people from
configuring your package for cross-compiling.

file:///C|/pdfing/autoconf.html.htm (81 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_RUN_IFELSE (input, [action-if-found], [action-if-not-found], [action-if-cross-compiling])
If program compiles and links successfully and returns an exit status of 0 when executed, run shell commands action-if-
true. Otherwise, run shell commands action-if-false.

The input can be made by AC_LANG_PROGRAM and friends. This macro uses CFLAGS or CXXFLAGS, CPPFLAGS,
LDFLAGS, and LIBS

If the compiler being used does not produce executables that run on the system where configure is being run, then the
test program is not run. If the optional shell commands action-if-cross-compiling are given, they are run instead. Otherwise,
configure prints an error message and exits.

In the action-if-false section, the exit status of the program is available in the shell variable `$?', but be very careful to limit
yourself to positive values smaller than 127; bigger values should be saved into a file by the program. Note also that you
have simply no guarantee that this exit status is issued by the program, or by the failure of its compilation. In other words,
use this feature if sadist only, it was reestablished because the Autoconf maintainers grew tired of receiving "bug reports".

It is customary to report unexpected failures with AC_MSG_FAILURE.

Try to provide a pessimistic default value to use when cross-compiling makes run-time tests impossible. You do this by passing the
optional last argument to AC_RUN_IFELSE. autoconf prints a warning message when creating configure each time it
encounters a call to AC_RUN_IFELSE with no action-if-cross-compiling argument given. You may ignore the warning, though
users will not be able to configure your package for cross-compiling. A few of the macros distributed with Autoconf produce this
warning message.

To configure for cross-compiling you can also choose a value for those parameters based on the canonical system name (see
section 11. Manual Configuration). Alternatively, set up a test results cache file with the correct values for the host system (see
section 7.3 Caching Results).

To provide a default for calls of AC_RUN_IFELSE that are embedded in other macros, including a few of the ones that come with
Autoconf, you can test whether the shell variable cross_compiling is set to `yes', and then use an alternate method to get the
results instead of calling the macros.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.7 Systemology

This section aims at presenting some systems and pointers to documentation. It may help you addressing particular problems
reported by users.

The Rosetta Stone for Unix contains a lot of interesting crossed information on various Unices.

Darwin
Darwin is also known as Mac OS X. Beware that the file system can be case-preserving, but case insensitive. This can cause
nasty problems, since for instance the installation attempt for a package having an `INSTALL' file can result in `make
install' report that nothing was to be done!

That's all dependent on whether the file system is a UFS (case sensitive) or HFS+ (case preserving). By default Apple wants
you to install the OS on HFS+. Unfortunately, there are some pieces of software which really need to be built on UFS. We
may want to rebuild Darwin to have both UFS and HFS+ available (and put the /local/build tree on the UFS).

file:///C|/pdfing/autoconf.html.htm (82 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC80
file:///C|/pdfing/autoconf.html#SEC80
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
http://bhami.com/rosetta.html

Autoconf:

QNX 4.25
QNX is a realtime operating system running on Intel architecture meant to be scalable from the small embedded systems to
the hundred processor super-computer. It claims to be POSIX certified. More information is available on the QNX home
page, including the QNX man pages.

Tru64
The documentation of several versions of Tru64 is available in different formats.

Unix version 7
Documentation is available in the V7 Manual.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

6.8 Multiple Cases

Some operations are accomplished in several possible ways, depending on the UNIX variant. Checking for them essentially
requires a "case statement". Autoconf does not directly provide one; however, it is easy to simulate by using a shell variable to keep
track of whether a way to perform the operation has been found yet.

Here is an example that uses the shell variable fstype to keep track of whether the remaining cases need to be checked.

AC_MSG_CHECKING([how to get file system type])
fstype=no
The order of these tests is important.
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statvfs.h>
#include <sys/fstyp.h>]])],
 [AC_DEFINE(FSTYPE_STATVFS) fstype=SVR4])
if test $fstype = no; then
 AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>
#include <sys/fstyp.h>]])],
 [AC_DEFINE(FSTYPE_USG_STATFS) fstype=SVR3])
fi
if test $fstype = no; then
 AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include <sys/statfs.h>
#include <sys/vmount.h>]])]),
 [AC_DEFINE(FSTYPE_AIX_STATFS) fstype=AIX])
fi
(more cases omitted here)
AC_MSG_RESULT([$fstype])

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7. Results of Tests

Once configure has determined whether a feature exists, what can it do to record that information? There are four sorts of
things it can do: define a C preprocessor symbol, set a variable in the output files, save the result in a cache file for future

file:///C|/pdfing/autoconf.html.htm (83 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/www.qnx.com
file:///C|/pdfing/www.qnx.com
http://support.qnx.com/support/docs/qnx4/
http://www.tru64unix.compaq.com/docs/base_doc/DOCUMENTATION/
http://plan9.bell-labs.com/7thEdMan/index.html
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC80
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

configure runs, and print a message letting the user know the result of the test.

7.1 Defining C Preprocessor Symbols Defining C preprocessor symbols

7.2 Setting Output Variables Replacing variables in output files

7.3 Caching Results Speeding up subsequent configure runs

7.4 Printing Messages Notifying configure users

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.1 Defining C Preprocessor Symbols

A common action to take in response to a feature test is to define a C preprocessor symbol indicating the results of the test. That is
done by calling AC_DEFINE or AC_DEFINE_UNQUOTED.

By default, AC_OUTPUT places the symbols defined by these macros into the output variable DEFS, which contains an option `-
Dsymbol=value' for each symbol defined. Unlike in Autoconf version 1, there is no variable DEFS defined while configure
is running. To check whether Autoconf macros have already defined a certain C preprocessor symbol, test the value of the
appropriate cache variable, as in this example:

AC_CHECK_FUNC(vprintf, [AC_DEFINE(HAVE_VPRINTF)])
if test "$ac_cv_func_vprintf" != yes; then
 AC_CHECK_FUNC(_doprnt, [AC_DEFINE(HAVE_DOPRNT)])
fi

If AC_CONFIG_HEADERS has been called, then instead of creating DEFS, AC_OUTPUT creates a header file by substituting the
correct values into #define statements in a template file. See section 4.8 Configuration Header Files, for more information about
this kind of output.

Macro: AC_DEFINE (variable, value, [description])
Macro: AC_DEFINE (variable)

Define the C preprocessor variable variable to value (verbatim). value should not contain literal newlines, and if you are not
using AC_CONFIG_HEADERS it should not contain any `#' characters, as make tends to eat them. To use a shell variable
(which you need to do in order to define a value containing the M4 quote characters `[' or `]'), use
AC_DEFINE_UNQUOTED instead. description is only useful if you are using AC_CONFIG_HEADERS. In this case,
description is put into the generated `config.h.in' as the comment before the macro define. The following example
defines the C preprocessor variable EQUATION to be the string constant `"$a > $b"':

AC_DEFINE(EQUATION, "$a > $b")

If neither value nor description are given, then value defaults to 1 instead of to the empty string. This is for backwards
compatibility with older versions of Autoconf, but this usage is obsolescent and may be withdrawn in future versions of
Autoconf.

Macro: AC_DEFINE_UNQUOTED (variable, value, [description])
Macro: AC_DEFINE_UNQUOTED (variable)

Like AC_DEFINE, but three shell expansions are performed--once--on variable and value: variable expansion (`$'),
command substitution (``'), and backslash escaping (`\'). Single and double quote characters in the value have no special

file:///C|/pdfing/autoconf.html.htm (84 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC27

Autoconf:

meaning. Use this macro instead of AC_DEFINE when variable or value is a shell variable. Examples:

AC_DEFINE_UNQUOTED(config_machfile, "$machfile")
AC_DEFINE_UNQUOTED(GETGROUPS_T, $ac_cv_type_getgroups)
AC_DEFINE_UNQUOTED($ac_tr_hdr)

Due to a syntactical bizarreness of the Bourne shell, do not use semicolons to separate AC_DEFINE or AC_DEFINE_UNQUOTED
calls from other macro calls or shell code; that can cause syntax errors in the resulting configure script. Use either spaces or
newlines. That is, do this:

AC_CHECK_HEADER(elf.h, [AC_DEFINE(SVR4) LIBS="$LIBS -lelf"])

or this:

AC_CHECK_HEADER(elf.h,
 [AC_DEFINE(SVR4)
 LIBS="$LIBS -lelf"])

instead of this:

AC_CHECK_HEADER(elf.h, [AC_DEFINE(SVR4); LIBS="$LIBS -lelf"])

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.2 Setting Output Variables

Another way to record the results of tests is to set output variables, which are shell variables whose values are substituted into files
that configure outputs. The two macros below create new output variables. See section 4.7.1 Preset Output Variables, for a list
of output variables that are always available.

Macro: AC_SUBST (variable, [value])
Create an output variable from a shell variable. Make AC_OUTPUT substitute the variable variable into output files
(typically one or more `Makefile's). This means that AC_OUTPUT will replace instances of `@variable@' in input files
with the value that the shell variable variable has when AC_OUTPUT is called. This value of variable should not contain
literal newlines.

If value is given, in addition assign it to variable.

Macro: AC_SUBST_FILE (variable)
Another way to create an output variable from a shell variable. Make AC_OUTPUT insert (without substitutions) the
contents of the file named by shell variable variable into output files. This means that AC_OUTPUT will replace instances of
`@variable@' in output files (such as `Makefile.in') with the contents of the file that the shell variable variable
names when AC_OUTPUT is called. Set the variable to `/dev/null' for cases that do not have a file to insert.

file:///C|/pdfing/autoconf.html.htm (85 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC23

Autoconf:

This macro is useful for inserting `Makefile' fragments containing special dependencies or other make directives for
particular host or target types into `Makefile's. For example, `configure.ac' could contain:

AC_SUBST_FILE(host_frag)
host_frag=$srcdir/conf/sun4.mh

and then a `Makefile.in' could contain:

@host_frag@

Running configure in varying environments can be extremely dangerous. If for instance the user runs `CC=bizarre-cc ./
configure', then the cache, `config.h', and many other output files will depend upon bizarre-cc being the C compiler. If
for some reason the user runs ./configure again, or if it is run via `./config.status --recheck', (See section 4.7.4
Automatic Remaking, and see section 14. Recreating a Configuration), then the configuration can be inconsistent, composed of
results depending upon two different compilers.

Environment variables that affect this situation, such as `CC' above, are called precious variables, and can be declared as such by
AC_ARG_VAR.

Macro: AC_ARG_VAR (variable, description)
Declare variable is a precious variable, and include its description in the variable section of `./configure --help'.

Being precious means that

❍ variable is AC_SUBST'd.

❍ The value of variable when configure was launched is saved in the cache, including if it was not specified on the
command line but via the environment. Indeed, while configure can notice the definition of CC in `./
configure CC=bizarre-cc', it is impossible to notice it in `CC=bizarre-cc ./configure', which,
unfortunately, is what most users do.

We emphasize that it is the initial value of variable which is saved, not that found during the execution of
configure. Indeed, specifying `./configure FOO=foo' and letting `./configure' guess that FOO is foo
can be two very different runs.

❍ variable is checked for consistency between two configure runs. For instance:

$./configure --silent --config-cache
$ CC=cc ./configure --silent --config-cache
configure: error: `CC' was not set in the previous run
configure: error: changes in the environment can compromise \
the build
configure: error: run `make distclean' and/or \
`rm config.cache' and start over

and similarly if the variable is unset, or if its content is changed.

file:///C|/pdfing/autoconf.html.htm (86 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC149

Autoconf:

❍ variable is kept during automatic reconfiguration (see section 14. Recreating a Configuration) as if it had been
passed as a command line argument, including when no cache is used:

$ CC=/usr/bin/cc ./configure undeclared_var=raboof --silent
$./config.status --recheck
running /bin/sh ./configure undeclared_var=raboof --silent \
 CC=/usr/bin/cc --no-create --no-recursion

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.3 Caching Results

To avoid checking for the same features repeatedly in various configure scripts (or in repeated runs of one script), configure
can optionally save the results of many checks in a cache file (see section 7.3.2 Cache Files). If a configure script runs with
caching enabled and finds a cache file, it reads the results of previous runs from the cache and avoids rerunning those checks. As a
result, configure can then run much faster than if it had to perform all of the checks every time.

Macro: AC_CACHE_VAL (cache-id, commands-to-set-it)
Ensure that the results of the check identified by cache-id are available. If the results of the check were in the cache file that
was read, and configure was not given the `--quiet' or `--silent' option, print a message saying that the result was
cached; otherwise, run the shell commands commands-to-set-it. If the shell commands are run to determine the value, the
value will be saved in the cache file just before configure creates its output files. See section 7.3.1 Cache Variable
Names, for how to choose the name of the cache-id variable.

The commands-to-set-it must have no side effects except for setting the variable cache-id, see below.

Macro: AC_CACHE_CHECK (message, cache-id, commands-to-set-it)
A wrapper for AC_CACHE_VAL that takes care of printing the messages. This macro provides a convenient shorthand for
the most common way to use these macros. It calls AC_MSG_CHECKING for message, then AC_CACHE_VAL with the
cache-id and commands arguments, and AC_MSG_RESULT with cache-id.

The commands-to-set-it must have no side effects except for setting the variable cache-id, see below.

It is very common to find buggy macros using AC_CACHE_VAL or AC_CACHE_CHECK, because people are tempted to call
AC_DEFINE in the commands-to-set-it. Instead, the code that follows the call to AC_CACHE_VAL should call AC_DEFINE, by
examining the value of the cache variable. For instance, the following macro is broken:

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [ac_cv_shell_true_works],
 [ac_cv_shell_true_works=no
 true && ac_cv_shell_true_works=yes
 if test $ac_cv_shell_true_works = yes; then
 AC_DEFINE([TRUE_WORKS], 1
 [Define if `true(1)' works properly.])
 fi])
])

file:///C|/pdfing/autoconf.html.htm (87 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC85

Autoconf:

This fails if the cache is enabled: the second time this macro is run, TRUE_WORKS will not be defined. The proper implementation
is:

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [ac_cv_shell_true_works],
 [ac_cv_shell_true_works=no
 true && ac_cv_shell_true_works=yes])
 if test $ac_cv_shell_true_works = yes; then
 AC_DEFINE([TRUE_WORKS], 1
 [Define if `true(1)' works properly.])
 fi
])

Also, commands-to-set-it should not print any messages, for example with AC_MSG_CHECKING; do that before calling
AC_CACHE_VAL, so the messages are printed regardless of whether the results of the check are retrieved from the cache or
determined by running the shell commands.

7.3.1 Cache Variable Names Shell variables used in caches

7.3.2 Cache Files Files configure uses for caching

7.3.3 Cache Checkpointing Loading and saving the cache file

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.3.1 Cache Variable Names

The names of cache variables should have the following format:

package-prefix_cv_value-type_specific-value_[additional-options]

for example, `ac_cv_header_stat_broken' or `ac_cv_prog_gcc_traditional'. The parts of the variable name are:

package-prefix
An abbreviation for your package or organization; the same prefix you begin local Autoconf macros with, except lowercase
by convention. For cache values used by the distributed Autoconf macros, this value is `ac'.

cv
Indicates that this shell variable is a cache value. This string must be present in the variable name, including the leading
underscore.

value-type
A convention for classifying cache values, to produce a rational naming system. The values used in Autoconf are listed in
9.2 Macro Names.

specific-value
Which member of the class of cache values this test applies to. For example, which function (`alloca'), program (`gcc'),
or output variable (`INSTALL').

file:///C|/pdfing/autoconf.html.htm (88 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC107

Autoconf:

additional-options
Any particular behavior of the specific member that this test applies to. For example, `broken' or `set'. This part of the
name may be omitted if it does not apply.

The values assigned to cache variables may not contain newlines. Usually, their values will be Boolean (`yes' or `no') or the
names of files or functions; so this is not an important restriction.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.3.2 Cache Files

A cache file is a shell script that caches the results of configure tests run on one system so they can be shared between configure
scripts and configure runs. It is not useful on other systems. If its contents are invalid for some reason, the user may delete or edit
it.

By default, configure uses no cache file (technically, it uses `--cache-file=/dev/null'), to avoid problems caused by
accidental use of stale cache files.

To enable caching, configure accepts `--config-cache' (or `-C') to cache results in the file `config.cache'.
Alternatively, `--cache-file=file' specifies that file be the cache file. The cache file is created if it does not exist already.
When configure calls configure scripts in subdirectories, it uses the `--cache-file' argument so that they share the
same cache. See section 4.11 Configuring Other Packages in Subdirectories, for information on configuring subdirectories with the
AC_CONFIG_SUBDIRS macro.

`config.status' only pays attention to the cache file if it is given the `--recheck' option, which makes it rerun
configure.

It is wrong to try to distribute cache files for particular system types. There is too much room for error in doing that, and too much
administrative overhead in maintaining them. For any features that can't be guessed automatically, use the standard method of the
canonical system type and linking files (see section 11. Manual Configuration).

The site initialization script can specify a site-wide cache file to use, instead of the usual per-program cache. In this case, the cache
file will gradually accumulate information whenever someone runs a new configure script. (Running configure merges the
new cache results with the existing cache file.) This may cause problems, however, if the system configuration (e.g., the installed
libraries or compilers) changes and the stale cache file is not deleted.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.3.3 Cache Checkpointing

If your configure script, or a macro called from `configure.ac', happens to abort the configure process, it may be useful to
checkpoint the cache a few times at key points using AC_CACHE_SAVE. Doing so will reduce the amount of time it takes to re-run
the configure script with (hopefully) the error that caused the previous abort corrected.

Macro: AC_CACHE_LOAD
Loads values from existing cache file, or creates a new cache file if a cache file is not found. Called automatically from
AC_INIT.

Macro: AC_CACHE_SAVE

file:///C|/pdfing/autoconf.html.htm (89 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Flushes all cached values to the cache file. Called automatically from AC_OUTPUT, but it can be quite useful to call
AC_CACHE_SAVE at key points in `configure.ac'.

For instance:

 ... AC_INIT, etc. ...
Checks for programs.
AC_PROG_CC
AC_PROG_GCC_TRADITIONAL
 ... more program checks ...
AC_CACHE_SAVE

Checks for libraries.
AC_CHECK_LIB(nsl, gethostbyname)
AC_CHECK_LIB(socket, connect)
 ... more lib checks ...
AC_CACHE_SAVE

Might abort...
AM_PATH_GTK(1.0.2,, [AC_MSG_ERROR([GTK not in path])])
AM_PATH_GTKMM(0.9.5,, [AC_MSG_ERROR([GTK not in path])])
 ... AC_OUTPUT, etc. ...

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

7.4 Printing Messages

configure scripts need to give users running them several kinds of information. The following macros print messages in ways
appropriate for each kind. The arguments to all of them get enclosed in shell double quotes, so the shell performs variable and back-
quote substitution on them.

These macros are all wrappers around the echo shell command. configure scripts should rarely need to run echo directly to
print messages for the user. Using these macros makes it easy to change how and when each kind of message is printed; such
changes need only be made to the macro definitions and all of the callers will change automatically.

To diagnose static issues, i.e., when autoconf is run, see 9.3 Reporting Messages.

Macro: AC_MSG_CHECKING (feature-description)
Notify the user that configure is checking for a particular feature. This macro prints a message that starts with
`checking ' and ends with `...' and no newline. It must be followed by a call to AC_MSG_RESULT to print the result of
the check and the newline. The feature-description should be something like `whether the Fortran compiler
accepts C++ comments' or `for c89'.

This macro prints nothing if configure is run with the `--quiet' or `--silent' option.

Macro: AC_MSG_RESULT (result-description)
Notify the user of the results of a check. result-description is almost always the value of the cache variable for the check,
typically `yes', `no', or a file name. This macro should follow a call to AC_MSG_CHECKING, and the result-description
should be the completion of the message printed by the call to AC_MSG_CHECKING.

file:///C|/pdfing/autoconf.html.htm (90 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC108

Autoconf:

This macro prints nothing if configure is run with the `--quiet' or `--silent' option.

Macro: AC_MSG_NOTICE (message)
Deliver the message to the user. It is useful mainly to print a general description of the overall purpose of a group of feature
checks, e.g.,

AC_MSG_NOTICE([checking if stack overflow is detectable])

This macro prints nothing if configure is run with the `--quiet' or `--silent' option.

Macro: AC_MSG_ERROR (error-description, [exit-status])
Notify the user of an error that prevents configure from completing. This macro prints an error message to the standard
error output and exits configure with exit-status (1 by default). error-description should be something like `invalid
value $HOME for \$HOME'.

The error-description should start with a lower-case letter, and "cannot" is preferred to "can't".

Macro: AC_MSG_FAILURE (error-description, [exit-status])
This AC_MSG_ERROR wrapper notifies the user of an error that prevents configure from completing and that additional
details are provided in `config.log'. This is typically used when abnormal results are found during a compilation.

Macro: AC_MSG_WARN (problem-description)
Notify the configure user of a possible problem. This macro prints the message to the standard error output;
configure continues running afterward, so macros that call AC_MSG_WARN should provide a default (back-up) behavior
for the situations they warn about. problem-description should be something like `ln -s seems to make hard
links'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8. Programming in M4

Autoconf is written on top of two layers: M4sugar, which provides convenient macros for pure M4 programming, and M4sh, which
provides macros dedicated to shell script generation.

As of this version of Autoconf, these two layers are still experimental, and their interface might change in the future. As a matter of
fact, anything that is not documented must not be used.

8.1 M4 Quotation Protecting macros from unwanted expansion

8.2 Using autom4te The Autoconf executables backbone

8.3 Programming in M4sugar Convenient pure M4 macros

8.4 Programming in M4sh Common shell Constructs

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1 M4 Quotation

file:///C|/pdfing/autoconf.html.htm (91 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC91
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

The most common problem with existing macros is an improper quotation. This section, which users of Autoconf can skip, but
which macro writers must read, first justifies the quotation scheme that was chosen for Autoconf and then ends with a rule of
thumb. Understanding the former helps one to follow the latter.

8.1.1 Active Characters Characters that change the behavior of M4

8.1.2 One Macro Call Quotation and one macro call

8.1.3 Quotation and Nested Macros Macros calling macros

8.1.4 changequote is Evil Worse than INTERCAL: M4 + changequote

8.1.5 Quadrigraphs Another way to escape special characters

8.1.6 Quotation Rule Of Thumb One parenthesis, one quote

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1.1 Active Characters

To fully understand where proper quotation is important, you first need to know what the special characters are in Autoconf: `#'
introduces a comment inside which no macro expansion is performed, `,' separates arguments, `[' and `]' are the quotes
themselves, and finally `(' and `)' (which M4 tries to match by pairs).

In order to understand the delicate case of macro calls, we first have to present some obvious failures. Below they are "obvious-
ified", but when you find them in real life, they are usually in disguise.

Comments, introduced by a hash and running up to the newline, are opaque tokens to the top level: active characters are turned off,
and there is no macro expansion:

define([def], ine)
=># define([def], ine)

Each time there can be a macro expansion, there is a quotation expansion, i.e., one level of quotes is stripped:

int tab[10];
=>int tab10;
[int tab[10];]
=>int tab[10];

Without this in mind, the reader will try hopelessly to use her macro array:

define([array], [int tab[10];])
array
=>int tab10;
[array]
=>array

How can you correctly output the intended results(2)?

file:///C|/pdfing/autoconf.html.htm (92 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC91
file:///C|/pdfing/autoconf.html#SEC92
file:///C|/pdfing/autoconf.html#SEC93
file:///C|/pdfing/autoconf.html#SEC94
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC96
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC92
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#FOOT2

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1.2 One Macro Call

Let's proceed on the interaction between active characters and macros with this small macro, which just returns its first argument:

define([car], [$1])

The two pairs of quotes above are not part of the arguments of define; rather, they are understood by the top level when it tries to
find the arguments of define. Therefore, it is equivalent to write:

define(car, $1)

But, while it is acceptable for a `configure.ac' to avoid unnecessary quotes, it is bad practice for Autoconf macros which must
both be more robust and also advocate perfect style.

At the top level, there are only two possibilities: either you quote or you don't:

car(foo, bar, baz)
=>foo
[car(foo, bar, baz)]
=>car(foo, bar, baz)

Let's pay attention to the special characters:

car(#)
error-->EOF in argument list

The closing parenthesis is hidden in the comment; with a hypothetical quoting, the top level understood it this way:

car([#)]

Proper quotation, of course, fixes the problem:

car([#])
=>#

The reader will easily understand the following examples:

file:///C|/pdfing/autoconf.html.htm (93 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC91
file:///C|/pdfing/autoconf.html#SEC93
file:///C|/pdfing/autoconf.html#SEC93
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

car(foo, bar)
=>foo
car([foo, bar])
=>foo, bar
car((foo, bar))
=>(foo, bar)
car([(foo], [bar)])
=>(foo
car([], [])
=>
car([[]], [[]])
=>[]

With this in mind, we can explore the cases where macros invoke macros....

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1.3 Quotation and Nested Macros

The examples below use the following macros:

define([car], [$1])
define([active], [ACT, IVE])
define([array], [int tab[10]])

Each additional embedded macro call introduces other possible interesting quotations:

car(active)
=>ACT
car([active])
=>ACT, IVE
car([[active]])
=>active

In the first case, the top level looks for the arguments of car, and finds `active'. Because M4 evaluates its arguments before
applying the macro, `active' is expanded, which results in:

car(ACT, IVE)
=>ACT

In the second case, the top level gives `active' as first and only argument of car, which results in:

active
=>ACT, IVE

file:///C|/pdfing/autoconf.html.htm (94 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC92
file:///C|/pdfing/autoconf.html#SEC94
file:///C|/pdfing/autoconf.html#SEC94
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

i.e., the argument is evaluated after the macro that invokes it. In the third case, car receives `[active]', which results in:

[active]
=>active

exactly as we already saw above.

The example above, applied to a more realistic example, gives:

car(int tab[10];)
=>int tab10;
car([int tab[10];])
=>int tab10;
car([[int tab[10];]])
=>int tab[10];

Huh? The first case is easily understood, but why is the second wrong, and the third right? To understand that, you must know that
after M4 expands a macro, the resulting text is immediately subjected to macro expansion and quote removal. This means that the
quote removal occurs twice--first before the argument is passed to the car macro, and second after the car macro expands to the
first argument.

As the author of the Autoconf macro car, you then consider it to be incorrect that your users have to double-quote the arguments
of car, so you "fix" your macro. Let's call it qar for quoted car:

define([qar], [[$1]])

and check that qar is properly fixed:

qar([int tab[10];])
=>int tab[10];

Ahhh! That's much better.

But note what you've done: now that the arguments are literal strings, if the user wants to use the results of expansions as
arguments, she has to use an unquoted macro call:

qar(active)
=>ACT

where she wanted to reproduce what she used to do with car:

file:///C|/pdfing/autoconf.html.htm (95 of 250)27. 1. 2004 18:44:41

Autoconf:

car([active])
=>ACT, IVE

Worse yet: she wants to use a macro that produces a set of cpp macros:

define([my_includes], [#include <stdio.h>])
car([my_includes])
=>#include <stdio.h>
qar(my_includes)
error-->EOF in argument list

This macro, qar, because it double quotes its arguments, forces its users to leave their macro calls unquoted, which is dangerous.
Commas and other active symbols are interpreted by M4 before they are given to the macro, often not in the way the users expect.
Also, because qar behaves differently from the other macros, it's an exception that should be avoided in Autoconf.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1.4 changequote is Evil

The temptation is often high to bypass proper quotation, in particular when it's late at night. Then, many experienced Autoconf
hackers finally surrender to the dark side of the force and use the ultimate weapon: changequote.

The M4 builtin changequote belongs to a set of primitives that allow one to adjust the syntax of the language to adjust it to
one's needs. For instance, by default M4 uses ``' and `'' as quotes, but in the context of shell programming (and actually of most
programming languages), that's about the worst choice one can make: because of strings and back-quoted expressions in shell code
(such as `'this'' and ``that`'), because of literal characters in usual programming languages (as in `'0''), there are many
unbalanced ``' and `''. Proper M4 quotation then becomes a nightmare, if not impossible. In order to make M4 useful in such a
context, its designers have equipped it with changequote, which makes it possible to choose another pair of quotes. M4sugar,
M4sh, Autoconf, and Autotest all have chosen to use `[' and `]'. Not especially because they are unlikely characters, but because
they are characters unlikely to be unbalanced.

There are other magic primitives, such as changecom to specify what syntactic forms are comments (it is common to see
`changecom(<!--, -->)' when M4 is used to produce HTML pages), changeword and changesyntax to change other
syntactic details (such as the character to denote the n-th argument, `$' by default, the parenthesis around arguments etc.).

These primitives are really meant to make M4 more useful for specific domains: they should be considered like command line
options: `--quotes', `--comments', `--words', and --syntax. Nevertheless, they are implemented as M4 builtins, as it
makes M4 libraries self contained (no need for additional options).

There lies the problem....

The problem is that it is then tempting to use them in the middle of an M4 script, as opposed to its initialization. This, if not
carefully thought out, can lead to disastrous effects: you are changing the language in the middle of the execution. Changing and
restoring the syntax is often not enough: if you happened to invoke macros in between, these macros will be lost, as the current
syntax will probably not be the one they were implemented with.

file:///C|/pdfing/autoconf.html.htm (96 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC93
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1.5 Quadrigraphs

When writing an Autoconf macro you may occasionally need to generate special characters that are difficult to express with the
standard Autoconf quoting rules. For example, you may need to output the regular expression `[^[]', which matches any character
other than `['. This expression contains unbalanced brackets so it cannot be put easily into an M4 macro.

You can work around this problem by using one of the following quadrigraphs:

`@<:@'
`['

`@:>@'
`]'

`@S|@'
`$'

`@%:@'
`#'

`@&t@'
Expands to nothing.

Quadrigraphs are replaced at a late stage of the translation process, after m4 is run, so they do not get in the way of M4 quoting. For
example, the string `^@<:@', independently of its quotation, will appear as `^[' in the output.

The empty quadrigraph can be used:

● to mark trailing spaces explicitly

Trailing spaces are smashed by autom4te. This is a feature.

● to produce other quadrigraphs

For instance `@<@&t@:@' produces `@<:@'.

● to escape occurrences of forbidden patterns

For instance you might want to mention AC_FOO in a comment, while still being sure that autom4te will still catch
unexpanded `AC_*'. Then write `AC@&t@_FOO'.

The name `@&t@' was suggested by Paul Eggert:

I should give some credit to the `@&t@' pun. The `&' is my own invention, but the `t' came from the source code of
the ALGOL68C compiler, written by Steve Bourne (of Bourne shell fame), and which used `mt' to denote the empty
string. In C, it would have looked like something like:

char const mt[] = "";

but of course the source code was written in Algol 68.

I don't know where he got `mt' from: it could have been his own invention, and I suppose it could have been a

file:///C|/pdfing/autoconf.html.htm (97 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC94
file:///C|/pdfing/autoconf.html#SEC96
file:///C|/pdfing/autoconf.html#SEC96
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

common pun around the Cambridge University computer lab at the time.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.1.6 Quotation Rule Of Thumb

To conclude, the quotation rule of thumb is:

One pair of quotes per pair of parentheses.

Never over-quote, never under-quote, in particular in the definition of macros. In the few places where the macros need to use
brackets (usually in C program text or regular expressions), properly quote the arguments!

It is common to read Autoconf programs with snippets like:

AC_TRY_LINK(
changequote(<<, >>)dnl
<<#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif>>,
changequote([,])dnl
[atoi (*tzname);], ac_cv_var_tzname=yes, ac_cv_var_tzname=no)

which is incredibly useless since AC_TRY_LINK is already double quoting, so you just need:

AC_TRY_LINK(
[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif],
 [atoi (*tzname);],
 [ac_cv_var_tzname=yes],
 [ac_cv_var_tzname=no])

The M4-fluent reader will note that these two examples are rigorously equivalent, since M4 swallows both the `changequote
(<<, >>)' and `<<' `>>' when it collects the arguments: these quotes are not part of the arguments!

Simplified, the example above is just doing this:

changequote(<<, >>)dnl
<<[]>>
changequote([,])dnl

instead of simply:

file:///C|/pdfing/autoconf.html.htm (98 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[[]]

With macros that do not double quote their arguments (which is the rule), double-quote the (risky) literals:

AC_LINK_IFELSE([AC_LANG_PROGRAM(
[[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif]],
 [atoi (*tzname);])],
 [ac_cv_var_tzname=yes],
 [ac_cv_var_tzname=no])

See section 8.1.5 Quadrigraphs, for what to do if you run into a hopeless case where quoting does not suffice.

When you create a configure script using newly written macros, examine it carefully to check whether you need to add more
quotes in your macros. If one or more words have disappeared in the M4 output, you need more quotes. When in doubt, quote.

However, it's also possible to put on too many layers of quotes. If this happens, the resulting configure script will contain
unexpanded macros. The autoconf program checks for this problem by doing `grep AC_ configure'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.2 Using autom4te

The Autoconf suite, including M4sugar, M4sh, and Autotest, in addition to Autoconf per se, heavily rely on M4. All these different
uses revealed common needs factored into a layer over m4: autom4te(3).

autom4te should basically considered as a replacement of m4 itself.

8.2.1 Invoking autom4te A GNU M4 wrapper

8.2.2 Customizing autom4te Customizing the Autoconf package

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.2.1 Invoking autom4te

The command line arguments are modeled after M4's:

autom4te options files

where the files are directly passed to m4. In addition to the regular expansion, it handles the replacement of the quadrigraphs (see
section 8.1.5 Quadrigraphs), and of `__oline__', the current line in the output. It supports an extended syntax for the files:

file:///C|/pdfing/autoconf.html.htm (99 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC96
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#FOOT3
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC99
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC99
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC95

Autoconf:

`file.m4f'
This file is an M4 frozen file. Note that all the previous files are ignored. See the option `--melt' for the rationale.

`file?'
If found in the library path, the file is included for expansion, otherwise it is ignored instead of triggering a failure.

Of course, it supports the Autoconf common subset of options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--verbose'
`-v'

Report processing steps.

`--debug'
`-d'

Don't remove the temporary files and be even more verbose.

`--include=dir'
`-I dir'

Also look for input files in dir. Multiple invocations accumulate.

`--output=file'
`-o file'

Save output (script or trace) to file. The file `-' stands for the standard output.

As an extension of m4, it includes the following options:

`--warnings=category'
`-W category'

Report the warnings related to category (which can actually be a comma separated list). See section 9.3 Reporting
Messages, macro AC_DIAGNOSE, for a comprehensive list of categories. Special values include:

`all'
report all the warnings

`none'
report none

`error'
treats warnings as errors

`no-category'
disable warnings falling into category

file:///C|/pdfing/autoconf.html.htm (100 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC108

Autoconf:

Warnings about `syntax' are enabled by default, and the environment variable WARNINGS, a comma separated list of
categories, is honored. autom4te -W category will actually behave as if you had run:

autom4te --warnings=syntax,$WARNINGS,category

If you want to disable autom4te's defaults and WARNINGS, but (for example) enable the warnings about obsolete
constructs, you would use `-W none,obsolete'.

autom4te displays a back trace for errors, but not for warnings; if you want them, just pass `-W error'. For instance, on
this `configure.ac':

AC_DEFUN([INNER],
[AC_RUN_IFELSE([AC_LANG_PROGRAM([exit (0)])])])

AC_DEFUN([OUTER],
[INNER])

AC_INIT
OUTER

you get:

$ autom4te -l autoconf -Wcross
configure.ac:8: warning: AC_RUN_IFELSE called without default \
to allow cross compiling
$ autom4te -l autoconf -Wcross,error -f
configure.ac:8: error: AC_RUN_IFELSE called without default \
to allow cross compiling
acgeneral.m4:3044: AC_RUN_IFELSE is expanded from...
configure.ac:2: INNER is expanded from...
configure.ac:5: OUTER is expanded from...
configure.ac:8: the top level

`--melt'
`-m'

Do not use frozen files. Any argument file.m4f will be replaced with file.m4. This helps tracing the macros which
are executed only when the files are frozen, typically m4_define. For instance, running:

autom4te --melt 1.m4 2.m4f 3.m4 4.m4f input.m4

is roughly equivalent to running:

m4 1.m4 2.m4 3.m4 4.m4 input.m4

while

file:///C|/pdfing/autoconf.html.htm (101 of 250)27. 1. 2004 18:44:41

Autoconf:

autom4te 1.m4 2.m4f 3.m4 4.m4f input.m4

is equivalent to:

m4 --reload-state=4.m4f input.m4

`--freeze'
`-f'

Produce a frozen state file. autom4te freezing is stricter than M4's: it must produce no warnings, and no output other than
empty lines (a line with whitespace is not empty) and comments (starting with `#'). Please, note that contrary to m4, this
options takes no argument:

autom4te 1.m4 2.m4 3.m4 --freeze --output=3.m4f

corresponds to

m4 1.m4 2.m4 3.m4 --freeze-state=3.m4f

`--mode=octal-mode'
`-m octal-mode'

Set the mode of the non-traces output to octal-mode; by default `0666'.

As another additional feature over m4, autom4te caches its results. GNU M4 is able to produce a regular output and traces at the
same time. Traces are heavily used in the GNU Build System: autoheader uses them to build `config.h.in', autoreconf
to determine what GNU Build System components are used, automake to "parse" `configure.ac' etc. To save the long runs
of m4, traces are cached while performing regular expansion, and conversely. This cache is (actually, the caches are) stored in the
directory `autom4te.cache'. It can safely be removed at any moment (especially if for some reason autom4te considers it is
trashed).

`--cache=directory'
`-C directory'

Specify the name of the directory where the result should be cached. Passing an empty value disables caching. Be sure to
pass a relative path name, as for the time being, global caches are not supported.

`--no-cache'
Don't cache the results.

`--force'
`-f'

If a cache is used, consider it obsolete (but update it anyway).

Because traces are so important to the GNU Build System, autom4te provides high level tracing features as compared to M4, and
helps exploiting the cache:

`--trace=macro[:format]'
`-t macro[:format]'

file:///C|/pdfing/autoconf.html.htm (102 of 250)27. 1. 2004 18:44:41

Autoconf:

Trace the invocations of macro according to the format. Multiple `--trace' arguments can be used to list several macros.
Multiple `--trace' arguments for a single macro are not cumulative; instead, you should just make format as long as
needed.

The format is a regular string, with newlines if desired, and several special escape codes. It defaults to `$f:$l:$n:$%'. It
can use the following special escapes:

`$$'
The character `$'.

`$f'
The filename from which macro is called.

`$l'
The line number from which macro is called.

`$d'
The depth of the macro call. This is an M4 technical detail that you probably don't want to know about.

`$n'
The name of the macro.

`$num'
The numth argument of the call to macro.

`$@'
`$sep@'
`${separator}@'

All the arguments passed to macro, separated by the character sep or the string separator (`,' by default). Each
argument is quoted, i.e., enclosed in a pair of square brackets.

`$*'
`$sep*'
`${separator}*'

As above, but the arguments are not quoted.

`$%'
`$sep%'
`${separator}%'

As above, but the arguments are not quoted, all new line characters in the arguments are smashed, and the default
separator is `:'.

The escape `$%' produces single-line trace outputs (unless you put newlines in the `separator'), while `$@' and `
$*' do not.

See section 3.4 Using autoconf to Create configure, for examples of trace uses.

`--preselect=macro'
`-p macro'

Cache the traces of macro, but do not enable traces. This is especially important to save CPU cycles in the future. For
instance, when invoked, autoconf preselects all the macros that autoheader, automake, autoreconf etc. will
trace, so that running m4 is not needed to trace them: the cache suffices. This results in a huge speed-up.

file:///C|/pdfing/autoconf.html.htm (103 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC13

Autoconf:

Finally, autom4te introduces the concept of Autom4te libraries. They consists in a powerful yet extremely simple feature: sets of
combined command line arguments:

`--language=language'
`-l =language'

Use the language Autom4te library. Current languages include:

M4sugar
create M4sugar output.

M4sh
create M4sh executable shell scripts.

Autotest
create Autotest executable test suites.

Autoconf
create Autoconf executable configure scripts.

`--prepend-include=dir'
`-B dir'

Prepend directory dir to the search path. This is used to include the language-specific files before any third-party macros.

As an example, if Autoconf is installed in its default location, `/usr/local', running `autom4te -l m4sugar foo.m4' is
strictly equivalent to running `autom4te --prepend-include /usr/local/share/autoconf m4sugar/
m4sugar.m4f --warnings syntax foo.m4'. Recursive expansion applies: running `autom4te -l m4sh foo.m4'
is the same as `autom4te --language M4sugar m4sugar/m4sh.m4f foo.m4', i.e., `autom4te --prepend-
include /usr/local/share/autoconf m4sugar/m4sugar.m4f m4sugar/m4sh.m4f --mode 777 foo.
m4'. The definition of the languages is stored in `autom4te.cfg'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.2.2 Customizing autom4te

One can customize autom4te via `~/.autom4te.cfg' (i.e., as found in the user home directory), and `./.autom4te.
cfg' (i.e., as found in the directory from which autom4te is run). The order is first reading `autom4te.cfg', then `~/.
autom4te.cfg', then `./.autom4te.cfg', and finally the command line arguments.

In these text files, comments are introduced with #, and empty lines are ignored. Customization is performed on a per-language
basis, wrapped in between a `begin-language: "language"', `end-language: "language"' pair.

Customizing a language stands for appending options (see section 8.2.1 Invoking autom4te) to the current definition of the
language. Options, and more generally arguments, are introduced by `args: arguments'. You may use the traditional shell
syntax to quote the arguments.

As an example, to disable Autoconf caches (`autom4te.cache') globally, include the following lines in `~/.autom4te.
cfg':

@verbatim ## ------------------ ## ## User Preferences. ## ## ------------------ ##

file:///C|/pdfing/autoconf.html.htm (104 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC98

Autoconf:

begin-language: "Autoconf" args: --no-cache end-language: "Autoconf"

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.3 Programming in M4sugar

M4 by itself provides only a small, but sufficient, set of all-purpose macros. M4sugar introduces additional generic macros. Its
name was coined by Lars J. Aas: "Readability And Greater Understanding Stands 4 M4sugar".

8.3.1 Redefined M4 Macros M4 builtins changed in M4sugar

8.3.2 Evaluation Macros More quotation and evaluation control

8.3.3 Forbidden Patterns Catching unexpanded macros

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.3.1 Redefined M4 Macros

With a few exceptions, all the M4 native macros are moved in the `m4_' pseudo-namespace, e.g., M4sugar renames define as
m4_define etc.

Some M4 macros are redefined, and are slightly incompatible with their native equivalent.

Macro: dnl
This macro kept its original name: no m4_dnl is defined.

Macro: m4_defn (macro)
Contrary to the M4 builtin, this macro fails if macro is not defined. See m4_undefine.

Macro: m4_exit (exit-status)
This macro corresponds to m4exit.

Macro: m4_if (comment)
Macro: m4_if (string-1, string-2, equal, [not-equal])
Macro: m4_if (string-1, string-2, equal, ...)

This macro corresponds to ifelse.

Macro: m4_undefine (macro)
Contrary to the M4 builtin, this macro fails if macro is not defined. Use

m4_ifdef([macro], [m4_undefine([macro])])

to recover the behavior of the builtin.

Macro: m4_bpatsubst (string, regexp, [replacement])
This macro corresponds to patsubst. The name m4_patsubst is kept for future versions of M4sh, on top of GNU M4
which will provide extended regular expression syntax via epatsubst.

file:///C|/pdfing/autoconf.html.htm (105 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC99
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: m4_popdef (macro)
Contrary to the M4 builtin, this macro fails if macro is not defined. See m4_undefine.

Macro: m4_bregexp (string, regexp, [replacement])
This macro corresponds to regexp. The name m4_regexp is kept for future versions of M4sh, on top of GNU M4 which
will provide extended regular expression syntax via eregexp.

Macro: m4_wrap (text)
This macro corresponds to m4wrap.

You are encouraged to end text with `[]', so that there are no risks that two consecutive invocations of m4_wrap result in
an unexpected pasting of tokens, as in

m4_define([foo], [Foo])
m4_define([bar], [Bar])
m4_define([foobar], [FOOBAR])
m4_wrap([bar])
m4_wrap([foo])
=>FOOBAR

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.3.2 Evaluation Macros

The following macros give some control over the order of the evaluation by adding or removing levels of quotes. They are meant
for hard-core M4 programmers.

Macro: m4_dquote (arg1, ...)
Return the arguments as a quoted list of quoted arguments.

Macro: m4_quote (arg1, ...)
Return the arguments as a single entity, i.e., wrap them into a pair of quotes.

The following example aims at emphasizing the difference between (i), not using these macros, (ii), using m4_quote, and (iii),
using m4_dquote.

$ cat example.m4
Overquote, so that quotes are visible.
m4_define([show], [$[]1 = [$1], $[]@ = [$@]])
m4_divert(0)dnl
show(a, b)
show(m4_quote(a, b))
show(m4_dquote(a, b))
$ autom4te -l m4sugar example.m4
$1 = a, $@ = [a],[b]
$1 = a,b, $@ = [a,b]
$1 = [a],[b], $@ = [[a],[b]]

file:///C|/pdfing/autoconf.html.htm (106 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.3.3 Forbidden Patterns

M4sugar provides a means to define suspicious patterns, patterns describing tokens which should not be found in the output. For
instance, if an Autoconf `configure' script includes tokens such as `AC_DEFINE', or `dnl', then most probably something went
wrong (typically a macro was not evaluated because of overquotation).

M4sugar forbids all the tokens matching `^m4_' and `^dnl$'.

Macro: m4_pattern_forbid (pattern)
Declare that no token matching pattern must be found in the output. Comments are not checked; this can be a problem if,
for instance, you have some macro left unexpanded after an `#include'. No consensus is currently found in the Autoconf
community, as some people consider it should be valid to name macros in comments (which doesn't makes sense to the
author of this documentation, as `#'-comments should document the output, not the input, documented by `dnl' comments).

Of course, you might encounter exceptions to these generic rules, for instance you might have to refer to `$m4_flags'.

Macro: m4_pattern_allow (pattern)
Any token matching pattern is allowed, including if it matches an m4_pattern_forbid pattern.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

8.4 Programming in M4sh

M4sh, pronounced "mash", is aiming at producing portable Bourne shell scripts. This name was coined by Lars J. Aas, who notes
that, according to the Webster's Revised Unabridged Dictionary (1913):

Mash \Mash\, n. [Akin to G. meisch, maisch, meische, maische, mash, wash, and prob. to AS. miscian to mix. See
"Mix".]

1. A mass of mixed ingredients reduced to a soft pulpy state by beating or pressure....

2. A mixture of meal or bran and water fed to animals.

3. A mess; trouble. [Obs.] --Beau. & Fl.

For the time being, it is not mature enough to be widely used.

M4sh provides portable alternatives for some common shell constructs that unfortunately are not portable in practice.

Macro: AS_DIRNAME (pathname)
Return the directory portion of pathname, using the algorithm required by POSIX. See section 10.9 Limitations of Usual
Tools, for more details about what this returns and why it is more portable than the dirname command.

Macro: AS_MKDIR_P (filename)
Make the directory filename, including intervening directories as necessary. This is equivalent to `mkdir -p
filename', except that it is portable to older versions of mkdir that lack support for the `-p' option.

file:///C|/pdfing/autoconf.html.htm (107 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC123

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9. Writing Autoconf Macros

When you write a feature test that could be applicable to more than one software package, the best thing to do is encapsulate it in a
new macro. Here are some instructions and guidelines for writing Autoconf macros.

9.1 Macro Definitions Basic format of an Autoconf macro

9.2 Macro Names What to call your new macros

9.3 Reporting Messages Notifying autoconf users

9.4 Dependencies Between Macros What to do when macros depend on other macros

9.5 Obsoleting Macros Warning about old ways of doing things

9.6 Coding Style Writing Autoconf macros à la Autoconf

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.1 Macro Definitions

Autoconf macros are defined using the AC_DEFUN macro, which is similar to the M4 builtin m4_define macro. In addition to
defining a macro, AC_DEFUN adds to it some code that is used to constrain the order in which macros are called (see section 9.4.1
Prerequisite Macros).

An Autoconf macro definition looks like this:

AC_DEFUN(macro-name, macro-body)

You can refer to any arguments passed to the macro as `$1', `$2', etc. See section `How to define new macros' in GNU m4, for
more complete information on writing M4 macros.

Be sure to properly quote both the macro-body and the macro-name to avoid any problems if the macro happens to have been
previously defined.

Each macro should have a header comment that gives its prototype, and a brief description. When arguments have default values,
display them in the prototype. For example:

AC_MSG_ERROR(ERROR, [EXIT-STATUS = 1])

m4_define([AC_MSG_ERROR],
[{ _AC_ECHO([configure: error: $1], 2); exit m4_default([$2], 1); }])

Comments about the macro should be left in the header comment. Most other comments will make their way into `configure',
so just keep using `#' to introduce comments.

file:///C|/pdfing/autoconf.html.htm (108 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#SEC107
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC107
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC110

Autoconf:

If you have some very special comments about pure M4 code, comments that make no sense in `configure' and in the header
comment, then use the builtin dnl: it causes M4 to discard the text through the next newline.

Keep in mind that dnl is rarely needed to introduce comments; dnl is more useful to get rid of the newlines following macros that
produce no output, such as AC_REQUIRE.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.2 Macro Names

All of the Autoconf macros have all-uppercase names starting with `AC_' to prevent them from accidentally conflicting with other
text. All shell variables that they use for internal purposes have mostly-lowercase names starting with `ac_'. To ensure that your
macros don't conflict with present or future Autoconf macros, you should prefix your own macro names and any shell variables
they use with some other sequence. Possibilities include your initials, or an abbreviation for the name of your organization or
software package.

Most of the Autoconf macros' names follow a structured naming convention that indicates the kind of feature check by the name.
The macro names consist of several words, separated by underscores, going from most general to most specific. The names of their
cache variables use the same convention (see section 7.3.1 Cache Variable Names, for more information on them).

The first word of the name after `AC_' usually tells the category of the feature being tested. Here are the categories used in
Autoconf for specific test macros, the kind of macro that you are more likely to write. They are also used for cache variables, in all-
lowercase. Use them where applicable; where they're not, invent your own categories.

C
C language builtin features.

DECL
Declarations of C variables in header files.

FUNC
Functions in libraries.

GROUP
UNIX group owners of files.

HEADER
Header files.

LIB
C libraries.

PATH
The full path names to files, including programs.

PROG
The base names of programs.

MEMBER
Members of aggregates.

SYS
Operating system features.

TYPE
C builtin or declared types.

VAR
C variables in libraries.

After the category comes the name of the particular feature being tested. Any further words in the macro name indicate particular
aspects of the feature. For example, AC_FUNC_UTIME_NULL checks the behavior of the utime function when called with a

file:///C|/pdfing/autoconf.html.htm (109 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC85

Autoconf:

NULL pointer.

An internal macro should have a name that starts with an underscore; Autoconf internals should therefore start with `_AC_'.
Additionally, a macro that is an internal subroutine of another macro should have a name that starts with an underscore and the
name of that other macro, followed by one or more words saying what the internal macro does. For example, AC_PATH_X has
internal macros _AC_PATH_X_XMKMF and _AC_PATH_X_DIRECT.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.3 Reporting Messages

When macros statically diagnose abnormal situations, benign or fatal, they should report them using these macros. For dynamic
issues, i.e., when configure is run, see 7.4 Printing Messages.

Macro: AC_DIAGNOSE (category, message)
Report message as a warning (or as an error if requested by the user) if warnings of the category are turned on. You are
encouraged to use standard categories, which currently include:

`all'
messages that don't fall into one of the following categories. Use of an empty category is equivalent.

`cross'
related to cross compilation issues.

`obsolete'
use of an obsolete construct.

`syntax'
dubious syntactic constructs, incorrectly ordered macro calls.

Macro: AC_WARNING (message)
Equivalent to `AC_DIAGNOSE([syntax], message)', but you are strongly encouraged to use a finer grained
category.

Macro: AC_FATAL (message)
Report a severe error message, and have autoconf die.

When the user runs `autoconf -W error', warnings from AC_DIAGNOSE and AC_WARNING are reported as error, see 3.4
Using autoconf to Create configure.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.4 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work correctly. Autoconf provides a way to
ensure that certain macros are called if needed and a way to warn the user if macros are called in an order that might cause
incorrect operation.

file:///C|/pdfing/autoconf.html.htm (110 of 250)27. 1. 2004 18:44:41

file:///C|/pdfing/autoconf.html#SEC107
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

9.4.1 Prerequisite Macros Ensuring required information

9.4.2 Suggested Ordering Warning about possible ordering problems

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.4.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed by other macros. For example,
AC_DECL_YYTEXT examines the output of flex or lex, so it depends on AC_PROG_LEX having been called first to set the
shell variable LEX.

Rather than forcing the user of the macros to keep track of the dependencies between them, you can use the AC_REQUIRE macro
to do it automatically. AC_REQUIRE can ensure that a macro is only called if it is needed, and only called once.

Macro: AC_REQUIRE (macro-name)
If the M4 macro macro-name has not already been called, call it (without any arguments). Make sure to quote macro-name
with square brackets. macro-name must have been defined using AC_DEFUN or else contain a call to AC_PROVIDE to
indicate that it has been called.

AC_REQUIRE must be used inside an AC_DEFUN'd macro; it must not be called from the top level.

AC_REQUIRE is often misunderstood. It really implements dependencies between macros in the sense that if one macro depends
upon another, the latter will be expanded before the body of the former. In particular, `AC_REQUIRE(FOO)' is not replaced with
the body of FOO. For instance, this definition of macros:

AC_DEFUN([TRAVOLTA],
[test "$body_temperature_in_celsius" -gt "38" &&
 dance_floor=occupied])
AC_DEFUN([NEWTON_JOHN],
[test "$hair_style" = "curly" &&
 dance_floor=occupied])

AC_DEFUN([RESERVE_DANCE_FLOOR],
[if date | grep '^Sat.*pm' >/dev/null 2>&1; then
 AC_REQUIRE([TRAVOLTA])
 AC_REQUIRE([NEWTON_JOHN])
fi])

with this `configure.ac'

AC_INIT
RESERVE_DANCE_FLOOR
if test "$dance_floor" = occupied; then
 AC_MSG_ERROR([cannot pick up here, let's move])
fi

will not leave you with a better chance to meet a kindred soul at other times than Saturday night since it expands into:

file:///C|/pdfing/autoconf.html.htm (111 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC111
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC111
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

test "$body_temperature_in_Celsius" -gt "38" &&
 dance_floor=occupied
test "$hair_style" = "curly" &&
 dance_floor=occupied
fi
if date | grep '^Sat.*pm' >/dev/null 2>&1; then

fi

This behavior was chosen on purpose: (i) it prevents messages in required macros from interrupting the messages in the requiring
macros; (ii) it avoids bad surprises when shell conditionals are used, as in:

if ...; then
 AC_REQUIRE([SOME_CHECK])
fi
...

SOME_CHECK

You are encouraged to put all AC_REQUIREs at the beginning of a macro. You can use dnl to avoid the empty lines they leave.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.4.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires that the other be called. For example, a
macro that changes the behavior of the C compiler should be called before any macros that run the C compiler. Many of these
dependencies are noted in the documentation.

Autoconf provides the AC_BEFORE macro to warn users when macros with this kind of dependency appear out of order in a
`configure.ac' file. The warning occurs when creating configure from `configure.ac', not when running
configure.

For example, AC_PROG_CPP checks whether the C compiler can run the C preprocessor when given the `-E' option. It should
therefore be called after any macros that change which C compiler is being used, such as AC_PROG_CC. So AC_PROG_CC
contains:

AC_BEFORE([$0], [AC_PROG_CPP])dnl

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC is called.

Macro: AC_BEFORE (this-macro-name, called-macro-name)
Make M4 print a warning message to the standard error output if called-macro-name has already been called. this-macro-
name should be the name of the macro that is calling AC_BEFORE. The macro called-macro-name must have been defined
using AC_DEFUN or else contain a call to AC_PROVIDE to indicate that it has been called.

file:///C|/pdfing/autoconf.html.htm (112 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.5 Obsoleting Macros

Configuration and portability technology has evolved over the years. Often better ways of solving a particular problem are
developed, or ad-hoc approaches are systematized. This process has occurred in many parts of Autoconf. One result is that some of
the macros are now considered obsolete; they still work, but are no longer considered the best thing to do, hence they should be
replaced with more modern macros. Ideally, autoupdate should replace the old macro calls with their modern implementation.

Autoconf provides a simple means to obsolete a macro.

Macro: AU_DEFUN (old-macro, implementation, [message])
Define old-macro as implementation. The only difference with AC_DEFUN is that the user will be warned that old-macro is
now obsolete.

If she then uses autoupdate, the call to old-macro will be replaced by the modern implementation. The additional
message is then printed.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

9.6 Coding Style

The Autoconf macros follow a strict coding style. You are encouraged to follow this style, especially if you intend to distribute
your macro, either by contributing it to Autoconf itself, or via other means.

The first requirement is to pay great attention to the quotation. For more details, see 3.1.2 The Autoconf Language, and 8.1 M4
Quotation.

Do not try to invent new interfaces. It is likely that there is a macro in Autoconf that resembles the macro you are defining: try to
stick to this existing interface (order of arguments, default values, etc.). We are conscious that some of these interfaces are not
perfect; nevertheless, when harmless, homogeneity should be preferred over creativity.

Be careful about clashes both between M4 symbols and between shell variables.

If you stick to the suggested M4 naming scheme (see section 9.2 Macro Names), you are unlikely to generate conflicts.
Nevertheless, when you need to set a special value, avoid using a regular macro name; rather, use an "impossible" name. For
instance, up to version 2.13, the macro AC_SUBST used to remember what symbols were already defined by setting
AC_SUBST_symbol, which is a regular macro name. But since there is a macro named AC_SUBST_FILE, it was just impossible
to `AC_SUBST(FILE)'! In this case, AC_SUBST(symbol) or _AC_SUBST(symbol) should have been used (yes, with the
parentheses)...or better yet, high-level macros such as AC_EXPAND_ONCE.

No Autoconf macro should ever enter the user-variable name space; i.e., except for the variables that are the actual result of
running the macro, all shell variables should start with ac_. In addition, small macros or any macro that is likely to be embedded
in other macros should be careful not to use obvious names.

Do not use dnl to introduce comments: most of the comments you are likely to write are either header comments which are not
output anyway, or comments that should make their way into `configure'. There are exceptional cases where you do want to
comment special M4 constructs, in which case dnl is right, but keep in mind that it is unlikely.

file:///C|/pdfing/autoconf.html.htm (113 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC111
file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC107

Autoconf:

M4 ignores the leading spaces before each argument, use this feature to indent in such a way that arguments are (more or less)
aligned with the opening parenthesis of the macro being called. For instance, instead of

AC_CACHE_CHECK(for EMX OS/2 environment,
ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, [return __EMX__;])],
[ac_cv_emxos2=yes], [ac_cv_emxos2=no])])

write

AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],
 [ac_cv_emxos2=yes],
 [ac_cv_emxos2=no])])

or even

AC_CACHE_CHECK([for EMX OS/2 environment],
 [ac_cv_emxos2],
 [AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
 [return __EMX__;])],
 [ac_cv_emxos2=yes],
 [ac_cv_emxos2=no])])

When using AC_RUN_IFELSE or any macro that cannot work when cross-compiling, provide a pessimistic value (typically `no').

Feel free to use various tricks to prevent auxiliary tools, such as syntax-highlighting editors, from behaving improperly. For
instance, instead of:

m4_bpatsubst([$1], [$"])

use

m4_bpatsubst([$1], [$""])

so that Emacsen do not open an endless "string" at the first quote. For the same reasons, avoid:

test $[#] != 0

and use:

test $[@%:@] != 0

file:///C|/pdfing/autoconf.html.htm (114 of 250)27. 1. 2004 18:44:42

Autoconf:

Otherwise, the closing bracket would be hidden inside a `#'-comment, breaking the bracket-matching highlighting from Emacsen.
Note the preferred style to escape from M4: `$[1]', `$[@]', etc. Do not escape when it is unnecessary. Common examples of
useless quotation are `[$]$1' (write `$$1'), `[$]var' (use `$var'), etc. If you add portability issues to the picture, you'll prefer `
${1+"$[@]"}' to `"[$]@"', and you'll prefer do something better than hacking Autoconf :-).

When using sed, don't use `-e' except for indenting purpose. With the s command, the preferred separator is `/' unless `/' itself is
used in the command, in which case you should use `,'.

See section 9.1 Macro Definitions, for details on how to define a macro. If a macro doesn't use AC_REQUIRE and it is expected to
never be the object of an AC_REQUIRE directive, then use m4_define. In case of doubt, use AC_DEFUN. All the AC_REQUIRE
statements should be at the beginning of the macro, dnl'ed.

You should not rely on the number of arguments: instead of checking whether an argument is missing, test that it is not empty. It
provides both a simpler and a more predictable interface to the user, and saves room for further arguments.

Unless the macro is short, try to leave the closing `])' at the beginning of a line, followed by a comment that repeats the name of
the macro being defined. This introduces an additional newline in configure; normally, that is not a problem, but if you want to
remove it you can use `[]dnl' on the last line. You can similarly use `[]dnl' after a macro call to remove its newline. `[]dnl' is
recommended instead of `dnl' to ensure that M4 does not interpret the `dnl' as being attached to the preceding text or macro
output. For example, instead of:

AC_DEFUN([AC_PATH_X],
[AC_MSG_CHECKING([for X])
AC_REQUIRE_CPP()
...omitted...
 AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])
fi])

you would write:

AC_DEFUN([AC_PATH_X],
[AC_REQUIRE_CPP()[]dnl
AC_MSG_CHECKING([for X])
...omitted...
 AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])
fi[]dnl
])# AC_PATH_X

If the macro is long, try to split it into logical chunks. Typically, macros that check for a bug in a function and prepare its
AC_LIBOBJ replacement should have an auxiliary macro to perform this setup. Do not hesitate to introduce auxiliary macros to
factor your code.

In order to highlight the recommended coding style, here is a macro written the old way:

file:///C|/pdfing/autoconf.html.htm (115 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC106

Autoconf:

dnl Check for EMX on OS/2.
dnl _AC_EMXOS2
AC_DEFUN(_AC_EMXOS2,
[AC_CACHE_CHECK(for EMX OS/2 environment, ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, return __EMX__;)],
ac_cv_emxos2=yes, ac_cv_emxos2=no)])
test "$ac_cv_emxos2" = yes && EMXOS2=yes])

and the new way:

_AC_EMXOS2

Check for EMX on OS/2.
m4_define([_AC_EMXOS2],
[AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],
 [ac_cv_emxos2=yes],
 [ac_cv_emxos2=no])])
test "$ac_cv_emxos2" = yes && EMXOS2=yes[]dnl
])# _AC_EMXOS2

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10. Portable Shell Programming

When writing your own checks, there are some shell-script programming techniques you should avoid in order to make your code
portable. The Bourne shell and upward-compatible shells like the Korn shell and Bash have evolved over the years, but to prevent
trouble, do not take advantage of features that were added after UNIX version 7, circa 1977 (see section 6.7 Systemology).

You should not use shell functions, aliases, negated character classes, or other features that are not found in all Bourne-compatible
shells; restrict yourself to the lowest common denominator. Even unset is not supported by all shells! Also, include a space after
the exclamation point in interpreter specifications, like this:

#! /usr/bin/perl

If you omit the space before the path, then 4.2BSD based systems (such as DYNIX) will ignore the line, because they interpret
`#! /' as a 4-byte magic number. Some old systems have quite small limits on the length of the `#!' line too, for instance 32 bytes
(not including the newline) on SunOS 4.

The set of external programs you should run in a configure script is fairly small. See section `Utilities in Makefiles' in GNU
Coding Standards, for the list. This restriction allows users to start out with a fairly small set of programs and build the rest,
avoiding too many interdependencies between packages.

Some of these external utilities have a portable subset of features; see 10.9 Limitations of Usual Tools.

There are other sources of documentation about shells. See for instance the Shell FAQs.

file:///C|/pdfing/autoconf.html.htm (116 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC123
http://www.faqs.org/faqs/unix-faq/shell/

Autoconf:

10.1 Shellology A zoology of shells

10.2 Here-Documents Quirks and tricks

10.3 File Descriptors FDs and redirections

10.4 File System Conventions File- and pathnames

10.5 Shell Substitutions Variable and command expansions

10.6 Assignments Varying side effects of assignments

10.7 Special Shell Variables Variables you should not change

10.8 Limitations of Shell Builtins Portable use of not so portable /bin/sh

10.9 Limitations of Usual Tools Portable use of portable tools

10.10 Limitations of Make Portable Makefiles

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.1 Shellology

There are several families of shells, most prominently the Bourne family and the C shell family which are deeply incompatible. If
you want to write portable shell scripts, avoid members of the C shell family. The the Shell difference FAQ includes a small
history of Unix shells, and a comparison between several of them.

Below we describe some of the members of the Bourne shell family.

Ash
ash is often used on GNU/Linux and BSD systems as a light-weight Bourne-compatible shell. Ash 0.2 has some bugs that
are fixed in the 0.3.x series, but portable shell scripts should work around them, since version 0.2 is still shipped with many
GNU/Linux distributions.

To be compatible with Ash 0.2:

❍ don't use `$?' after expanding empty or unset variables:

foo=
false
$foo
echo "Don't use it: $?"

❍ don't use command substitution within variable expansion:

cat ${FOO=`bar`}

❍ beware that single builtin substitutions are not performed by a subshell, hence their effect applies to the current shell!
See section 10.5 Shell Substitutions, item "Command Substitution".

Bash
To detect whether you are running bash, test if BASH_VERSION is set. To disable its extensions and require POSIX

file:///C|/pdfing/autoconf.html.htm (117 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#SEC116
file:///C|/pdfing/autoconf.html#SEC117
file:///C|/pdfing/autoconf.html#SEC118
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC120
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC116
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
http://www.faqs.org/faqs/unix-faq/shell/shell-differences/
file:///C|/pdfing/autoconf.html#SEC119

Autoconf:

compatibility, run `set -o posix'. See section `Bash POSIX Mode' in The GNU Bash Reference Manual, for details.

Bash 2.05 and later
Versions 2.05 and later of bash use a different format for the output of the set builtin, designed to make evaluating its
output easier. However, this output is not compatible with earlier versions of bash (or with many other shells, probably).
So if you use bash 2.05 or higher to execute configure, you'll need to use bash 2.05 for all other build tasks as well.

/usr/xpg4/bin/sh on Solaris
The POSIX-compliant Bourne shell on a Solaris system is /usr/xpg4/bin/sh and is part of an extra optional package.
There is no extra charge for this package, but it is also not part of a minimal OS install and therefore some folks may not
have it.

Zsh
To detect whether you are running zsh, test if ZSH_VERSION is set. By default zsh is not compatible with the Bourne
shell: you have to run `emulate sh' and set NULLCMD to `:'. See section `Compatibility' in The Z Shell Manual, for
details.

Zsh 3.0.8 is the native /bin/sh on Mac OS X 10.0.3.

The following discussion between Russ Allbery and Robert Lipe is worth reading:

Russ Allbery:

The GNU assumption that /bin/sh is the one and only shell leads to a permanent deadlock. Vendors don't want to
break users' existing shell scripts, and there are some corner cases in the Bourne shell that are not completely
compatible with a POSIX shell. Thus, vendors who have taken this route will never (OK..."never say never") replace
the Bourne shell (as /bin/sh) with a POSIX shell.

Robert Lipe:

This is exactly the problem. While most (at least most System V's) do have a Bourne shell that accepts shell
functions most vendor /bin/sh programs are not the POSIX shell.

So while most modern systems do have a shell somewhere that meets the POSIX standard, the challenge is to find it.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.2 Here-Documents

Don't rely on `\' being preserved just because it has no special meaning together with the next symbol. In the native /bin/sh on
OpenBSD 2.7 `\"' expands to `"' in here-documents with unquoted delimiter. As a general rule, if `\\' expands to `\' use `\\' to
get `\'.

With OpenBSD 2.7's /bin/sh

$ cat <<EOF
> \" \\
> EOF
" \

file:///C|/pdfing/autoconf.html.htm (118 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#SEC117
file:///C|/pdfing/autoconf.html#SEC117
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

and with Bash:

bash-2.04$ cat <<EOF
> \" \\
> EOF
\" \

Many older shells (including the Bourne shell) implement here-documents inefficiently. And some shells mishandle large here-
documents: for example, Solaris 8 dtksh, which is derived from ksh M-12/28/93d, mishandles variable expansion that occurs on
1024-byte buffer boundaries within a here-document. Users can generally fix these problems by using a faster or more reliable
shell, e.g., by using the command `bash ./configure' rather than plain `./configure'.

Some shells can be extremely inefficient when there are a lot of here-documents inside a single statement. For instance if your
`configure.ac' includes something like:

if <cross_compiling>; then
 assume this and that
else
 check this
 check that
 check something else
 ...
 on and on forever
 ...
fi

A shell parses the whole if/fi construct, creating temporary files for each here document in it. Some shells create links for such
here-documents on every fork, so that the clean-up code they had installed correctly removes them. It is creating the links that can
take the shell forever.

Moving the tests out of the if/fi, or creating multiple if/fi constructs, would improve the performance significantly. Anyway,
this kind of construct is not exactly the typical use of Autoconf. In fact, it's even not recommended, because M4 macros can't look
into shell conditionals, so we may fail to expand a macro when it was expanded before in a conditional path, and the condition
turned out to be false at run-time, and we end up not executing the macro at all.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.3 File Descriptors

Some file descriptors shall not be used, since some systems, admittedly arcane, use them for special purpose:

3 --- some systems may open it to `/dev/tty'.
4 --- used on the Kubota Titan.

Don't redirect the same file descriptor several times, as you are doomed to failure under Ultrix.

file:///C|/pdfing/autoconf.html.htm (119 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC116
file:///C|/pdfing/autoconf.html#SEC118
file:///C|/pdfing/autoconf.html#SEC118
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

ULTRIX V4.4 (Rev. 69) System #31: Thu Aug 10 19:42:23 GMT 1995
UWS V4.4 (Rev. 11)
$ eval 'echo matter >fullness' >void
illegal io
$ eval '(echo matter >fullness)' >void
illegal io
$ (eval '(echo matter >fullness)') >void
Ambiguous output redirect.

In each case the expected result is of course `fullness' containing `matter' and `void' being empty.

Don't try to redirect the standard error of a command substitution: it must be done inside the command substitution: when running
`: `cd /zorglub` 2>/dev/null' expect the error message to escape, while `: `cd /zorglub 2>/dev/null`'
works properly.

It is worth noting that Zsh (but not Ash nor Bash) makes it possible in assignments though: `foo=`cd /zorglub` 2>/dev/
null'.

Most shells, if not all (including Bash, Zsh, Ash), output traces on stderr, even for sub-shells. This might result in undesirable
content if you meant to capture the standard-error output of the inner command:

$ ash -x -c '(eval "echo foo >&2") 2>stderr'
$ cat stderr
+ eval echo foo >&2
+ echo foo
foo
$ bash -x -c '(eval "echo foo >&2") 2>stderr'
$ cat stderr
+ eval 'echo foo >&2'
++ echo foo
foo
$ zsh -x -c '(eval "echo foo >&2") 2>stderr'
Traces on startup files deleted here.
$ cat stderr
+zsh:1> eval echo foo >&2
+zsh:1> echo foo
foo

You'll appreciate the various levels of detail....

One workaround is to grep out uninteresting lines, hoping not to remove good ones....

Don't try to move/delete open files, such as in `exec >foo; mv foo bar'; see 10.8 Limitations of Shell Builtins, mv for more
details.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (120 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC117
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

10.4 File System Conventions

While autoconf and friends will usually be run on some Unix variety, it can and will be used on other systems, most notably
DOS variants. This impacts several assumptions regarding file and path names.

For example, the following code:

case $foo_dir in
 /*) # Absolute
 ;;
 *)
 foo_dir=$dots$foo_dir ;;
esac

will fail to properly detect absolute paths on those systems, because they can use a drivespec, and will usually use a backslash as
directory separator. The canonical way to check for absolute paths is:

case $foo_dir in
 [\\/]* | ?:[\\/]*) # Absolute
 ;;
 *)
 foo_dir=$dots$foo_dir ;;
esac

Make sure you quote the brackets if appropriate and keep the backslash as first character (see section 10.8 Limitations of Shell
Builtins).

Also, because the colon is used as part of a drivespec, these systems don't use it as path separator. When creating or accessing
paths, use the PATH_SEPARATOR output variable instead. configure sets this to the appropriate value (`:' or `;') when it starts
up.

File names need extra care as well. While DOS-based environments that are Unixy enough to run autoconf (such as DJGPP) will
usually be able to handle long file names properly, there are still limitations that can seriously break packages. Several of these
issues can be easily detected by the doschk package.

A short overview follows; problems are marked with SFN/LFN to indicate where they apply: SFN means the issues are only
relevant to plain DOS, not to DOS boxes under Windows, while LFN identifies problems that exist even under Windows.

No multiple dots (SFN)
DOS cannot handle multiple dots in filenames. This is an especially important thing to remember when building a portable
configure script, as autoconf uses a .in suffix for template files.

This is perfectly OK on Unices:

AC_CONFIG_HEADERS([config.h])
AC_CONFIG_FILES([source.c foo.bar])
AC_OUTPUT

file:///C|/pdfing/autoconf.html.htm (121 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC122
ftp://ftp.gnu.org/gnu/non-gnu/doschk/doschk-1.1.tar.gz

Autoconf:

but it causes problems on DOS, as it requires `config.h.in', `source.c.in' and `foo.bar.in'. To make your
package more portable to DOS-based environments, you should use this instead:

AC_CONFIG_HEADERS([config.h:config.hin])
AC_CONFIG_FILES([source.c:source.cin foo.bar:foobar.in])
AC_OUTPUT

No leading dot (SFN)
DOS cannot handle filenames that start with a dot. This is usually not a very important issue for autoconf.

Case insensitivity (LFN)
DOS is case insensitive, so you cannot, for example, have both a file called `INSTALL' and a directory called `install'.
This also affects make; if there's a file called `INSTALL' in the directory, `make install' will do nothing (unless the
`install' target is marked as PHONY).

The 8+3 limit (SFN)
Because the DOS file system only stores the first 8 characters of the filename and the first 3 of the extension, those must be
unique. That means that `foobar-part1.c', `foobar-part2.c' and `foobar-prettybird.c' all resolve to the
same filename (`FOOBAR-P.C'). The same goes for `foo.bar' and `foo.bartender'.

Note: This is not usually a problem under Windows, as it uses numeric tails in the short version of filenames to make them
unique. However, a registry setting can turn this behavior off. While this makes it possible to share file trees containing long
file names between SFN and LFN environments, it also means the above problem applies there as well.

Invalid characters
Some characters are invalid in DOS filenames, and should therefore be avoided. In a LFN environment, these are `/', `\',
`?', `*', `:', `<', `>', `|' and `"'. In a SFN environment, other characters are also invalid. These include `+', `,', `[' and `]'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.5 Shell Substitutions

Contrary to a persistent urban legend, the Bourne shell does not systematically split variables and back-quoted expressions, in
particular on the right-hand side of assignments and in the argument of case. For instance, the following code:

case "$given_srcdir" in
.) top_srcdir="`echo "$dots" | sed 's,/$,,'`"
*) top_srcdir="$dots$given_srcdir" ;;
esac

is more readable when written as:

case $given_srcdir in
.) top_srcdir=`echo "$dots" | sed 's,/$,,'`
*) top_srcdir=$dots$given_srcdir ;;
esac

file:///C|/pdfing/autoconf.html.htm (122 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC118
file:///C|/pdfing/autoconf.html#SEC120
file:///C|/pdfing/autoconf.html#SEC120
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

and in fact it is even more portable: in the first case of the first attempt, the computation of top_srcdir is not portable, since not
all shells properly understand "`..."..."...`". Worse yet, not all shells understand "`...\"...\"...`" the same way.
There is just no portable way to use double-quoted strings inside double-quoted back-quoted expressions (pfew!).

$@
One of the most famous shell-portability issues is related to `"$@"'. When there are no positional arguments, POSIX says
that `"$@"' is supposed to be equivalent to nothing, but the original Unix Version 7 Bourne shell treated it as equivalent to
`""' instead, and this behavior survives in later implementations like Digital Unix 5.0.

The traditional way to work around this portability problem is to use `${1+"$@"}'. Unfortunately this method does not
work with Zsh (3.x and 4.x), which is used on Mac OS X. When emulating the Bourne shell, Zsh performs word splitting on
`${1+"$@"}':

zsh $ emulate sh
zsh $ for i in "$@"; do echo $i; done
Hello World
!
zsh $ for i in ${1+"$@"}; do echo $i; done
Hello
World
!

Zsh handles plain `"$@"' properly, but we can't use plain `"$@"' because of the portability problems mentioned above. One
workaround relies on Zsh's "global aliases" to convert `${1+"$@"}' into `"$@"' by itself:

test "${ZSH_VERSION+set}" = set && alias -g '${1+"$@"}'='"$@"'

A more conservative workaround is to avoid `"$@"' if it is possible that there may be no positional arguments. For example,
instead of:

cat conftest.c "$@"

you can use this instead:

case $# in
0) cat conftest.c;;
*) cat conftest.c "$@";;
esac

${var:-value}
Old BSD shells, including the Ultrix sh, don't accept the colon for any shell substitution, and complain and die.

${var=literal}
Be sure to quote:

file:///C|/pdfing/autoconf.html.htm (123 of 250)27. 1. 2004 18:44:42

Autoconf:

: ${var='Some words'}

otherwise some shells, such as on Digital Unix V 5.0, will die because of a "bad substitution".

Solaris' /bin/sh has a frightening bug in its interpretation of this. Imagine you need set a variable to a string containing
`}'. This `}' character confuses Solaris' /bin/sh when the affected variable was already set. This bug can be exercised by
running:

$ unset foo
$ foo=${foo='}'}
$ echo $foo
}
$ foo=${foo='}' # no error; this hints to what the bug is
$ echo $foo
}
$ foo=${foo='}'}
$ echo $foo
}}
 ^ ugh!

It seems that `}' is interpreted as matching `${', even though it is enclosed in single quotes. The problem doesn't happen
using double quotes.

${var=expanded-value}
On Ultrix, running

default="yu,yaa"
: ${var="$default"}

will set var to `M-yM-uM-,M-yM-aM-a', i.e., the 8th bit of each char will be set. You won't observe the phenomenon
using a simple `echo $var' since apparently the shell resets the 8th bit when it expands $var. Here are two means to make
this shell confess its sins:

$ cat -v <<EOF
$var
EOF

and

$ set | grep '^var=' | cat -v

One classic incarnation of this bug is:

file:///C|/pdfing/autoconf.html.htm (124 of 250)27. 1. 2004 18:44:42

Autoconf:

default="a b c"
: ${list="$default"}
for c in $list; do
 echo $c
done

You'll get `a b c' on a single line. Why? Because there are no spaces in `$list': there are `M- ', i.e., spaces with the 8th
bit set, hence no IFS splitting is performed!!!

One piece of good news is that Ultrix works fine with `: ${list=$default}'; i.e., if you don't quote. The bad news is
then that QNX 4.25 then sets list to the last item of default!

The portable way out consists in using a double assignment, to switch the 8th bit twice on Ultrix:

list=${list="$default"}

...but beware of the `}' bug from Solaris (see above). For safety, use:

test "${var+set}" = set || var={value}

`commands`
While in general it makes no sense, do not substitute a single builtin with side effects, becauase Ash 0.2, trying to optimize,
does not fork a subshell to perform the command.

For instance, if you wanted to check that cd is silent, do not use `test -z "`cd /`"' because the following can
happen:

$ pwd
/tmp
$ test -n "`cd /`" && pwd
/

The result of `foo=`exit 1`' is left as an exercise to the reader.

$(commands)
This construct is meant to replace ``commands`'; they can be nested while this is impossible to do portably with back
quotes. Unfortunately it is not yet widely supported. Most notably, even recent releases of Solaris don't support it:

$ showrev -c /bin/sh | grep version
Command version: SunOS 5.8 Generic 109324-02 February 2001
$ echo $(echo blah)
syntax error: `(' unexpected

nor does IRIX 6.5's Bourne shell:

file:///C|/pdfing/autoconf.html.htm (125 of 250)27. 1. 2004 18:44:42

Autoconf:

$ uname -a
IRIX firebird-image 6.5 07151432 IP22
$ echo $(echo blah)
$(echo blah)

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.6 Assignments

When setting several variables in a row, be aware that the order of the evaluation is undefined. For instance `foo=1 foo=2;
echo $foo' gives `1' with sh on Solaris, but `2' with Bash. You must use `;' to enforce the order: `foo=1; foo=2; echo
$foo'.

Don't rely on the following to find `subdir/program':

PATH=subdir$PATH_SEPARATOR$PATH program

as this does not work with Zsh 3.0.6. Use something like this instead:

(PATH=subdir$PATH_SEPARATOR$PATH; export PATH; exec program)

Don't rely on the exit status of an assignment: Ash 0.2 does not change the status and propagates that of the last statement:

$ false || foo=bar; echo $?
1
$ false || foo=`:`; echo $?
0

and to make things even worse, QNX 4.25 just sets the exit status to 0 in any case:

$ foo=`exit 1`; echo $?
0

To assign default values, follow this algorithm:

1. If the default value is a literal and does not contain any closing brace, use:

: ${var='my literal'}

2. If the default value contains no closing brace, has to be expanded, and the variable being initialized will never be IFS-split (i.
e., it's not a list), then use:

file:///C|/pdfing/autoconf.html.htm (126 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

: ${var="$default"}

3. If the default value contains no closing brace, has to be expanded, and the variable being initialized will be IFS-split (i.e., it's
a list), then use:

var=${var="$default"}

4. If the default value contains a closing brace, then use:

test "${var+set}" = set || var='${indirection}'

In most cases `var=${var="$default"}' is fine, but in case of doubt, just use the latter. See section 10.5 Shell Substitutions,
items `${var:-value}' and `${var=value}' for the rationale.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.7 Special Shell Variables

Some shell variables should not be used, since they can have a deep influence on the behavior of the shell. In order to recover a
sane behavior from the shell, some variables should be unset, but unset is not portable (see section 10.8 Limitations of Shell
Builtins) and a fallback value is needed. We list these values below.

CDPATH
When this variable is set it specifies a list of directories to search when invoking cd with a relative filename. POSIX 1003.1-
2001 says that if a nonempty directory name from CDPATH is used successfully, cd prints the resulting absolute filename.
Unfortunately this output can break idioms like `abs=`cd src && pwd`' because abs receives the path twice. Also,
many shells do not conform to this part of POSIX; for example, zsh prints the result only if a directory name other than `.'
was chosen from CDPATH.

In practice the shells that have this problem also support unset, so you can work around the problem as follows:

(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

Autoconf-generated scripts automatically unset CDPATH if possible, so you need not worry about this problem in those
scripts.

IFS
Don't set the first character of IFS to backslash. Indeed, Bourne shells use the first character (backslash) when joining the
components in `"$@"' and some shells then re-interpret (!) the backslash escapes, so you can end up with backspace and
other strange characters.

The proper value for IFS (in regular code, not when performing splits) is `SPCTABRET'. The first character is especially
important, as it is used to join the arguments in `@*'.

file:///C|/pdfing/autoconf.html.htm (127 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC120
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC122

Autoconf:

LANG
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

Autoconf-generated scripts normally set all these variables to `C' because so much configuration code assumes the C locale
and POSIX requires that locale environment variables be set to `C' if the C locale is desired. However, some older,
nonstandard systems (notably SCO) break if locale environment variables are set to `C', so when running on these systems
Autoconf-generated scripts unset the variables instead.

LANGUAGE

LANGUAGE is not specified by POSIX, but it is a GNU extension that overrides LC_ALL in some cases, so Autoconf-
generated scripts set it too.

LC_ADDRESS
LC_IDENTIFICATION
LC_MEASUREMENT
LC_NAME
LC_PAPER
LC_TELEPHONE

These locale environment variables are GNU extensions. They are treated like their POSIX brethren (LC_COLLATE, etc.) as
described above.

LINENO
Most modern shells provide the current line number in LINENO. Its value is the line number of the beginning of the current
command. Autoconf attempts to execute configure with a modern shell. If no such shell is available, it attempts to
implement LINENO with a Sed prepass that replaces each instance of the string $LINENO (not followed by an
alphanumeric character) with the line's number.

You should not rely on LINENO within eval, as the behavior differs in practice. Also, the possibility of the Sed prepass
means that you should not rely on $LINENO when quoted, when in here-documents, or when in long commands that cross
line boundaries. Subshells should be OK, though. In the following example, lines 1, 6, and 9 are portable, but the other
instances of LINENO are not:

$ cat lineno
echo 1. $LINENO
cat <<EOF
3. $LINENO
4. $LINENO
EOF
(echo 6. $LINENO)
eval 'echo 7. $LINENO'
echo 8. '$LINENO'
echo 9. $LINENO '
10.' $LINENO
$ bash-2.05 lineno
1. 1

file:///C|/pdfing/autoconf.html.htm (128 of 250)27. 1. 2004 18:44:42

Autoconf:

3. 2
4. 2
6. 6
7. 1
8. $LINENO
9. 9
10. 9
$ zsh-3.0.6 lineno
1. 1
3. 2
4. 2
6. 6
7. 7
8. $LINENO
9. 9
10. 9
$ pdksh-5.2.14 lineno
1. 1
3. 2
4. 2
6. 6
7. 0
8. $LINENO
9. 9
10. 9
$ sed '=' <lineno |
> sed '
> N
> s,$,-,
> : loop
> s,^\([0-9]*\)\(.*\)[$]LINENO\([^a-zA-Z0-9_]\),\1\2\1\3,
> t loop
> s,-$,,
> s,^[0-9]*\n,,
> ' |
> sh
1. 1
3. 3
4. 4
6. 6
7. 7
8. 8
9. 9
10. 10

NULLCMD
When executing the command `>foo', zsh executes `$NULLCMD >foo'. The Bourne shell considers NULLCMD to be `:',
while zsh, even in Bourne shell compatibility mode, sets NULLCMD to `cat'. If you forgot to set NULLCMD, your script
might be suspended waiting for data on its standard input.

ENV
MAIL

file:///C|/pdfing/autoconf.html.htm (129 of 250)27. 1. 2004 18:44:42

Autoconf:

MAILPATH
PS1
PS2
PS4

These variables should not matter for shell scripts, since they are supposed to affect only interactive shells. However, at
least one shell (the pre-3.0 UWIN ksh) gets confused about whether it is interactive, which means that (for example) a PS1
with a side effect can unexpectedly modify `$?'. To work around this bug, Autoconf-generated scripts do something like
this:

(unset ENV) >/dev/null 2>&1 && unset ENV MAIL MAILPATH
PS1='$ '
PS2='> '
PS4='+ '

PWD
POSIX 1003.1-2001 requires that cd and pwd must update the PWD environment variable to point to the logical path to the
current directory, but traditional shells do not support this. This can cause confusion if one shell instance maintains PWD but
a subsidiary and different shell does not know about PWD and executes cd; in this case PWD will point to the wrong
directory. Use ``pwd`' rather than `$PWD'.

status
This variable is an alias to `$?' for zsh (at least 3.1.6), hence read-only. Do not use it.

PATH_SEPARATOR
If it is not set, configure will detect the appropriate path separator for the build system and set the PATH_SEPARATOR
output variable accordingly.

On DJGPP systems, the PATH_SEPARATOR environment variable can be set to either `:' or `;' to control the path
separator bash uses to set up certain environment variables (such as PATH). Since this only works inside bash, you want
configure to detect the regular DOS path separator (`;'), so it can be safely substituted in files that may not support `;' as
path separator. So it is recommended to either unset this variable or set it to `;'.

RANDOM
Many shells provide RANDOM, a variable that returns a different integer each time it is used. Most of the time, its value does
not change when it is not used, but on IRIX 6.5 the value changes all the time. This can be observed by using set.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.8 Limitations of Shell Builtins

No, no, we are serious: some shells do have limitations! :)

You should always keep in mind that any builtin or command may support options, and therefore have a very different behavior
with arguments starting with a dash. For instance, the innocent `echo "$word"' can give unexpected results when word starts
with a dash. It is often possible to avoid this problem using `echo "x$word"', taking the `x' into account later in the pipe.

.
Use . only with regular files (use `test -f'). Bash 2.03, for instance, chokes on `. /dev/null'. Also, remember that .
uses PATH if its argument contains no slashes, so if you want to use . on a file `foo' in the current directory, you must use

file:///C|/pdfing/autoconf.html.htm (130 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

`. ./foo'.

!
You can't use !; you'll have to rewrite your code.

break
The use of `break 2' etc. is safe.

cd
POSIX 1003.1-2001 requires that cd must support the `-L' ("logical") and `-P' ("physical") options, with `-L' being the
default. However, traditional shells do not support these options, and their cd command has the `-P' behavior.

Portable scripts should assume neither option is supported, and should assume neither behavior is the default. This can be a
bit tricky, since the POSIX default behavior means that, for example, `ls ..' and `cd ..' may refer to different
directories if the current logical directory is a symbolic link. It is safe to use cd dir if dir contains no `..' components.
Also, Autoconf-generated scripts check for this problem when computing variables like ac_top_srcdir (see section 4.5
Performing Configuration Actions), so it is safe to cd to these variables.

Also please see the discussion of the pwd command.

case
You don't need to quote the argument; no splitting is performed.

You don't need the final `;;', but you should use it.

Because of a bug in its fnmatch, bash fails to properly handle backslashes in character classes:

bash-2.02$ case /tmp in [/\\]*) echo OK;; esac
bash-2.02$

This is extremely unfortunate, since you are likely to use this code to handle UNIX or MS-DOS absolute paths. To work
around this bug, always put the backslash first:

bash-2.02$ case '\TMP' in [\\/]*) echo OK;; esac
OK
bash-2.02$ case /tmp in [\\/]*) echo OK;; esac
OK

Some shells, such as Ash 0.3.8, are confused by an empty case/esac:

ash-0.3.8 $ case foo in esac;
error-->Syntax error: ";" unexpected (expecting ")")

Many shells still do not support parenthesized cases, which is a pity for those of us using tools that rely on balanced
parentheses. For instance, Solaris 2.8's Bourne shell:

file:///C|/pdfing/autoconf.html.htm (131 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC20

Autoconf:

$ case foo in (foo) echo foo;; esac
error-->syntax error: `(' unexpected

echo
The simple echo is probably the most surprising source of portability troubles. It is not possible to use `echo' portably
unless both options and escape sequences are omitted. New applications which are not aiming at portability should use
`printf' instead of `echo'.

Don't expect any option. See section 4.7.1 Preset Output Variables, ECHO_N etc. for a means to simulate `-n'.

Do not use backslashes in the arguments, as there is no consensus on their handling. On `echo '\n' | wc -l', the sh
of Digital Unix 4.0 and MIPS RISC/OS 4.52, answer 2, but the Solaris' sh, Bash, and Zsh (in sh emulation mode) report 1.
Please note that the problem is truly echo: all the shells understand `'\n'' as the string composed of a backslash and an
`n'.

Because of these problems, do not pass a string containing arbitrary characters to echo. For example, `echo "$foo"' is
safe if you know that foo's value cannot contain backslashes and cannot start with `-', but otherwise you should use a here-
document like this:

cat <<EOF
$foo
EOF

exit
The default value of exit is supposed to be $?; unfortunately, some shells, such as the DJGPP port of Bash 2.04, just
perform `exit 0'.

bash-2.04$ foo=`exit 1` || echo fail
fail
bash-2.04$ foo=`(exit 1)` || echo fail
fail
bash-2.04$ foo=`(exit 1); exit` || echo fail
bash-2.04$

Using `exit $?' restores the expected behavior.

Some shell scripts, such as those generated by autoconf, use a trap to clean up before exiting. If the last shell command
exited with nonzero status, the trap also exits with nonzero status so that the invoker can tell that an error occurred.

Unfortunately, in some shells, such as Solaris 8 sh, an exit trap ignores the exit command's argument. In these shells, a
trap cannot determine whether it was invoked by plain exit or by exit 1. Instead of calling exit directly, use the
AC_MSG_ERROR macro that has a workaround for this problem.

export
The builtin export dubs a shell variable environment variable. Each update of exported variables corresponds to an update
of the environment variables. Conversely, each environment variable received by the shell when it is launched should be
imported as a shell variable marked as exported.

file:///C|/pdfing/autoconf.html.htm (132 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC23

Autoconf:

Alas, many shells, such as Solaris 2.5, IRIX 6.3, IRIX 5.2, AIX 4.1.5, and Digital UNIX 4.0, forget to export the
environment variables they receive. As a result, two variables coexist: the environment variable and the shell variable. The
following code demonstrates this failure:

#! /bin/sh
echo $FOO
FOO=bar
echo $FOO
exec /bin/sh $0

when run with `FOO=foo' in the environment, these shells will print alternately `foo' and `bar', although it should only
print `foo' and then a sequence of `bar's.

Therefore you should export again each environment variable that you update.

false
Don't expect false to exit with status 1: in the native Bourne shell of Solaris 8 it exits with status 255.

for
To loop over positional arguments, use:

for arg
do
 echo "$arg"
done

You may not leave the do on the same line as for, since some shells improperly grok:

for arg; do
 echo "$arg"
done

If you want to explicitly refer to the positional arguments, given the `$@' bug (see section 10.5 Shell Substitutions), use:

for arg in ${1+"$@"}; do
 echo "$arg"
done

But keep in mind that Zsh, even in Bourne shell emulation mode, performs word splitting on `${1+"$@"}'; see 10.5 Shell
Substitutions, item `$@', for more.

if
Using `!' is not portable. Instead of:

file:///C|/pdfing/autoconf.html.htm (133 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC119

Autoconf:

if ! cmp -s file file.new; then
 mv file.new file
fi

use:

if cmp -s file file.new; then :; else
 mv file.new file
fi

There are shells that do not reset the exit status from an if:

$ if (exit 42); then true; fi; echo $?
42

whereas a proper shell should have printed `0'. This is especially bad in Makefiles since it produces false failures. This is
why properly written Makefiles, such as Automake's, have such hairy constructs:

if test -f "$file"; then
 install "$file" "$dest"
else
 :
fi

pwd
With modern shells, plain pwd outputs a "logical" directory name, some of whose components may be symbolic links.
These directory names are in contrast to "physical" directory names, whose components are all directories.

POSIX 1003.1-2001 requires that pwd must support the `-L' ("logical") and `-P' ("physical") options, with `-L' being the
default. However, traditional shells do not support these options, and their pwd command has the `-P' behavior.

Portable scripts should assume neither option is supported, and should assume neither behavior is the default. Also, on many
hosts `/bin/pwd' is equivalent to `pwd -P', but POSIX does not require this behavior and portable scripts should not rely
on it.

Typically it's best to use plain pwd. On modern hosts this outputs logical directory names, which have the following
advantages:

❍ Logical names are what the user specified.
❍ Physical names may not be portable from one installation host to another due to network filesystem gymnastics.
❍ On modern hosts `pwd -P' may fail due to lack of permissions to some parent directory, but plain pwd cannot fail

for this reason.

Also please see the discussion of the cd command.

set

file:///C|/pdfing/autoconf.html.htm (134 of 250)27. 1. 2004 18:44:42

Autoconf:

This builtin faces the usual problem with arguments starting with a dash. Modern shells such as Bash or Zsh understand `--'
to specify the end of the options (any argument after `--' is a parameter, even `-x' for instance), but most shells simply stop
the option processing as soon as a non-option argument is found. Therefore, use `dummy' or simply `x' to end the option
processing, and use shift to pop it out:

set x $my_list; shift

Some shells have the "opposite" problem of not recognizing all options (e.g., `set -e -x' assigns `-x' to the command
line). It is better to elide these:

set -ex

shift
Not only is shifting a bad idea when there is nothing left to shift, but in addition it is not portable: the shell of MIPS RISC/
OS 4.52 refuses to do it.

source
This command is not portable, as POSIX does not require it; use . instead.

test
The test program is the way to perform many file and string tests. It is often invoked by the alternate name `[', but using
that name in Autoconf code is asking for trouble since it is an M4 quote character.

If you need to make multiple checks using test, combine them with the shell operators `&&' and `||' instead of using the
test operators `-a' and `-o'. On System V, the precedence of `-a' and `-o' is wrong relative to the unary operators;
consequently, POSIX does not specify them, so using them is nonportable. If you combine `&&' and `||' in the same
statement, keep in mind that they have equal precedence.

You may use `!' with test, but not with if: `test ! -r foo || exit 1'.

test (files)
To enable configure scripts to support cross-compilation, they shouldn't do anything that tests features of the build
system instead of the host system. But occasionally you may find it necessary to check whether some arbitrary file exists.
To do so, use `test -f' or `test -r'. Do not use `test -x', because 4.3BSD does not have it. Do not use `test -e'
either, because Solaris 2.5 does not have it.

test (strings)
Avoid `test "string"', in particular if string might start with a dash, since test might interpret its argument as an
option (e.g., `string = "-n"').

Contrary to a common belief, `test -n string' and `test -z string' are portable. Nevertheless many shells
(such as Solaris 2.5, AIX 3.2, UNICOS 10.0.0.6, Digital Unix 4 etc.) have bizarre precedence and may be confused if string
looks like an operator:

$ test -n =
test: argument expected

If there are risks, use `test "xstring" = x' or `test "xstring" != x' instead.

file:///C|/pdfing/autoconf.html.htm (135 of 250)27. 1. 2004 18:44:42

Autoconf:

It is common to find variations of the following idiom:

test -n "`echo $ac_feature | sed 's/[-a-zA-Z0-9_]//g'`" &&
 action

to take an action when a token matches a given pattern. Such constructs should always be avoided by using:

echo "$ac_feature" | grep '[^-a-zA-Z0-9_]' >/dev/null 2>&1 &&
 action

Use case where possible since it is faster, being a shell builtin:

case $ac_feature in
 [!-a-zA-Z0-9_]) action;;
esac

Alas, negated character classes are probably not portable, although no shell is known to not support the POSIX syntax `
[!...]' (when in interactive mode, zsh is confused by the `[!...]' syntax and looks for an event in its history because of
`!'). Many shells do not support the alternative syntax `[^...]' (Solaris, Digital Unix, etc.).

One solution can be:

expr "$ac_feature" : '.*[^-a-zA-Z0-9_]' >/dev/null &&
 action

or better yet

expr "x$ac_feature" : '.*[^-a-zA-Z0-9_]' >/dev/null &&
 action

`expr "Xfoo" : "Xbar"' is more robust than `echo "Xfoo" | grep "^Xbar"', because it avoids problems
when `foo' contains backslashes.

trap
It is safe to trap at least the signals 1, 2, 13, and 15. You can also trap 0, i.e., have the trap run when the script ends (either
via an explicit exit, or the end of the script).

Although POSIX is not absolutely clear on this point, it is widely admitted that when entering the trap `$?' should be set to
the exit status of the last command run before the trap. The ambiguity can be summarized as: "when the trap is launched by
an exit, what is the last command run: that before exit, or exit itself?"

Bash considers exit to be the last command, while Zsh and Solaris 8 sh consider that when the trap is run it is still in the
exit, hence it is the previous exit status that the trap receives:

file:///C|/pdfing/autoconf.html.htm (136 of 250)27. 1. 2004 18:44:42

Autoconf:

$ cat trap.sh
trap 'echo $?' 0
(exit 42); exit 0
$ zsh trap.sh
42
$ bash trap.sh
0

The portable solution is then simple: when you want to `exit 42', run `(exit 42); exit 42', the first exit being
used to set the exit status to 42 for Zsh, and the second to trigger the trap and pass 42 as exit status for Bash.

The shell in FreeBSD 4.0 has the following bug: `$?' is reset to 0 by empty lines if the code is inside trap.

$ trap 'false

echo $?' 0
$ exit
0

Fortunately, this bug only affects trap.

true
Don't worry: as far as we know true is portable. Nevertheless, it's not always a builtin (e.g., Bash 1.x), and the portable
shell community tends to prefer using :. This has a funny side effect: when asked whether false is more portable than
true Alexandre Oliva answered:

In a sense, yes, because if it doesn't exist, the shell will produce an exit status of failure, which is correct for
false, but not for true.

unset
You cannot assume the support of unset. Nevertheless, because it is extremely useful to disable embarrassing variables
such as PS1, you can test for its existence and use it provided you give a neutralizing value when unset is not supported:

if (unset FOO) >/dev/null 2>&1; then
 unset=unset
else
 unset=false
fi
$unset PS1 || PS1='$ '

See section 10.7 Special Shell Variables, for some neutralizing values. Also, see 10.8 Limitations of Shell Builtins,
documentation of export, for the case of environment variables.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.9 Limitations of Usual Tools

file:///C|/pdfing/autoconf.html.htm (137 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

The small set of tools you can expect to find on any machine can still include some limitations you should be aware of.

awk
Don't leave white spaces before the parentheses in user functions calls; GNU awk will reject it:

$ gawk 'function die () { print "Aaaaarg!" }
 BEGIN { die () }'
gawk: cmd. line:2: BEGIN { die () }
gawk: cmd. line:2: ^ parse error
$ gawk 'function die () { print "Aaaaarg!" }
 BEGIN { die() }'
Aaaaarg!

If you want your program to be deterministic, don't depend on for on arrays:

$ cat for.awk
END {
 arr["foo"] = 1
 arr["bar"] = 1
 for (i in arr)
 print i
}
$ gawk -f for.awk </dev/null
foo
bar
$ nawk -f for.awk </dev/null
bar
foo

Some AWK, such as HPUX 11.0's native one, have regex engines fragile to inner anchors:

$ echo xfoo | $AWK '/foo|^bar/ { print }'
$ echo bar | $AWK '/foo|^bar/ { print }'
bar
$ echo xfoo | $AWK '/^bar|foo/ { print }'
xfoo
$ echo bar | $AWK '/^bar|foo/ { print }'
bar

Either do not depend on such patterns (i.e., use `/^(.*foo|bar)/', or use a simple test to reject such AWK.

cat
Don't rely on any option. The option `-v', which displays non-printing characters, seems portable, though.

cc
When a compilation such as `cc foo.c -o foo' fails, some compilers (such as CDS on Reliant UNIX) leave a `foo.
o'.

file:///C|/pdfing/autoconf.html.htm (138 of 250)27. 1. 2004 18:44:42

Autoconf:

HP-UX cc doesn't accept `.S' files to preprocess and assemble. `cc -c foo.S' will appear to succeed, but in fact does
nothing.

The default executable, produced by `cc foo.c', can be

❍ `a.out' -- usual Unix convention.
❍ `b.out' -- i960 compilers (including gcc).
❍ `a.exe' -- DJGPP port of gcc.
❍ `a_out.exe' -- GNV cc wrapper for DEC C on OpenVMS.
❍ `foo.exe' -- various MS-DOS compilers.

cmp
cmp performs a raw data comparison of two files, while diff compares two text files. Therefore, if you might compare
DOS files, even if only checking whether two files are different, use diff to avoid spurious differences due to differences
of newline encoding.

cp
SunOS cp does not support `-f', although its mv does. It's possible to deduce why mv and cp are different with respect to
`-f'. mv prompts by default before overwriting a read-only file. cp does not. Therefore, mv requires a `-f' option, but cp
does not. mv and cp behave differently with respect to read-only files because the simplest form of cp cannot overwrite a
read-only file, but the simplest form of mv can. This is because cp opens the target for write access, whereas mv simply
calls link (or, in newer systems, rename).

Bob Proulx notes that `cp -p' always tries to copy ownerships. But whether it actually does copy ownerships or not is a
system dependent policy decision implemented by the kernel. If the kernel allows it then it happens. If the kernel does not
allow it then it does not happen. It is not something cp itself has control over.

In SysV any user can chown files to any other user, and SysV also had a non-sticky `/tmp'. That undoubtedly derives from
the heritage of SysV in a business environment without hostile users. BSD changed this to be a more secure model where
only root can chown files and a sticky `/tmp' is used. That undoubtedly derives from the heritage of BSD in a campus
environment.

Linux by default follows BSD, but it can be configured to allow chown. HP-UX as an alternate example follows SysV, but
it can be configured to use the modern security model and disallow chown. Since it is an administrator configurable
parameter you can't use the name of the kernel as an indicator of the behavior.

date
Some versions of date do not recognize special % directives, and unfortunately, instead of complaining, they just pass
them through, and exit with success:

$ uname -a
OSF1 medusa.sis.pasteur.fr V5.1 732 alpha
$ date "+%s"
%s

diff
Option `-u' is nonportable.

Some implementations, such as Tru64's, fail when comparing to `/dev/null'. Use an empty file instead.

dirname

file:///C|/pdfing/autoconf.html.htm (139 of 250)27. 1. 2004 18:44:42

Autoconf:

Not all hosts have a working dirname, and you should instead use AS_DIRNAME (see section 8.4 Programming in M4sh).
For example:

dir=`dirname "$file"` # This is not portable.
dir=`AS_DIRNAME(["$file"])` # This is more portable.

This handles a few subtleties in the standard way required by POSIX. For example, under UN*X, should `dirname //1'
give `/'? Paul Eggert answers:

No, under some older flavors of Unix, leading `//' is a special path name: it refers to a "super-root" and is
used to access other machines' files. Leading `///', `////', etc. are equivalent to `/'; but leading `//' is
special. I think this tradition started with Apollo Domain/OS, an OS that is still in use on some older hosts.

POSIX allows but does not require the special treatment for `//'. It says that the behavior of dirname on path
names of the form `//([^/]+/*)?' is implementation defined. In these cases, GNU dirname returns `/',
but it's more portable to return `//' as this works even on those older flavors of Unix.

egrep
POSIX 1003.1-2001 no longer requires egrep, but many older hosts do not yet support the POSIX replacement grep -E.
To work around this problem, invoke AC_PROG_EGREP and then use $EGREP.

The empty alternative is not portable, use `?' instead. For instance with Digital Unix v5.0:

> printf "foo\n|foo\n" | $EGREP '^(|foo|bar)$'
|foo
> printf "bar\nbar|\n" | $EGREP '^(foo|bar|)$'
bar|
> printf "foo\nfoo|\n|bar\nbar\n" | $EGREP '^(foo||bar)$'
foo
|bar

$EGREP also suffers the limitations of grep.

expr
No expr keyword starts with `x', so use `expr x"word" : 'xregex'' to keep expr from misinterpreting word.

Don't use length, substr, match and index.

expr (`|')
You can use `|'. Although POSIX does require that `expr "' return the empty string, it does not specify the result when
you `|' together the empty string (or zero) with the empty string. For example:

expr '' \| ''

GNU/Linux and POSIX.2-1992 return the empty string for this case, but traditional UNIX returns `0' (Solaris is one such
example). In POSIX.1-2001, the specification has been changed to match traditional UNIX's behavior (which is bizarre, but
it's too late to fix this). Please note that the same problem does arise when the empty string results from a computation, as
in:

file:///C|/pdfing/autoconf.html.htm (140 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC104

Autoconf:

expr bar : foo \| foo : bar

Avoid this portability problem by avoiding the empty string.

expr (`:')
Don't use `\?', `\+' and `\|' in patterns, as they are not supported on Solaris.

The POSIX standard is ambiguous as to whether `expr 'a' : '\(b\)'' outputs `0' or the empty string. In practice, it
outputs the empty string on most platforms, but portable scripts should not assume this. For instance, the QNX 4.25 native
expr returns `0'.

One might think that a way to get a uniform behavior would be to use the empty string as a default value:

expr a : '\(b\)' \| ''

Unfortunately this behaves exactly as the original expression; see the `expr (`:')' entry for more information.

Older expr implementations (e.g., SunOS 4 expr and Solaris 8 /usr/ucb/expr) have a silly length limit that causes
expr to fail if the matched substring is longer than 120 bytes. In this case, you might want to fall back on `echo|sed' if
expr fails.

Don't leave, there is some more!

The QNX 4.25 expr, in addition of preferring `0' to the empty string, has a funny behavior in its exit status: it's always 1
when parentheses are used!

$ val=`expr 'a' : 'a'`; echo "$?: $val"
0: 1
$ val=`expr 'a' : 'b'`; echo "$?: $val"
1: 0

$ val=`expr 'a' : '\(a\)'`; echo "?: $val"
1: a
$ val=`expr 'a' : '\(b\)'`; echo "?: $val"
1: 0

In practice this can be a big problem if you are ready to catch failures of expr programs with some other method (such as
using sed), since you may get twice the result. For instance

$ expr 'a' : '\(a\)' || echo 'a' | sed 's/^\(a\)$/\1/'

will output `a' on most hosts, but `aa' on QNX 4.25. A simple workaround consists in testing expr and use a variable set to
expr or to false according to the result.

fgrep

file:///C|/pdfing/autoconf.html.htm (141 of 250)27. 1. 2004 18:44:42

Autoconf:

POSIX 1003.1-2001 no longer requires fgrep, but many older hosts do not yet support the POSIX replacement grep -F.
To work around this problem, invoke AC_PROG_FGREP and then use $FGREP.

find
The option `-maxdepth' seems to be GNU specific. Tru64 v5.1, NetBSD 1.5 and Solaris 2.5 find commands do not
understand it.

The replacement of `{}' is guaranteed only if the argument is exactly {}, not if it's only a part of an argument. For instance
on DU, and HP-UX 10.20 and HP-UX 11:

$ touch foo
$ find . -name foo -exec echo "{}-{}" \;
{}-{}

while GNU find reports `./foo-./foo'.

grep
Don't use `grep -s' to suppress output, because `grep -s' on System V does not suppress output, only error messages.
Instead, redirect the standard output and standard error (in case the file doesn't exist) of grep to `/dev/null'. Check the
exit status of grep to determine whether it found a match.

Don't use multiple regexps with `-e', as some grep will only honor the last pattern (e.g., IRIX 6.5 and Solaris 2.5.1).
Anyway, Stardent Vistra SVR4 grep lacks `-e'... Instead, use extended regular expressions and alternation.

Don't rely on `-w', as Irix 6.5.16m's grep does not support it.

ln
Don't rely on ln having a `-f' option. Symbolic links are not available on old systems; use `$(LN_S)' as a portable
substitute.

For versions of the DJGPP before 2.04, ln emulates soft links to executables by generating a stub that in turn calls the real
program. This feature also works with nonexistent files like in the Unix spec. So `ln -s file link' will generate
`link.exe', which will attempt to call `file.exe' if run. But this feature only works for executables, so `cp -p' is used
instead for these systems. DJGPP versions 2.04 and later have full symlink support.

ls
The portable options are `-acdilrtu'. Modern practice is for `-l' to output both owner and group, but traditional ls
omits the group.

Modern practice is for all diagnostics to go to standard error, but traditional `ls foo' prints the message `foo not
found' to standard output if `foo' does not exist. Be careful when writing shell commands like `sources=`ls *.c
2>/dev/null`', since with traditional ls this is equivalent to `sources="*.c not found"' if there are no `.c'
files.

mkdir
None of mkdir's options are portable. Instead of `mkdir -p filename', you should use use AS_MKDIR_P
(filename) (see section 8.4 Programming in M4sh).

mv
The only portable options are `-f' and `-i'.

file:///C|/pdfing/autoconf.html.htm (142 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC104

Autoconf:

Moving individual files between file systems is portable (it was in V6), but it is not always atomic: when doing `mv new
existing', there's a critical section where neither the old nor the new version of `existing' actually exists.

Be aware that moving files from `/tmp' can sometimes cause undesirable (but perfectly valid) warnings, even if you
created these files. On some systems, creating the file in `/tmp' is setting a guid wheel which you may not be part of. So
the file is copied, and then the chgrp fails:

$ touch /tmp/foo
$ mv /tmp/foo .
error-->mv: ./foo: set owner/group (was: 3830/0): Operation not permitted
$ echo $?
0
$ ls foo
foo

This behavior conforms to POSIX:

If the duplication of the file characteristics fails for any reason, mv shall write a diagnostic message to
standard error, but this failure shall not cause mv to modify its exit status."

Moving directories across mount points is not portable, use cp and rm.

Moving/Deleting open files isn't portable. The following can't be done on DOS/WIN32:

exec > foo
mv foo bar

nor can

exec > foo
rm -f foo

sed
Patterns should not include the separator (unless escaped), even as part of a character class. In conformance with POSIX, the
Cray sed will reject `s/[^/]*$//': use `s,[^/]*$,,'.

Sed scripts should not use branch labels longer than 8 characters and should not contain comments.

Don't include extra `;', as some sed, such as NetBSD 1.4.2's, try to interpret the second as a command:

$ echo a | sed 's/x/x/;;s/x/x/'
sed: 1: "s/x/x/;;s/x/x/": invalid command code ;

Input should have reasonably long lines, since some sed have an input buffer limited to 4000 bytes.

Alternation, `\|', is common but POSIX does not require its support, so it should be avoided in portable scripts. Solaris 8

file:///C|/pdfing/autoconf.html.htm (143 of 250)27. 1. 2004 18:44:42

Autoconf:

sed does not support alternation; e.g., `sed '/a\|b/d'' deletes only lines that contain the literal string `a|b'.

Anchors (`^' and `$') inside groups are not portable.

Nested parenthesization in patterns (e.g., `\(\(a*\)b*)\)') is quite portable to modern hosts, but is not supported by
some older sed implementations like SVR3.

Of course the option `-e' is portable, but it is not needed. No valid Sed program can start with a dash, so it does not help
disambiguating. Its sole usefulness is to help enforcing indentation as in:

sed -e instruction-1 \
 -e instruction-2

as opposed to

sed instruction-1;instruction-2

Contrary to yet another urban legend, you may portably use `&' in the replacement part of the s command to mean "what
was matched". All descendants of Bell Lab's V7 sed (at least; we don't have first hand experience with older seds) have
supported it.

POSIX requires that you must not have any white space between `!' and the following command. It is OK to have blanks
between the address and the `!'. For instance, on Solaris 8:

$ echo "foo" | sed -n '/bar/ ! p'
error-->Unrecognized command: /bar/ ! p
$ echo "foo" | sed -n '/bar/! p'
error-->Unrecognized command: /bar/! p
$ echo "foo" | sed -n '/bar/ !p'
foo

sed (`t')
Some old systems have sed that "forget" to reset their `t' flag when starting a new cycle. For instance on MIPS RISC/OS,
and on IRIX 5.3, if you run the following sed script (the line numbers are not actual part of the texts):

s/keep me/kept/g # a
t end # b
s/.*/deleted/g # c
: end # d

on

file:///C|/pdfing/autoconf.html.htm (144 of 250)27. 1. 2004 18:44:42

Autoconf:

delete me # 1
delete me # 2
keep me # 3
delete me # 4

you get

deleted
delete me
kept
deleted

instead of

deleted
deleted
kept
deleted

Why? When processing 1, a matches, therefore sets the t flag, b jumps to d, and the output is produced. When processing
line 2, the t flag is still set (this is the bug). Line a fails to match, but sed is not supposed to clear the t flag when a
substitution fails. Line b sees that the flag is set, therefore it clears it, and jumps to d, hence you get `delete me' instead
of `deleted'. When processing 3, t is clear, a matches, so the flag is set, hence b clears the flags and jumps. Finally, since
the flag is clear, 4 is processed properly.

There are two things one should remember about `t' in sed. Firstly, always remember that `t' jumps if some substitution
succeeded, not only the immediately preceding substitution. Therefore, always use a fake `t clear; : clear' to reset
the t flag where indeed.

Secondly, you cannot rely on sed to clear the flag at each new cycle.

One portable implementation of the script above is:

t clear
: clear
s/keep me/kept/g
t end
s/.*/deleted/g
: end

touch
On some old BSD systems, touch or any command that results in an empty file does not update the timestamps, so use a
command like echo as a workaround.

GNU touch 3.16r (and presumably all before that) fails to work on SunOS 4.1.3 when the empty file is on an NFS-mounted
4.2 volume.

file:///C|/pdfing/autoconf.html.htm (145 of 250)27. 1. 2004 18:44:42

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

10.10 Limitations of Make

make itself suffers a great number of limitations, only a few of which are listed here. First of all, remember that since commands
are executed by the shell, all its weaknesses are inherited....

$<
POSIX says that the `$<' construct in makefiles can be used only in inference rules and in the `.DEFAULT' rule; its meaning
in ordinary rules is unspecified. Solaris 8's make for instance will replace it with the argument.

Leading underscore in macro names
Some makes don't support leading underscores in macro names, such as on NEWS-OS 4.2R.

$ cat Makefile
_am_include = #
_am_quote =
all:; @echo this is test
$ make
Make: Must be a separator on rules line 2. Stop.
$ cat Makefile2
am_include = #
am_quote =
all:; @echo this is test
$ make -f Makefile2
this is test

Trailing backslash in macro
On some versions of HP-UX, make will read multiple newlines following a backslash, continuing to the next non-empty
line. For example,

FOO = one \

BAR = two

test:
 : FOO is "$(FOO)"
 : BAR is "$(BAR)"

shows FOO equal to one BAR = two. Other makes sensibly let a backslash continue only to the immediately following
line.

Escaped newline in comments

According to POSIX, `Makefile' comments start with # and continue until an unescaped newline is reached.

file:///C|/pdfing/autoconf.html.htm (146 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC116
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

% cat Makefile
A = foo \
 bar \
 baz

all:
 @echo ok
% make # GNU make
ok

However in Real World this is not always the case. Some implementations discards anything from # up to the end of line,
ignoring any trailing backslash.

% pmake # BSD make
"Makefile", line 3: Need an operator
Fatal errors encountered -- cannot continue

Therefore, if you want to comment out a multi-line definition, prefix each line with #, not only the first.

A = foo \
bar \
baz

make macro=value and sub-makes.

A command-line variable definition such as foo=bar overrides any definition of foo in the `Makefile'. Some make
implementations (such as GNU make) will propagate this override to sub-invocations of make. This is allowed but not
required by POSIX.

% cat Makefile
foo = foo
one:
 @echo $(foo)
 $(MAKE) two
two:
 @echo $(foo)
% make foo=bar # GNU make 3.79.1
bar
make two
make[1]: Entering directory `/home/adl'
bar
make[1]: Leaving directory `/home/adl'
% pmake foo=bar # BSD make
bar
pmake two
foo

file:///C|/pdfing/autoconf.html.htm (147 of 250)27. 1. 2004 18:44:42

Autoconf:

You have a few possibilities if you do want the foo=bar override to propagate to sub-makes. One is to use the -e option,
which causes all environment variables to have precedence over the `Makefile' macro definitions, and declare foo as an
environment variable:

% env foo=bar make -e

The -e option is propagated to sub-makes automatically, and since the environment is inherited between make
invocations, the foo macro will be overridden in sub-makes as expected.

Using -e could have unexpected side-effects if your environment contains some other macros usually defined by the
Makefile. (See also the note about make -e and SHELL below.)

Another way to propagate overrides to sub-makes is to do it manually, from your `Makefile':

foo = foo
one:
 @echo $(foo)
 $(MAKE) foo=$(foo) two
two:
 @echo $(foo)

You need to foresee all macros that a user might want to override if you do that.

The SHELL macro

POSIX-compliant makes internally use the $(SHELL) macro to spawn shell processes and execute `Makefile' rules.
This is a builtin macro supplied by make, but it can be modified from the `Makefile' or a command-line argument.

Not all makes will define this SHELL macro. OSF/Tru64 make is an example; this implementation will always use /bin/
sh. So it's a good idea to always define SHELL in your `Makefile's. If you use Autoconf, do

SHELL = @SHELL@

POSIX-compliant makes should never acquire the value of $(SHELL) from the environment, even when make -e is used
(otherwise, think about what would happen to your rules if SHELL=/bin/tcsh).

However not all make implementations will make this exception. For instance it's not surprising that OSF/Tru64 make
doesn't protect SHELL, since it doesn't use it.

file:///C|/pdfing/autoconf.html.htm (148 of 250)27. 1. 2004 18:44:42

Autoconf:

% cat Makefile
SHELL = /bin/sh
FOO = foo
all:
 @echo $(SHELL)
 @echo $(FOO)
% env SHELL=/bin/tcsh FOO=bar make -e # OSF1 V4.0 Make
/bin/tcsh
bar
% env SHELL=/bin/tcsh FOO=bar gmake -e # GNU make
/bin/sh
bar

Comments in rules

Never put comments in a rule.

Some make treat anything starting with a tab as a command for the current rule, even if the tab is immediately followed by
a #. The make from Tru64 Unix V5.1 is one of them. The following `Makefile' will run # foo through the shell.

all:
 # foo

The `obj/' subdirectory.

Never name one of your subdirectories `obj/' if you don't like surprises.

If an `obj/' directory exists, BSD make will enter it before reading `Makefile'. Hence the `Makefile' in the current
directory will not be read.

% cat Makefile
all:
 echo Hello
% cat obj/Makefile
all:
 echo World
% make # GNU make
echo Hello
Hello
% pmake # BSD make
echo World
World

make -k

Do not rely on the exit status of make -k. Some implementations reflect whether they encountered an error in their exit
status; other implementations always succeed.

file:///C|/pdfing/autoconf.html.htm (149 of 250)27. 1. 2004 18:44:42

Autoconf:

% cat Makefile
all:
 false
% make -k; echo exit status: $? # GNU make
false
make: *** [all] Error 1
exit status: 2
% pmake -k; echo exit status: $? # BSD make
false
*** Error code 1 (continuing)
exit status: 0

VPATH

There is no VPATH support specified in POSIX. Many makes have a form of VPATH support, but its implementation is not
consistent amongst makes.

Maybe the best suggestion to give to people who need the VPATH feature is to choose a make implementation and stick to
it. Since the resulting `Makefile's are not portable anyway, better choose a portable make (hint, hint).

Here are a couple of known issues with some VPATH implementations.

VPATH and double-colon rules

Any assignment to VPATH causes Sun make to only execute the first set of double-colon rules. (This comment has
been here since 1994 and the context has been lost. It's probably about SunOS 4. If you can reproduce this, please
send us a test case for illustration.)

$< in inference rules:
One implementation of make would not prefix $< if this prerequisite has been found in a VPATH dir. This means
that

VPATH = ../src
.c.o:
 cc -c $< -o $@

would run cc -c foo.c -o foo.o, even if `foo.c' was actually found in `../src/'.

This can be fixed as follows.

VPATH = ../src
.c.o:
 cc -c `test -f $< || echo ../src/`$< -o $@

This kludge was introduced in Automake in 2000, but the exact context have been lost. If you know which make
implementation is involved here, please drop us a note.

$< not supported in explicit rules

file:///C|/pdfing/autoconf.html.htm (150 of 250)27. 1. 2004 18:44:42

Autoconf:

As said elsewhere, using $< in explicit rules is not portable. The prerequisite file must be named explicitly in the
rule. If you want to find the prerequisite via a VPATH search, you have to code the whole thing manually. For
instance, using the same pattern as above:

VPATH = ../src
foo.o: foo.c
 cc -c `test -f foo.c || echo ../src/`foo.c -o foo.o

Automatic rule rewriting

Some make implementations, such as SunOS make, will search prerequisites in VPATH and rewrite all their
occurrences in the rule appropriately.

For instance

VPATH = ../src
foo.o: foo.c
 cc -c foo.c -o foo.o

would execute cc -c ../src/foo.c -o foo.o if `foo.c' was found in `../src'. That sounds great.

However, for the sake of other make implementations, we can't rely on this, and we have to search VPATH
manually:

VPATH = ../src
foo.o: foo.c
 cc -c `test -f foo.c || echo ../src/`foo.c -o foo.o

However the "prerequisite rewriting" still applies here. So if `foo.c' is in `../src', SunOS make will execute

cc -c `test -f ../src/foo.c || echo ../src/`foo.c -o foo.o

which reduces to

cc -c foo.c -o foo.o

and thus fails. Oops.

One workaround is to make sure that foo.c never appears as a plain word in the rule. For instance these three rules
would be safe.

file:///C|/pdfing/autoconf.html.htm (151 of 250)27. 1. 2004 18:44:42

Autoconf:

VPATH = ../src
foo.o: foo.c
 cc -c `test -f ./foo.c || echo ../src/`foo.c -o foo.o
foo2.o: foo2.c
 cc -c `test -f 'foo2.c' || echo ../src/`foo2.c -o foo2.o
foo3.o: foo3.c
 cc -c `test -f "foo3.c" || echo ../src/`foo3.c -o foo3.o

Things get worse when your prerequisites are in a macro.

VPATH = ../src
HEADERS = foo.h foo2.h foo3.h
install-HEADERS: $(HEADERS)
 for i in $(HEADERS); do \
 $(INSTALL) -m 644 `test -f $$i || echo ../src/`$$i \
 $(DESTDIR)$(includedir)/$$i; \
 done

The above install-HEADERS rule is not SunOS-proof because for i in $(HEADERS); will be expanded
as for i in foo.h foo2.h foo3.h; where foo.h and foo2.h are plain words and are hence subject to
VPATH adjustments.

If the three files are in `../src', the rule is run as:

for i in ../src/foo.h ../src/foo2.h foo3.h; do \
 install -m 644 `test -f $i || echo ../src/`$i \
 /usr/local/include/$i; \
done

where the two first install calls will fail. For instance, consider the foo.h installation:

install -m 644 `test -f ../src/foo.h || echo ../src/`../src/foo.h \
 /usr/local/include/../src/foo.h;

It reduces to:

install -m 644 ../src/foo.h /usr/local/include/../src/foo.h;

Note that the manual VPATH search did not cause any problems here; however this command installs `foo.h' in an
incorrect directory.

Trying to quote $(HEADERS) in some way, as we did for foo.c a few `Makefile's ago, does not help:

file:///C|/pdfing/autoconf.html.htm (152 of 250)27. 1. 2004 18:44:42

Autoconf:

install-HEADERS: $(HEADERS)
 headers='$(HEADERS)'; for i in $$headers; do \
 $(INSTALL) -m 644 `test -f $$i || echo ../src/`$$i \
 $(DESTDIR)$(includedir)/$$i; \
 done

Indeed, headers='$(HEADERS)' expands to headers='foo.h foo2.h foo3.h' where foo2.h is still
a plain word. (Aside: the headers='$(HEADERS)'; for i in $$headers; idiom is a good idea if
$(HEADERS) can be empty, because some shell produce a syntax error on for i in;.)

One workaround is to strip this unwanted `../src/' prefix manually:

VPATH = ../src
HEADERS = foo.h foo2.h foo3.h
install-HEADERS: $(HEADERS)
 headers='$(HEADERS)'; for i in $$headers; do \
 i=`expr "$$i" : '../src/\(.*\)'`;
 $(INSTALL) -m 644 `test -f $$i || echo ../src/`$$i \
 $(DESTDIR)$(includedir)/$$i; \
 done

OSF/Tru64 make creates prerequisite directories magically

When a prerequisite is a sub-directory of VPATH, Tru64 make will create it in the current directory.

% mkdir -p foo/bar build
% cd build
% cat >Makefile <<END
VPATH = ..
all: foo/bar
END
% make
mkdir foo
mkdir foo/bar

This can yield unexpected results if a rule uses a manual VPATH search as presented before.

VPATH = ..
all : foo/bar
 command `test -d foo/bar || echo ../`foo/bar

The above command will be run on the empty `foo/bar' directory that was created in the current directory.

target lookup

GNU make uses a rather complex algorithm to decide when it should use files found via a VPATH search. See
section `How Directory Searches are Performed' in The GNU Make Manual.

file:///C|/pdfing/autoconf.html.htm (153 of 250)27. 1. 2004 18:44:42

Autoconf:

If a target needs to be rebuilt, GNU make discards the filename found during the VPATH search for this target, and
builds the file locally using the filename given in the `Makefile'. If a target does not need to be rebuilt, GNU make
uses the filename found during the VPATH search.

Other make implementations, like BSD make, are easier to describe: the filename found during the VPATH search
will be used whether the target needs to be rebuilt or not. Therefore new files are created locally, but existing files
are updated at their VPATH location.

When attempting a VPATH build for an autoconfiscated package (e.g, mkdir build; ../configure), this
means the GNU make will build everything locally in the `build' directory, while BSD make will build new files
locally and update existing files in the source directory.

% cat Makefile
VPATH = ..
all: foo.x bar.x
foo.x bar.x: newer.x
 @echo Building $@
% touch ../bar.x
% touch ../newer.x
% make # GNU make
Building foo.x
Building bar.x
% pmake # BSD make
Building foo.x
Building ../bar.x

Another point worth mentioning is that once GNU make has decided to ignore a VPATH filename (e.g., it ignored
`../bar.x' in the above example) it will continue to ignore it when the target occurs as a prerequisite of another
rule.

The following example shows that GNU make does not look up `bar.x' in VPATH before performing the .x.y
rule, because it ignored the VPATH result of `bar.x' while running the bar.x: newer.x rule.

% cat Makefile
VPATH = ..
all: bar.y
bar.x: newer.x
 @echo Building $@
.SUFFIXES: .x .y
.x.y:
 cp $< $@
% touch ../bar.x
% touch ../newer.x
% make # GNU make
Building bar.x
cp bar.x bar.y
cp: cannot stat `bar.x': No such file or directory
make: *** [bar.y] Error 1
% pmake # BSD make
Building ../bar.x
cp ../bar.x bar.y

file:///C|/pdfing/autoconf.html.htm (154 of 250)27. 1. 2004 18:44:42

Autoconf:

Note that if you drop away the command from the bar.x: newer.x rule, things will magically start to work:
GNU make knows that bar.x hasn't been updated, therefore it doesn't discard the result from VPATH (`../bar.
x') in succeeding uses.

% cat Makefile
VPATH = ..
all: bar.y
bar.x: newer.x
.SUFFIXES: .x .y
.x.y:
 cp $< $@
% touch ../bar.x
% touch ../newer.x
% make # GNU make
cp ../bar.x bar.y
% rm bar.y
% pmake # BSD make
cp ../bar.x bar.y

Single Suffix Rules and Separated Dependencies
A Single Suffix Rule is basically a usual suffix (inference) rule (`.from.to:'), but which destination suffix is empty (`.
from:').

Separated dependencies simply refers to listing the prerequisite of a target, without defining a rule. Usually one can list on
the one hand side, the rules, and on the other hand side, the dependencies.

Solaris make does not support separated dependencies for targets defined by single suffix rules:

$ cat Makefile
.SUFFIXES: .in
foo: foo.in
.in:
 cp $< $ $ touch foo.in
$ make
$ ls
Makefile foo.in

while GNU Make does:

$ gmake
cp foo.in foo
$ ls
Makefile foo foo.in

Note it works without the `foo: foo.in' dependency.

file:///C|/pdfing/autoconf.html.htm (155 of 250)27. 1. 2004 18:44:42

Autoconf:

$ cat Makefile
.SUFFIXES: .in
.in:
 cp $< $ $ make foo
cp foo.in foo

and it works with double suffix inference rules:

$ cat Makefile
foo.out: foo.in
.SUFFIXES: .in .out
.in.out:
 cp $< $ $ make
cp foo.in foo.out

As a result, in such a case, you have to write target rules.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

11. Manual Configuration

A few kinds of features can't be guessed automatically by running test programs. For example, the details of the object-file format,
or special options that need to be passed to the compiler or linker. You can check for such features using ad-hoc means, such as
having configure check the output of the uname program, or looking for libraries that are unique to particular systems.
However, Autoconf provides a uniform method for handling unguessable features.

11.1 Specifying the System Type Specifying the system type

11.2 Getting the Canonical System Type Getting the canonical system type

11.3 Using the System Type What to do with the system type

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

11.1 Specifying the System Type

Like other GNU configure scripts, Autoconf-generated configure scripts can make decisions based on a canonical name for
the system type, which has the form: `cpu-vendor-os', where os can be `system' or `kernel-system'

configure can usually guess the canonical name for the type of system it's running on. To do so it runs a script called config.
guess, which infers the name using the uname command or symbols predefined by the C preprocessor.

Alternately, the user can specify the system type with command line arguments to configure. Doing so is necessary when cross-
compiling. In the most complex case of cross-compiling, three system types are involved. The options to specify them are:

`--build=build-type'

file:///C|/pdfing/autoconf.html.htm (156 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC128
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

the type of system on which the package is being configured and compiled. It defaults to the result of running config.
guess.

`--host=host-type'
the type of system on which the package will run. By default it is the same as the build machine. Specifying it enables the
cross-compilation mode.

`--target=target-type'
the type of system for which any compiler tools in the package will produce code (rarely needed). By default, it is the same
as host.

If you mean to override the result of config.guess, use `--build', not `--host', since the latter enables cross-compilation.
For historical reasons, passing `--host' also changes the build type. Therefore, whenever you specify --host, be sure to specify
--build too. This will be fixed in the future.

./configure --build=i686-pc-linux-gnu --host=m68k-coff

will enter cross-compilation mode, but configure will fail if it can't run the code generated by the specified compiler if you
configure as follows:

./configure CC=m68k-coff-gcc

configure recognizes short aliases for many system types; for example, `decstation' can be used instead of `mips-dec-
ultrix4.2'. configure runs a script called config.sub to canonicalize system type aliases.

This section deliberately omits the description of the obsolete interface; see 15.6.3 Hosts and Cross-Compilation.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

11.2 Getting the Canonical System Type

The following macros make the system type available to configure scripts.

The variables `build_alias', `host_alias', and `target_alias' are always exactly the arguments of `--build', `--
host', and `--target'; in particular, they are left empty if the user did not use them, even if the corresponding
AC_CANONICAL macro was run. Any configure script may use these variables anywhere. These are the variables that should be
used when in interaction with the user.

If you need to recognize some special environments based on their system type, run the following macros to get canonical system
names. These variables are not set before the macro call.

If you use these macros, you must distribute config.guess and config.sub along with your source code. See section 4.4
Outputting Files, for information about the AC_CONFIG_AUX_DIR macro which you can use to control in which directory
configure looks for those scripts.

Macro: AC_CANONICAL_BUILD
Compute the canonical build-system type variable, build, and its three individual parts build_cpu, build_vendor,

file:///C|/pdfing/autoconf.html.htm (157 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#SEC128
file:///C|/pdfing/autoconf.html#SEC128
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC19

Autoconf:

and build_os.

If `--build' was specified, then build is the canonicalization of build_alias by config.sub, otherwise it is
determined by the shell script config.guess.

Macro: AC_CANONICAL_HOST
Compute the canonical host-system type variable, host, and its three individual parts host_cpu, host_vendor, and
host_os.

If `--host' was specified, then host is the canonicalization of host_alias by config.sub, otherwise it defaults to
build.

Macro: AC_CANONICAL_TARGET
Compute the canonical target-system type variable, target, and its three individual parts target_cpu,
target_vendor, and target_os.

If `--target' was specified, then target is the canonicalization of target_alias by config.sub, otherwise it
defaults to host.

Note that there can be artifacts due to the backward compatibility code. See See section 15.6.3 Hosts and Cross-Compilation, for
more.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

11.3 Using the System Type

How do you use a canonical system type? Usually, you use it in one or more case statements in `configure.ac' to select
system-specific C files. Then, using AC_CONFIG_LINKS, link those files which have names based on the system name, to
generic names, such as `host.h' or `target.c' (see section 4.10 Creating Configuration Links). The case statement patterns
can use shell wild cards to group several cases together, like in this fragment:

case $target in
i386-*-mach* | i386-*-gnu*)
 obj_format=aout emulation=mach bfd_gas=yes ;;
i960-*-bout) obj_format=bout ;;
esac

and later in `configure.ac', use:

AC_CONFIG_LINKS(host.h:config/$machine.h
 object.h:config/$obj_format.h)

Note that the above example uses $target because it's taken from a tool which can be built on some architecture ($build), run
on another ($host), but yet handle data for a third architecture ($target). Such tools are usually part of a compiler suite, they
generate code for a specific $target.

However $target should be meaningless for most packages. If you want to base a decision on the system where your program

file:///C|/pdfing/autoconf.html.htm (158 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC32

Autoconf:

will be run, make sure you use the $host variable, as in the following excerpt:

case $host in
 --msdos* | *-*-go32* | *-*-mingw32* | *-*-cygwin* | *-*-windows*)
 MUMBLE_INIT="mumble.ini"
 ;;
 *)
 MUMBLE_INIT=".mumbleinit"
 ;;
esac
AC_SUBST([MUMBLE_INIT])

You can also use the host system type to find cross-compilation tools. See section 5.2.2 Generic Program and File Checks, for
information about the AC_CHECK_TOOL macro which does that.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12. Site Configuration

configure scripts support several kinds of local configuration decisions. There are ways for users to specify where external
software packages are, include or exclude optional features, install programs under modified names, and set default values for
configure options.

12.1 Working With External Software Working with other optional software

12.2 Choosing Package Options Selecting optional features

12.3 Making Your Help Strings Look Pretty Formatting help string

12.4 Configuring Site Details Configuring site details

12.5 Transforming Program Names When Installing Changing program names when installing

12.6 Setting Site Defaults Giving configure local defaults

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.1 Working With External Software

Some packages require, or can optionally use, other software packages that are already installed. The user can give configure
command line options to specify which such external software to use. The options have one of these forms:

--with-package[=arg]
--without-package

For example, `--with-gnu-ld' means work with the GNU linker instead of some other linker. `--with-x' means work with
The X Window System.

The user can give an argument by following the package name with `=' and the argument. Giving an argument of `no' is for

file:///C|/pdfing/autoconf.html.htm (159 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#SEC128
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC133
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

packages that are used by default; it says to not use the package. An argument that is neither `yes' nor `no' could include a name
or number of a version of the other package, to specify more precisely which other package this program is supposed to work with.
If no argument is given, it defaults to `yes'. `--without-package' is equivalent to `--with-package=no'.

configure scripts do not complain about `--with-package' options that they do not support. This behavior permits
configuring a source tree containing multiple packages with a top-level configure script when the packages support different
options, without spurious error messages about options that some of the packages support. An unfortunate side effect is that option
spelling errors are not diagnosed. No better approach to this problem has been suggested so far.

For each external software package that may be used, `configure.ac' should call AC_ARG_WITH to detect whether the
configure user asked to use it. Whether each package is used or not by default, and which arguments are valid, is up to you.

Macro: AC_ARG_WITH (package, help-string, [action-if-given], [action-if-not-given])
If the user gave configure the option `--with-package' or `--without-package', run shell commands action-if-
given. If neither option was given, run shell commands action-if-not-given. The name package indicates another software
package that this program should work with. It should consist only of alphanumeric characters and dashes.

The option's argument is available to the shell commands action-if-given in the shell variable withval, which is actually
just the value of the shell variable with_package, with any `-' characters changed into `_'. You may use that variable
instead, if you wish.

The argument help-string is a description of the option that looks like this:

 --with-readline support fancy command line editing

help-string may be more than one line long, if more detail is needed. Just make sure the columns line up in `configure
--help'. Avoid tabs in the help string. You'll need to enclose the help string in `[' and `]' in order to produce the leading
spaces.

You should format your help-string with the macro AC_HELP_STRING (see section 12.3 Making Your Help Strings Look
Pretty).

Macro: AC_WITH (package, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_WITH that does not support providing a help string.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.2 Choosing Package Options

If a software package has optional compile-time features, the user can give configure command line options to specify whether
to compile them. The options have one of these forms:

--enable-feature[=arg]
--disable-feature

These options allow users to choose which optional features to build and install. `--enable-feature' options should never
make a feature behave differently or cause one feature to replace another. They should only cause parts of the program to be built

file:///C|/pdfing/autoconf.html.htm (160 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

rather than left out.

The user can give an argument by following the feature name with `=' and the argument. Giving an argument of `no' requests that
the feature not be made available. A feature with an argument looks like `--enable-debug=stabs'. If no argument is given, it
defaults to `yes'. `--disable-feature' is equivalent to `--enable-feature=no'.

configure scripts do not complain about `--enable-feature' options that they do not support. This behavior permits
configuring a source tree containing multiple packages with a top-level configure script when the packages support different
options, without spurious error messages about options that some of the packages support. An unfortunate side effect is that option
spelling errors are not diagnosed. No better approach to this problem has been suggested so far.

For each optional feature, `configure.ac' should call AC_ARG_ENABLE to detect whether the configure user asked to
include it. Whether each feature is included or not by default, and which arguments are valid, is up to you.

Macro: AC_ARG_ENABLE (feature, help-string, [action-if-given], [action-if-not-given])
If the user gave configure the option `--enable-feature' or `--disable-feature', run shell commands
action-if-given. If neither option was given, run shell commands action-if-not-given. The name feature indicates an optional
user-level facility. It should consist only of alphanumeric characters and dashes.

The option's argument is available to the shell commands action-if-given in the shell variable enableval, which is
actually just the value of the shell variable enable_feature, with any `-' characters changed into `_'. You may use that
variable instead, if you wish. The help-string argument is like that of AC_ARG_WITH (see section 12.1 Working With
External Software).

You should format your help-string with the macro AC_HELP_STRING (see section 12.3 Making Your Help Strings Look
Pretty).

Macro: AC_ENABLE (feature, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_ENABLE that does not support providing a help string.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.3 Making Your Help Strings Look Pretty

Properly formatting the `help strings' which are used in AC_ARG_WITH (see section 12.1 Working With External Software)
and AC_ARG_ENABLE (see section 12.2 Choosing Package Options) can be challenging. Specifically, you want your own `help
strings' to line up in the appropriate columns of `configure --help' just like the standard Autoconf `help strings'
do. This is the purpose of the AC_HELP_STRING macro.

Macro: AC_HELP_STRING (left-hand-side, right-hand-side)

Expands into an help string that looks pretty when the user executes `configure --help'. It is typically used in
AC_ARG_WITH (see section 12.1 Working With External Software) or AC_ARG_ENABLE (see section 12.2 Choosing
Package Options). The following example will make this clearer.

file:///C|/pdfing/autoconf.html.htm (161 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC133
file:///C|/pdfing/autoconf.html#SEC133
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC131

Autoconf:

AC_DEFUN([TEST_MACRO],
[AC_ARG_WITH([foo],
 AC_HELP_STRING([--with-foo],
 [use foo (default is NO)]),
 [ac_cv_use_foo=$withval], [ac_cv_use_foo=no])
AC_CACHE_CHECK([whether to use foo],
 [ac_cv_use_foo], [ac_cv_use_foo=no])])

Please note that the call to AC_HELP_STRING is unquoted. Then the last few lines of `configure --help' will
appear like this:

--enable and --with options recognized:
 --with-foo use foo (default is NO)

The AC_HELP_STRING macro is particularly helpful when the left-hand-side and/or right-hand-side are composed of
macro arguments, as shown in the following example.

AC_DEFUN(MY_ARG_WITH,
[AC_ARG_WITH([$1],
 AC_HELP_STRING([--with-$1], [use $1 (default is $2)]),
 ac_cv_use_$1=$withval, ac_cv_use_$1=no),
AC_CACHE_CHECK(whether to use $1, ac_cv_use_$1, ac_cv_use_$1=$2)])

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.4 Configuring Site Details

Some software packages require complex site-specific information. Some examples are host names to use for certain services,
company names, and email addresses to contact. Since some configuration scripts generated by Metaconfig ask for such
information interactively, people sometimes wonder how to get that information in Autoconf-generated configuration scripts,
which aren't interactive.

Such site configuration information should be put in a file that is edited only by users, not by programs. The location of the file can
either be based on the prefix variable, or be a standard location such as the user's home directory. It could even be specified by
an environment variable. The programs should examine that file at run time, rather than at compile time. Run-time configuration is
more convenient for users and makes the configuration process simpler than getting the information while configuring. See section
`Variables for Installation Directories' in GNU Coding Standards, for more information on where to put data files.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.5 Transforming Program Names When Installing

Autoconf supports changing the names of programs when installing them. In order to use these transformations, `configure.ac'
must call the macro AC_ARG_PROGRAM.

file:///C|/pdfing/autoconf.html.htm (162 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC133
file:///C|/pdfing/autoconf.html#SEC135
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Macro: AC_ARG_PROGRAM
Place in output variable program_transform_name a sequence of sed commands for changing the names of installed
programs.

If any of the options described below are given to configure, program names are transformed accordingly. Otherwise, if
AC_CANONICAL_TARGET has been called and a `--target' value is given, the target type followed by a dash is used as
a prefix. Otherwise, no program name transformation is done.

12.5.1 Transformation Options configure options to transform names

12.5.2 Transformation Examples Sample uses of transforming names

12.5.3 Transformation Rules `Makefile' uses of transforming names

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.5.1 Transformation Options

You can specify name transformations by giving configure these command line options:

`--program-prefix=prefix'
prepend prefix to the names;

`--program-suffix=suffix'
append suffix to the names;

`--program-transform-name=expression'
perform sed substitution expression on the names.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.5.2 Transformation Examples

These transformations are useful with programs that can be part of a cross-compilation development environment. For example, a
cross-assembler running on a Sun 4 configured with `--target=i960-vxworks' is normally installed as `i960-vxworks-
as', rather than `as', which could be confused with a native Sun 4 assembler.

You can force a program name to begin with `g', if you don't want GNU programs installed on your system to shadow other
programs with the same name. For example, if you configure GNU diff with `--program-prefix=g', then when you run
`make install' it is installed as `/usr/local/bin/gdiff'.

As a more sophisticated example, you could use

--program-transform-name='s/^/g/; s/^gg/g/; s/^gless/less/'

to prepend `g' to most of the program names in a source tree, excepting those like gdb that already have one and those like less
and lesskey that aren't GNU programs. (That is assuming that you have a source tree containing those programs that is set up to
use this feature.)

file:///C|/pdfing/autoconf.html.htm (163 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC135
file:///C|/pdfing/autoconf.html#SEC136
file:///C|/pdfing/autoconf.html#SEC137
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC136
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC135
file:///C|/pdfing/autoconf.html#SEC137
file:///C|/pdfing/autoconf.html#SEC137
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

One way to install multiple versions of some programs simultaneously is to append a version number to the name of one or both.
For example, if you want to keep Autoconf version 1 around for awhile, you can configure Autoconf version 2 using `--
program-suffix=2' to install the programs as `/usr/local/bin/autoconf2', `/usr/local/bin/autoheader2',
etc. Nevertheless, pay attention that only the binaries are renamed, therefore you'd have problems with the library files which might
overlap.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.5.3 Transformation Rules

Here is how to use the variable program_transform_name in a `Makefile.in':

PROGRAMS = cp ls rm
transform = @program_transform_name@
install:
 for p in $(PROGRAMS); do \
 $(INSTALL_PROGRAM) $$p $(DESTDIR)$(bindir)/`echo $$p | \
 sed '$(transform)'`; \
 done

uninstall:
 for p in $(PROGRAMS); do \
 rm -f $(DESTDIR)$(bindir)/`echo $$p | sed '$(transform)'`; \
 done

It is guaranteed that program_transform_name is never empty, and that there are no useless separators. Therefore you may
safely embed program_transform_name within a sed program using `;':

transform = @program_transform_name@
transform_exe = s/$(EXEEXT)$$//;$(transform);s/$$/$(EXEEXT)/

Whether to do the transformations on documentation files (Texinfo or man) is a tricky question; there seems to be no perfect
answer, due to the several reasons for name transforming. Documentation is not usually particular to a specific architecture, and
Texinfo files do not conflict with system documentation. But they might conflict with earlier versions of the same files, and man
pages sometimes do conflict with system documentation. As a compromise, it is probably best to do name transformations on man
pages but not on Texinfo manuals.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

12.6 Setting Site Defaults

Autoconf-generated configure scripts allow your site to provide default values for some configuration values. You do this by
creating site- and system-wide initialization files.

If the environment variable CONFIG_SITE is set, configure uses its value as the name of a shell script to read. Otherwise, it

file:///C|/pdfing/autoconf.html.htm (164 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC136
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC137
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

reads the shell script `prefix/share/config.site' if it exists, then `prefix/etc/config.site' if it exists. Thus,
settings in machine-specific files override those in machine-independent ones in case of conflict.

Site files can be arbitrary shell scripts, but only certain kinds of code are really appropriate to be in them. Because configure
reads any cache file after it has read any site files, a site file can define a default cache file to be shared between all Autoconf-
generated configure scripts run on that system (see section 7.3.2 Cache Files). If you set a default cache file in a site file, it is a
good idea to also set the output variable CC in that site file, because the cache file is only valid for a particular compiler, but many
systems have several available.

You can examine or override the value set by a command line option to configure in a site file; options set shell variables that
have the same names as the options, with any dashes turned into underscores. The exceptions are that `--without-' and `--
disable-' options are like giving the corresponding `--with-' or `--enable-' option and the value `no'. Thus, `--cache-
file=localcache' sets the variable cache_file to the value `localcache'; `--enable-warnings=no' or `--
disable-warnings' sets the variable enable_warnings to the value `no'; `--prefix=/usr' sets the variable prefix
to the value `/usr'; etc.

Site files are also good places to set default values for other output variables, such as CFLAGS, if you need to give them non-
default values: anything you would normally do, repetitively, on the command line. If you use non-default values for prefix or
exec_prefix (wherever you locate the site file), you can set them in the site file if you specify it with the CONFIG_SITE
environment variable.

You can set some cache values in the site file itself. Doing this is useful if you are cross-compiling, where it is impossible to check
features that require running a test program. You could "prime the cache" by setting those values correctly for that system in
`prefix/etc/config.site'. To find out the names of the cache variables you need to set, look for shell variables with
`_cv_' in their names in the affected configure scripts, or in the Autoconf M4 source code for those macros.

The cache file is careful to not override any variables set in the site files. Similarly, you should not override command-line options
in the site files. Your code should check that variables such as prefix and cache_file have their default values (as set near
the top of configure) before changing them.

Here is a sample file `/usr/share/local/gnu/share/config.site'. The command `configure --prefix=/usr/
share/local/gnu' would read this file (if CONFIG_SITE is not set to a different file).

config.site for configure
#
Change some defaults.
test "$prefix" = NONE && prefix=/usr/share/local/gnu
test "$exec_prefix" = NONE && exec_prefix=/usr/local/gnu
test "$sharedstatedir" = '$prefix/com' && sharedstatedir=/var
test "$localstatedir" = '$prefix/var' && localstatedir=/var

Give Autoconf 2.x generated configure scripts a shared default
cache file for feature test results, architecture-specific.
if test "$cache_file" = /dev/null; then
 cache_file="$prefix/var/config.cache"
 # A cache file is only valid for one C compiler.
 CC=gcc
fi

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (165 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC140
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

13. Running configure Scripts

Below are instructions on how to configure a package that uses a configure script, suitable for inclusion as an `INSTALL' file
in the package. A plain-text version of `INSTALL' which you may use comes with Autoconf.

13.1 Basic Installation Instructions for typical cases

13.2 Compilers and Options Selecting compilers and optimization

13.3 Compiling For Multiple Architectures Compiling for multiple architectures at once

13.4 Installation Names Installing in different directories

13.5 Optional Features Selecting optional features

13.6 Specifying the System Type Specifying the system type

13.7 Sharing Defaults Setting site-wide defaults for configure

13.8 Defining Variables Specifying the compiler etc.

13.9 configure Invocation Changing how configure runs

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.1 Basic Installation

These are generic installation instructions.

The configure shell script attempts to guess correct values for various system-dependent variables used during compilation. It
uses those values to create a `Makefile' in each directory of the package. It may also create one or more `.h' files containing
system-dependent definitions. Finally, it creates a shell script `config.status' that you can run in the future to recreate the
current configuration, and a file `config.log' containing compiler output (useful mainly for debugging configure).

It can also use an optional file (typically called `config.cache' and enabled with `--cache-file=config.cache' or
simply `-C') that saves the results of its tests to speed up reconfiguring. (Caching is disabled by default to prevent problems with
accidental use of stale cache files.)

If you need to do unusual things to compile the package, please try to figure out how configure could check whether to do
them, and mail diffs or instructions to the address given in the `README' so they can be considered for the next release. If you are
using the cache, and at some point `config.cache' contains results you don't want to keep, you may remove or edit it.

The file `configure.ac' (or `configure.in') is used to create `configure' by a program called autoconf. You only
need `configure.ac' if you want to change it or regenerate `configure' using a newer version of autoconf.

The simplest way to compile this package is:

1. cd to the directory containing the package's source code and type `./configure' to configure the package for your
system. If you're using csh on an old version of System V, you might need to type `sh ./configure' instead to prevent
csh from trying to execute configure itself.

Running configure takes awhile. While running, it prints some messages telling which features it is checking for.

2. Type `make' to compile the package.

file:///C|/pdfing/autoconf.html.htm (166 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC140
file:///C|/pdfing/autoconf.html#SEC141
file:///C|/pdfing/autoconf.html#SEC142
file:///C|/pdfing/autoconf.html#SEC143
file:///C|/pdfing/autoconf.html#SEC144
file:///C|/pdfing/autoconf.html#SEC145
file:///C|/pdfing/autoconf.html#SEC146
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC141
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

3. Optionally, type `make check' to run any self-tests that come with the package.

4. Type `make install' to install the programs and any data files and documentation.

5. You can remove the program binaries and object files from the source code directory by typing `make clean'. To also
remove the files that configure created (so you can compile the package for a different kind of computer), type `make
distclean'. There is also a `make maintainer-clean' target, but that is intended mainly for the package's
developers. If you use it, you may have to get all sorts of other programs in order to regenerate files that came with the
distribution.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script does not know about. Run `./
configure --help' for details on some of the pertinent environment variables.

You can give configure initial values for configuration parameters by setting variables in the command line or in the
environment. Here is an example:

./configure CC=c89 CFLAGS=-O2 LIBS=-lposix

See section 13.8 Defining Variables, for more details.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.3 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by placing the object files for each architecture
in their own directory. To do this, you must use a version of make that supports the VPATH variable, such as GNU make. cd to
the directory where you want the object files and executables to go and run the configure script. configure automatically
checks for the source code in the directory that configure is in and in `..'.

If you have to use a make that does not support the VPATH variable, you have to compile the package for one architecture at a time
in the source code directory. After you have installed the package for one architecture, use `make distclean' before
reconfiguring for another architecture.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.4 Installation Names

By default, `make install' will install the package's files in `/usr/local/bin', `/usr/local/man', etc. You can specify
an installation prefix other than `/usr/local' by giving configure the option `--prefix=path'.

file:///C|/pdfing/autoconf.html.htm (167 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC140
file:///C|/pdfing/autoconf.html#SEC142
file:///C|/pdfing/autoconf.html#SEC142
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC141
file:///C|/pdfing/autoconf.html#SEC143
file:///C|/pdfing/autoconf.html#SEC143
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC142
file:///C|/pdfing/autoconf.html#SEC144
file:///C|/pdfing/autoconf.html#SEC144
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

You can specify separate installation prefixes for architecture-specific files and architecture-independent files. If you give
configure the option `--exec-prefix=path', the package will use path as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like `--bindir=path' to specify different values for
particular kinds of files. Run `configure --help' for a list of the directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix or suffix on their names by giving
configure the option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.5 Optional Features

Some packages pay attention to `--enable-feature' options to configure, where feature indicates an optional part of the
package. They may also pay attention to `--with-package' options, where package is something like `gnu-as' or `x' (for the
X Window System). The `README' should mention any `--enable-' and `--with-' options that the package recognizes.

For packages that use the X Window System, configure can usually find the X include and library files automatically, but if it
doesn't, you can use the configure options `--x-includes=dir' and `--x-libraries=dir' to specify their locations.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.6 Specifying the System Type

There may be some features configure cannot figure out automatically, but needs to determine by the type of machine the
package will run on. Usually, assuming the package is built to be run on the same architectures, configure can figure that out,
but if it prints a message saying it cannot guess the machine type, give it the `--build=type' option. type can either be a short
name for the system type, such as `sun4', or a canonical name which has the form:

cpu-company-system

where system can have one of these forms:

os kernel-os

See the file `config.sub' for the possible values of each field. If `config.sub' isn't included in this package, then this
package doesn't need to know the machine type.

If you are building compiler tools for cross-compiling, you should use the `--target=type' option to select the type of system
they will produce code for.

If you want to use a cross compiler, that generates code for a platform different from the build platform, you should specify the
host platform (i.e., that on which the generated programs will eventually be run) with `--host=type'.

file:///C|/pdfing/autoconf.html.htm (168 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC143
file:///C|/pdfing/autoconf.html#SEC145
file:///C|/pdfing/autoconf.html#SEC145
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC144
file:///C|/pdfing/autoconf.html#SEC146
file:///C|/pdfing/autoconf.html#SEC146
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.7 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site shell script called `config.site' that
gives default values for variables like CC, cache_file, and prefix. configure looks for `prefix/share/config.
site' if it exists, then `prefix/etc/config.site' if it exists. Or, you can set the CONFIG_SITE environment variable to
the location of the site script. A warning: not all configure scripts look for a site script.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.8 Defining Variables

Variables not defined in a site shell script can be set in the environment passed to configure. However, some packages may run
configure again during the build, and the customized values of these variables may be lost. In order to avoid this problem, you
should set them in the configure command line, using `VAR=value'. For example:

./configure CC=/usr/local2/bin/gcc

will cause the specified gcc to be used as the C compiler (unless it is overridden in the site shell script).

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

13.9 configure Invocation

configure recognizes the following options to control how it operates.

`--help'
`-h'

Print a summary of the options to configure, and exit.

`--version'
`-V'

Print the version of Autoconf used to generate the configure script, and exit.

`--cache-file=file'
Enable the cache: use and save the results of the tests in file, traditionally `config.cache'. file defaults to `/dev/null'
to disable caching.

`--config-cache'
`-C'

Alias for `--cache-file=config.cache'.

`--quiet'
`--silent'

file:///C|/pdfing/autoconf.html.htm (169 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC145
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC146
file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

`-q'
Do not print messages saying which checks are being made. To suppress all normal output, redirect it to `/dev/null' (any
error messages will still be shown).

`--srcdir=dir'
Look for the package's source code in directory dir. Usually configure can determine that directory automatically.

configure also accepts some other, not widely useful, options. Run `configure --help' for more details.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

14. Recreating a Configuration

The configure script creates a file named `config.status', which actually configures, instantiates, the template files. It also
records the configuration options that were specified when the package was last configured in case reconfiguring is needed.

Synopsis:

./config.status option... [file...]

It configures the files; if none are specified, all the templates are instantiated. The files must be specified without their
dependencies, as in

./config.status foobar

not

./config.status foobar:foo.in:bar.in

The supported options are:

`--help'
`-h'

Print a summary of the command line options, the list of the template files, and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--silent'
`--quiet'
`-q'

Do not print progress messages.

`--debug'

file:///C|/pdfing/autoconf.html.htm (170 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

`-d'
Don't remove the temporary files.

`--file=file[:template]'
Require that file be instantiated as if `AC_CONFIG_FILES(file:template)' was used. Both file and template may be
`-' in which case the standard output and/or standard input, respectively, is used. If a template filename is relative, it is first
looked for in the build tree, and then in the source tree. See section 4.5 Performing Configuration Actions, for more details.

This option and the following ones provide one way for separately distributed packages to share the values computed by
configure. Doing so can be useful if some of the packages need a superset of the features that one of them, perhaps a
common library, does. These options allow a `config.status' file to create files other than the ones that its
`configure.ac' specifies, so it can be used for a different package.

`--header=file[:template]'
Same as `--file' above, but with `AC_CONFIG_HEADERS'.

`--recheck'
Ask `config.status' to update itself and exit (no instantiation). This option is useful if you change configure, so
that the results of some tests might be different from the previous run. The `--recheck' option re-runs configure with
the same arguments you used before, plus the `--no-create' option, which prevents configure from running
`config.status' and creating `Makefile' and other files, and the `--no-recursion' option, which prevents
configure from running other configure scripts in subdirectories. (This is so other `Makefile' rules can run
`config.status' when it changes; see section 4.7.4 Automatic Remaking, for an example).

`config.status' checks several optional environment variables that can alter its behavior:

Variable: CONFIG_SHELL
The shell with which to run configure for the `--recheck' option. It must be Bourne-compatible. The default is a shell
that supports LINENO if available, and `/bin/sh' otherwise.

Variable: CONFIG_STATUS
The file name to use for the shell script that records the configuration. The default is `./config.status'. This variable
is useful when one package uses parts of another and the configure scripts shouldn't be merged because they are
maintained separately.

You can use `./config.status' in your Makefiles. For example, in the dependencies given above (see section 4.7.4 Automatic
Remaking), `config.status' is run twice when `configure.ac' has changed. If that bothers you, you can make each run
only regenerate the files for that rule:

config.h: stamp-h
stamp-h: config.h.in config.status
 ./config.status config.h
 echo > stamp-h

Makefile: Makefile.in config.status
 ./config.status Makefile

The calling convention of `config.status' has changed; see 15.1 Obsolete `config.status' Invocation, for details.

file:///C|/pdfing/autoconf.html.htm (171 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC151

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15. Obsolete Constructs

Autoconf changes, and throughout the years some constructs have been obsoleted. Most of the changes involve the macros, but in
some cases the tools themselves, or even some concepts, are now considered obsolete.

You may completely skip this chapter if you are new to Autoconf. Its intention is mainly to help maintainers updating their
packages by understanding how to move to more modern constructs.

15.1 Obsolete `config.status' Invocation Different calling convention

15.2 `acconfig.h' Additional entries in `config.h.in'

15.3 Using autoupdate to Modernize `configure.ac' Automatic update of `configure.ac'

15.4 Obsolete Macros Backward compatibility macros

15.5 Upgrading From Version 1 Tips for upgrading your files

15.6 Upgrading From Version 2.13 Some fresher tips

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.1 Obsolete `config.status' Invocation

`config.status' now supports arguments to specify the files to instantiate; see 14. Recreating a Configuration, for more
details. Before, environment variables had to be used.

Variable: CONFIG_COMMANDS
The tags of the commands to execute. The default is the arguments given to AC_OUTPUT and AC_CONFIG_COMMANDS in
`configure.ac'.

Variable: CONFIG_FILES
The files in which to perform `@variable@' substitutions. The default is the arguments given to AC_OUTPUT and
AC_CONFIG_FILES in `configure.ac'.

Variable: CONFIG_HEADERS
The files in which to substitute C #define statements. The default is the arguments given to AC_CONFIG_HEADERS; if
that macro was not called, `config.status' ignores this variable.

Variable: CONFIG_LINKS
The symbolic links to establish. The default is the arguments given to AC_CONFIG_LINKS; if that macro was not called,
`config.status' ignores this variable.

In 14. Recreating a Configuration, using this old interface, the example would be:

file:///C|/pdfing/autoconf.html.htm (172 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC149

Autoconf:

config.h: stamp-h
stamp-h: config.h.in config.status
 CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_FILES= \
 CONFIG_HEADERS=config.h ./config.status
 echo > stamp-h

Makefile: Makefile.in config.status
 CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_HEADERS= \
 CONFIG_FILES=Makefile ./config.status

(If `configure.ac' does not call AC_CONFIG_HEADERS, there is no need to set CONFIG_HEADERS in the make rules.
Equally for CONFIG_COMMANDS etc.)

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.2 `acconfig.h'

In order to produce `config.h.in', autoheader needs to build or to find templates for each symbol. Modern releases of
Autoconf use AH_VERBATIM and AH_TEMPLATE (see section 4.8.3 Autoheader Macros), but in older releases a file,
`acconfig.h', contained the list of needed templates. autoheader copied comments and #define and #undef statements
from `acconfig.h' in the current directory, if present. This file used to be mandatory if you AC_DEFINE any additional
symbols.

Modern releases of Autoconf also provide AH_TOP and AH_BOTTOM if you need to prepend/append some information to
`config.h.in'. Ancient versions of Autoconf had a similar feature: if `./acconfig.h' contains the string `@TOP@',
autoheader copies the lines before the line containing `@TOP@' into the top of the file that it generates. Similarly, if `./
acconfig.h' contains the string `@BOTTOM@', autoheader copies the lines after that line to the end of the file it generates.
Either or both of those strings may be omitted. An even older alternate way to produce the same effect in ancient versions of
Autoconf is to create the files `file.top' (typically `config.h.top') and/or `file.bot' in the current directory. If they
exist, autoheader copies them to the beginning and end, respectively, of its output.

In former versions of Autoconf, the files used in preparing a software package for distribution were:

configure.ac --. .------> autoconf* -----> configure
 +---+
[aclocal.m4] --+ `---.
[acsite.m4] ---' |
 +--> [autoheader*] -> [config.h.in]
[acconfig.h] ----. |
 +-----'
[config.h.top] --+
[config.h.bot] --'

Using only the AH_ macros, `configure.ac' should be self-contained, and should not depend upon `acconfig.h' etc.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (173 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

15.3 Using autoupdate to Modernize `configure.ac'

The autoupdate program updates a `configure.ac' file that calls Autoconf macros by their old names to use the current
macro names. In version 2 of Autoconf, most of the macros were renamed to use a more uniform and descriptive naming scheme.
See section 9.2 Macro Names, for a description of the new scheme. Although the old names still work (see section 15.4 Obsolete
Macros, for a list of the old macros and the corresponding new names), you can make your `configure.ac' files more readable
and make it easier to use the current Autoconf documentation if you update them to use the new macro names.

If given no arguments, autoupdate updates `configure.ac', backing up the original version with the suffix `~' (or the value
of the environment variable SIMPLE_BACKUP_SUFFIX, if that is set). If you give autoupdate an argument, it reads that file
instead of `configure.ac' and writes the updated file to the standard output.

autoupdate accepts the following options:

`--help'
`-h'

Print a summary of the command line options and exit.

`--version'
`-V'

Print the version number of Autoconf and exit.

`--verbose'
`-v'

Report processing steps.

`--debug'
`-d'

Don't remove the temporary files.

`--force'
`-f'

Force the update even if the file has not changed. Disregard the cache.

`--include=dir'
`-I dir'

Also look for input files in dir. Multiple invocations accumulate. Directories are browsed from last to first.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.4 Obsolete Macros

Several macros are obsoleted in Autoconf, for various reasons (typically they failed to quote properly, couldn't be extended for
more recent issues etc.). They are still supported, but deprecated: their use should be avoided.

During the jump from Autoconf version 1 to version 2, most of the macros were renamed to use a more uniform and descriptive
naming scheme, but their signature did not change. See section 9.2 Macro Names, for a description of the new naming scheme.
Below, if there is just the mapping from old names to new names for these macros, the reader is invited to refer to the definition of
the new macro for the signature and the description.

file:///C|/pdfing/autoconf.html.htm (174 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC107
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC107

Autoconf:

Macro: AC_ALLOCA
AC_FUNC_ALLOCA

Macro: AC_ARG_ARRAY
removed because of limited usefulness

Macro: AC_C_CROSS
This macro is obsolete; it does nothing.

Macro: AC_CANONICAL_SYSTEM
Determine the system type and set output variables to the names of the canonical system types. See section 11.2 Getting the
Canonical System Type, for details about the variables this macro sets.

The user is encouraged to use either AC_CANONICAL_BUILD, or AC_CANONICAL_HOST, or
AC_CANONICAL_TARGET, depending on the needs. Using AC_CANONICAL_TARGET is enough to run the two other
macros.

Macro: AC_CHAR_UNSIGNED
AC_C_CHAR_UNSIGNED

Macro: AC_CHECK_TYPE (type, default)
Autoconf, up to 2.13, used to provide this version of AC_CHECK_TYPE, deprecated because of its flaws. Firstly, although it
is a member of the CHECK clan, singular sub-family, it does more than just checking. Secondly, missing types are not
typedef'd, they are #define'd, which can lead to incompatible code in the case of pointer types.

This use of AC_CHECK_TYPE is obsolete and discouraged; see 5.9.2 Generic Type Checks, for the description of the
current macro.

If the type type is not defined, define it to be the C (or C++) builtin type default, e.g., `short' or `unsigned'.

This macro is equivalent to:

AC_CHECK_TYPE([type],,
 [AC_DEFINE_UNQUOTED([type], [default],
 [Define to `default' if
 <sys/types.h> does not define.])])

In order to keep backward compatibility, the two versions of AC_CHECK_TYPE are implemented, selected by a simple
heuristics:

1. If there are three or four arguments, the modern version is used.

2. If the second argument appears to be a C or C++ type, then the obsolete version is used. This happens if the
argument is a C or C++ builtin type or a C identifier ending in `_t', optionally followed by one of `[(* ' and then
by a string of zero or more characters taken from the set `[]()* _a-zA-Z0-9'.

3. If the second argument is spelled with the alphabet of valid C and C++ types, the user is warned and the modern
version is used.

4. Otherwise, the modern version is used.

file:///C|/pdfing/autoconf.html.htm (175 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC60

Autoconf:

You are encouraged either to use a valid builtin type, or to use the equivalent modern code (see above), or better yet, to use
AC_CHECK_TYPES together with

#if !HAVE_LOFF_T
typedef loff_t off_t;
#endif

Macro: AC_CHECKING (feature-description)
Same as `AC_MSG_NOTICE([checking feature-description...]'.

Macro: AC_COMPILE_CHECK (echo-text, includes, function-body, action-if-found, [action-if-not-found])
This is an obsolete version of AC_TRY_COMPILE itself replaced by AC_COMPILE_IFELSE (see section 6.4 Running the
Compiler), with the addition that it prints `checking for echo-text' to the standard output first, if echo-text is non-
empty. Use AC_MSG_CHECKING and AC_MSG_RESULT instead to print messages (see section 7.4 Printing Messages).

Macro: AC_CONST
AC_C_CONST

Macro: AC_CROSS_CHECK
Same as AC_C_CROSS, which is obsolete too, and does nothing :-).

Macro: AC_CYGWIN
Check for the Cygwin environment in which case the shell variable CYGWIN is set to `yes'. Don't use this macro, the
dignified means to check the nature of the host is using AC_CANONICAL_HOST. As a matter of fact this macro is defined
as:

AC_REQUIRE([AC_CANONICAL_HOST])[]dnl
case $host_os in
 cygwin) CYGWIN=yes;;
 *) CYGWIN=no;;
esac

Beware that the variable CYGWIN has a very special meaning when running CygWin32, and should not be changed. That's
yet another reason not to use this macro.

Macro: AC_DECL_SYS_SIGLIST
Same as `AC_CHECK_DECLS([sys_siglist])'.

Macro: AC_DECL_YYTEXT
Does nothing, now integrated in AC_PROG_LEX.

Macro: AC_DIR_HEADER
Like calling AC_FUNC_CLOSEDIR_VOID andAC_HEADER_DIRENT, but defines a different set of C preprocessor
macros to indicate which header file is found:

Header
Old
Symbol

New Symbol

`dirent.h' DIRENT HAVE_DIRENT_H

file:///C|/pdfing/autoconf.html.htm (176 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC88

Autoconf:

`sys/ndir.
h'

SYSNDIR HAVE_SYS_NDIR_H

`sys/dir.h' SYSDIR HAVE_SYS_DIR_H

`ndir.h' NDIR HAVE_NDIR_H

Macro: AC_DYNIX_SEQ
If on DYNIX/ptx, add `-lseq' to output variable LIBS. This macro used to be defined as

AC_CHECK_LIB(seq, getmntent, LIBS="-lseq $LIBS")

now it is just AC_FUNC_GETMNTENT.

Macro: AC_EXEEXT
Defined the output variable EXEEXT based on the output of the compiler, which is now done automatically. Typically set to
empty string if Unix and `.exe' if Win32 or OS/2.

Macro: AC_EMXOS2
Similar to AC_CYGWIN but checks for the EMX environment on OS/2 and sets EMXOS2.

Macro: AC_ERROR
AC_MSG_ERROR

Macro: AC_FIND_X
AC_PATH_X

Macro: AC_FIND_XTRA
AC_PATH_XTRA

Macro: AC_FUNC_CHECK
AC_CHECK_FUNC

Macro: AC_FUNC_WAIT3
If wait3 is found and fills in the contents of its third argument (a `struct rusage *'), which HP-UX does not do,
define HAVE_WAIT3.

These days portable programs should use waitpid, not wait3, as wait3 is being removed from the Open Group
standards, and will not appear in the next revision of POSIX.

Macro: AC_GCC_TRADITIONAL
AC_PROG_GCC_TRADITIONAL

Macro: AC_GETGROUPS_T
AC_TYPE_GETGROUPS

Macro: AC_GETLOADAVG
AC_FUNC_GETLOADAVG

Macro: AC_HAVE_FUNCS
AC_CHECK_FUNCS

file:///C|/pdfing/autoconf.html.htm (177 of 250)27. 1. 2004 18:44:42

Autoconf:

Macro: AC_HAVE_HEADERS
AC_CHECK_HEADERS

Macro: AC_HAVE_LIBRARY (library, [action-if-found], [action-if-not-found], [other-libraries])
This macro is equivalent to calling AC_CHECK_LIB with a function argument of main. In addition, library can be written
as any of `foo', `-lfoo', or `libfoo.a'. In all of those cases, the compiler is passed `-lfoo'. However, library cannot
be a shell variable; it must be a literal name.

Macro: AC_HAVE_POUNDBANG
AC_SYS_INTERPRETER (different calling convention)

Macro: AC_HEADER_CHECK
AC_CHECK_HEADER

Macro: AC_HEADER_EGREP
AC_EGREP_HEADER

Macro: AC_INIT (unique-file-in-source-dir)
Formerly AC_INIT used to have a single argument, and was equivalent to:

AC_INIT
AC_CONFIG_SRCDIR(unique-file-in-source-dir)

Macro: AC_INLINE
AC_C_INLINE

Macro: AC_INT_16_BITS
If the C type int is 16 bits wide, define INT_16_BITS. Use `AC_CHECK_SIZEOF(int)' instead.

Macro: AC_IRIX_SUN
If on IRIX (Silicon Graphics UNIX), add `-lsun' to output LIBS. If you were using it to get getmntent, use
AC_FUNC_GETMNTENT instead. If you used it for the NIS versions of the password and group functions, use
`AC_CHECK_LIB(sun, getpwnam)'. Up to Autoconf 2.13, it used to be

AC_CHECK_LIB(sun, getmntent, LIBS="-lsun $LIBS")

now it is defined as

AC_FUNC_GETMNTENT
AC_CHECK_LIB(sun, getpwnam)

Macro: AC_LANG_C
Same as `AC_LANG(C)'.

Macro: AC_LANG_CPLUSPLUS
Same as `AC_LANG(C++)'.

Macro: AC_LANG_FORTRAN77

file:///C|/pdfing/autoconf.html.htm (178 of 250)27. 1. 2004 18:44:42

Autoconf:

Same as `AC_LANG(Fortran 77)'.

Macro: AC_LANG_RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE, remove it from the stack, and call
AC_LANG(language).

Macro: AC_LANG_SAVE
Remember the current language (as set by AC_LANG) on a stack. The current language does not change. AC_LANG_PUSH
is preferred.

Macro: AC_LINK_FILES (source..., dest...)
This is an obsolete version of AC_CONFIG_LINKS. An updated version of:

AC_LINK_FILES(config/$machine.h config/$obj_format.h,
 host.h object.h)

is:

AC_CONFIG_LINKS(host.h:config/$machine.h
 object.h:config/$obj_format.h)

Macro: AC_LN_S
AC_PROG_LN_S

Macro: AC_LONG_64_BITS
Define LONG_64_BITS if the C type long int is 64 bits wide. Use the generic macro `AC_CHECK_SIZEOF([long
int])' instead.

Macro: AC_LONG_DOUBLE
AC_C_LONG_DOUBLE

Macro: AC_LONG_FILE_NAMES
AC_SYS_LONG_FILE_NAMES

Macro: AC_MAJOR_HEADER
AC_HEADER_MAJOR

Macro: AC_MEMORY_H
Used to define NEED_MEMORY_H if the mem functions were defined in `memory.h'. Today it is equivalent to
`AC_CHECK_HEADERS(memory.h)'. Adjust your code to depend upon HAVE_MEMORY_H, not NEED_MEMORY_H; see
5.1.1 Standard Symbols.

Macro: AC_MINGW32
Similar to AC_CYGWIN but checks for the MingW32 compiler environment and sets MINGW32.

Macro: AC_MINUS_C_MINUS_O
AC_PROG_CC_C_O

Macro: AC_MMAP

file:///C|/pdfing/autoconf.html.htm (179 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC37

Autoconf:

AC_FUNC_MMAP

Macro: AC_MODE_T
AC_TYPE_MODE_T

Macro: AC_OBJEXT
Defined the output variable OBJEXT based on the output of the compiler, after .c files have been excluded. Typically set to
`o' if Unix, `obj' if Win32. Now the compiler checking macros handle this automatically.

Macro: AC_OBSOLETE (this-macro-name, [suggestion])
Make M4 print a message to the standard error output warning that this-macro-name is obsolete, and giving the file and line
number where it was called. this-macro-name should be the name of the macro that is calling AC_OBSOLETE. If suggestion
is given, it is printed at the end of the warning message; for example, it can be a suggestion for what to use instead of this-
macro-name.

For instance

AC_OBSOLETE([$0], [; use AC_CHECK_HEADERS(unistd.h) instead])dnl

You are encouraged to use AU_DEFUN instead, since it gives better services to the user.

Macro: AC_OFF_T
AC_TYPE_OFF_T

Macro: AC_OUTPUT ([file]..., [extra-cmds], [init-cmds])
The use of AC_OUTPUT with argument is deprecated. This obsoleted interface is equivalent to:

AC_CONFIG_FILES(file...)
AC_CONFIG_COMMANDS([default],
 extra-cmds, init-cmds)
AC_OUTPUT

Macro: AC_OUTPUT_COMMANDS (extra-cmds, [init-cmds])
Specify additional shell commands to run at the end of `config.status', and shell commands to initialize any variables
from configure. This macro may be called multiple times. It is obsolete, replaced by AC_CONFIG_COMMANDS.

Here is an unrealistic example:

fubar=27
AC_OUTPUT_COMMANDS([echo this is extra $fubar, and so on.],
 [fubar=$fubar])
AC_OUTPUT_COMMANDS([echo this is another, extra, bit],
 [echo init bit])

Aside from the fact that AC_CONFIG_COMMANDS requires an additional key, an important difference is that
AC_OUTPUT_COMMANDS is quoting its arguments twice, unlike AC_CONFIG_COMMANDS. This means that
AC_CONFIG_COMMANDS can safely be given macro calls as arguments:

file:///C|/pdfing/autoconf.html.htm (180 of 250)27. 1. 2004 18:44:42

Autoconf:

AC_CONFIG_COMMANDS(foo, [my_FOO()])

Conversely, where one level of quoting was enough for literal strings with AC_OUTPUT_COMMANDS, you need two with
AC_CONFIG_COMMANDS. The following lines are equivalent:

AC_OUTPUT_COMMANDS([echo "Square brackets: []"])
AC_CONFIG_COMMANDS([default], [[echo "Square brackets: []"]])

Macro: AC_PID_T
AC_TYPE_PID_T

Macro: AC_PREFIX
AC_PREFIX_PROGRAM

Macro: AC_PROG_CC_STDC
This macro has been integrated into AC_PROG_CC.

Macro: AC_PROGRAMS_CHECK
AC_CHECK_PROGS

Macro: AC_PROGRAMS_PATH
AC_PATH_PROGS

Macro: AC_PROGRAM_CHECK
AC_CHECK_PROG

Macro: AC_PROGRAM_EGREP
AC_EGREP_CPP

Macro: AC_PROGRAM_PATH
AC_PATH_PROG

Macro: AC_REMOTE_TAPE
removed because of limited usefulness

Macro: AC_RESTARTABLE_SYSCALLS
AC_SYS_RESTARTABLE_SYSCALLS

Macro: AC_RETSIGTYPE
AC_TYPE_SIGNAL

Macro: AC_RSH
removed because of limited usefulness

Macro: AC_SCO_INTL
If on SCO UNIX, add `-lintl' to output variable LIBS. This macro used to

file:///C|/pdfing/autoconf.html.htm (181 of 250)27. 1. 2004 18:44:42

Autoconf:

AC_CHECK_LIB(intl, strftime, LIBS="-lintl $LIBS")

Now it just calls AC_FUNC_STRFTIME instead.

Macro: AC_SETVBUF_REVERSED
AC_FUNC_SETVBUF_REVERSED

Macro: AC_SET_MAKE
AC_PROG_MAKE_SET

Macro: AC_SIZEOF_TYPE
AC_CHECK_SIZEOF

Macro: AC_SIZE_T
AC_TYPE_SIZE_T

Macro: AC_STAT_MACROS_BROKEN
AC_HEADER_STAT

Macro: AC_STDC_HEADERS
AC_HEADER_STDC

Macro: AC_STRCOLL
AC_FUNC_STRCOLL

Macro: AC_ST_BLKSIZE
AC_CHECK_MEMBERS

Macro: AC_ST_BLOCKS
AC_STRUCT_ST_BLOCKS

Macro: AC_ST_RDEV
AC_CHECK_MEMBERS

Macro: AC_SYS_RESTARTABLE_SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal, define HAVE_RESTARTABLE_SYSCALLS.
This macro does not check if system calls are restarted in general--it tests whether a signal handler installed with signal
(but not sigaction) causes system calls to be restarted. It does not test if system calls can be restarted when interrupted
by signals that have no handler.

These days portable programs should use sigaction with SA_RESTART if they want restartable system calls. They
should not rely on HAVE_RESTARTABLE_SYSCALLS, since nowadays whether a system call is restartable is a dynamic
issue, not a configuration-time issue.

Macro: AC_SYS_SIGLIST_DECLARED
AC_DECL_SYS_SIGLIST

Macro: AC_TEST_CPP
AC_TRY_CPP, replaced with AC_PREPROC_IFELSE.

file:///C|/pdfing/autoconf.html.htm (182 of 250)27. 1. 2004 18:44:42

Autoconf:

Macro: AC_TEST_PROGRAM
AC_TRY_RUN, replaced with AC_RUN_IFELSE.

Macro: AC_TIMEZONE
AC_STRUCT_TIMEZONE

Macro: AC_TIME_WITH_SYS_TIME
AC_HEADER_TIME

Macro: AC_TRY_COMPILE (includes, function-body, [action-if-found], [action-if-not-found])
Same as `AC_COMPILE_IFELSE([AC_LANG_SOURCE([[includes]], [[function-body]])], [action-
if-true], [action-if-false])' (see section 6.4 Running the Compiler).

This macro double quotes both includes and function-body.

For C and C++, includes is any #include statements needed by the code in function-body (includes will be ignored if the
currently selected language is Fortran 77). This macro also uses CFLAGS or CXXFLAGS if either C or C++ is the currently
selected language, as well as CPPFLAGS, when compiling. If Fortran 77 is the currently selected language then FFLAGS
will be used when compiling.

Macro: AC_TRY_CPP (input, [action-if-true], [action-if-false])
Same as `AC_PREPROC_IFELSE([AC_LANG_SOURCE([[input]])], [action-if-true], [action-if-
false])' (see section 6.3 Running the Preprocessor).

This macro double quotes the input.

Macro: AC_TRY_LINK (includes, function-body, [action-if-found], [action-if-not-found])
Same as `AC_LINK_IFELSE([AC_LANG_SOURCE([[includes]], [[function-body]])], [action-if-
true], [action-if-false])' (see section 6.4 Running the Compiler).

This macro double quotes both includes and function-body.

Depending on the current language (see section 6.1 Language Choice), create a test program to see whether a function
whose body consists of function-body can be compiled and linked. If the file compiles and links successfully, run shell
commands action-if-found, otherwise run action-if-not-found.

This macro double quotes both includes and function-body.

For C and C++, includes is any #include statements needed by the code in function-body (includes will be ignored if the
currently selected language is Fortran 77). This macro also uses CFLAGS or CXXFLAGS if either C or C++ is the currently
selected language, as well as CPPFLAGS, when compiling. If Fortran 77 is the currently selected language then FFLAGS
will be used when compiling. However, both LDFLAGS and LIBS will be used during linking in all cases.

Macro: AC_TRY_LINK_FUNC (function, [action-if-found], [action-if-not-found])
This macro is equivalent to `AC_LINK_IFELSE([AC_LANG_CALL([[includes]], [[function-body]])],
[action-if-true], [action-if-false])'.

Macro: AC_TRY_RUN (program, [action-if-true], [action-if-false], [action-if-cross-compiling])
Same as `AC_RUN_IFELSE([AC_LANG_SOURCE([[program]], [action-if-true], [action-if-
false], [action-if-cross-compiling])' (see section 6.6 Checking Run Time Behavior).

Macro: AC_UID_T

file:///C|/pdfing/autoconf.html.htm (183 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC78

Autoconf:

AC_TYPE_UID_T

Macro: AC_UNISTD_H
Same as `AC_CHECK_HEADERS(unistd.h)'.

Macro: AC_USG
Define USG if the BSD string functions are defined in `strings.h'. You should no longer depend upon USG, but on
HAVE_STRING_H; see 5.1.1 Standard Symbols.

Macro: AC_UTIME_NULL
AC_FUNC_UTIME_NULL

Macro: AC_VALIDATE_CACHED_SYSTEM_TUPLE ([cmd])
If the cache file is inconsistent with the current host, target and build system types, it used to execute cmd or print a default
error message. This is now handled by default.

Macro: AC_VERBOSE (result-description)
AC_MSG_RESULT.

Macro: AC_VFORK
AC_FUNC_VFORK

Macro: AC_VPRINTF
AC_FUNC_VPRINTF

Macro: AC_WAIT3
AC_FUNC_WAIT3

Macro: AC_WARN
AC_MSG_WARN

Macro: AC_WORDS_BIGENDIAN
AC_C_BIGENDIAN

Macro: AC_XENIX_DIR
This macro used to add `-lx' to output variable LIBS if on Xenix. Also, if `dirent.h' is being checked for, added `-
ldir' to LIBS. Now it is merely an alias of AC_HEADER_DIRENT instead, plus some code to detect whether running
XENIX on which you should not depend:

AC_MSG_CHECKING([for Xenix])
AC_EGREP_CPP(yes,
[#if defined M_XENIX && !defined M_UNIX
 yes
#endif],
 [AC_MSG_RESULT([yes]); XENIX=yes],
 [AC_MSG_RESULT([no]); XENIX=])

Macro: AC_YYTEXT_POINTER
AC_DECL_YYTEXT

file:///C|/pdfing/autoconf.html.htm (184 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC37

Autoconf:

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.5 Upgrading From Version 1

Autoconf version 2 is mostly backward compatible with version 1. However, it introduces better ways to do some things, and
doesn't support some of the ugly things in version 1. So, depending on how sophisticated your `configure.ac' files are, you
might have to do some manual work in order to upgrade to version 2. This chapter points out some problems to watch for when
upgrading. Also, perhaps your configure scripts could benefit from some of the new features in version 2; the changes are
summarized in the file `NEWS' in the Autoconf distribution.

15.5.1 Changed File Names Files you might rename

15.5.2 Changed Makefiles New things to put in `Makefile.in'

15.5.3 Changed Macros Macro calls you might replace

15.5.4 Changed Results Changes in how to check test results

15.5.5 Changed Macro Writing Better ways to write your own macros

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.5.1 Changed File Names

If you have an `aclocal.m4' installed with Autoconf (as opposed to in a particular package's source directory), you must rename
it to `acsite.m4'. See section 3.4 Using autoconf to Create configure.

If you distribute `install.sh' with your package, rename it to `install-sh' so make builtin rules won't inadvertently create
a file called `install' from it. AC_PROG_INSTALL looks for the script under both names, but it is best to use the new name.

If you were using `config.h.top', `config.h.bot', or `acconfig.h', you still can, but you will have less clutter if you
use the AH_ macros. See section 4.8.3 Autoheader Macros.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.5.2 Changed Makefiles

Add `@CFLAGS@', `@CPPFLAGS@', and `@LDFLAGS@' in your `Makefile.in' files, so they can take advantage of the values of
those variables in the environment when configure is run. Doing this isn't necessary, but it's a convenience for users.

Also add `@configure_input@' in a comment to each input file for AC_OUTPUT, so that the output files will contain a
comment saying they were produced by configure. Automatically selecting the right comment syntax for all the kinds of files
that people call AC_OUTPUT on became too much work.

Add `config.log' and `config.cache' to the list of files you remove in distclean targets.

If you have the following in `Makefile.in':

file:///C|/pdfing/autoconf.html.htm (185 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC156
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC156
file:///C|/pdfing/autoconf.html#SEC157
file:///C|/pdfing/autoconf.html#SEC158
file:///C|/pdfing/autoconf.html#SEC159
file:///C|/pdfing/autoconf.html#SEC160
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC157
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC156
file:///C|/pdfing/autoconf.html#SEC158
file:///C|/pdfing/autoconf.html#SEC158
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

prefix = /usr/local
exec_prefix = $(prefix)

you must change it to:

prefix = @prefix@
exec_prefix = @exec_prefix@

The old behavior of replacing those variables without `@' characters around them has been removed.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.5.3 Changed Macros

Many of the macros were renamed in Autoconf version 2. You can still use the old names, but the new ones are clearer, and it's
easier to find the documentation for them. See section 15.4 Obsolete Macros, for a table showing the new names for the old
macros. Use the autoupdate program to convert your `configure.ac' to using the new macro names. See section 15.3 Using
autoupdate to Modernize `configure.ac'.

Some macros have been superseded by similar ones that do the job better, but are not call-compatible. If you get warnings about
calling obsolete macros while running autoconf, you may safely ignore them, but your configure script will generally work
better if you follow the advice that is printed about what to replace the obsolete macros with. In particular, the mechanism for
reporting the results of tests has changed. If you were using echo or AC_VERBOSE (perhaps via AC_COMPILE_CHECK), your
configure script's output will look better if you switch to AC_MSG_CHECKING and AC_MSG_RESULT. See section 7.4
Printing Messages. Those macros work best in conjunction with cache variables. See section 7.3 Caching Results.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.5.4 Changed Results

If you were checking the results of previous tests by examining the shell variable DEFS, you need to switch to checking the values
of the cache variables for those tests. DEFS no longer exists while configure is running; it is only created when generating
output files. This difference from version 1 is because properly quoting the contents of that variable turned out to be too
cumbersome and inefficient to do every time AC_DEFINE is called. See section 7.3.1 Cache Variable Names.

For example, here is a `configure.ac' fragment written for Autoconf version 1:

file:///C|/pdfing/autoconf.html.htm (186 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC157
file:///C|/pdfing/autoconf.html#SEC159
file:///C|/pdfing/autoconf.html#SEC159
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC158
file:///C|/pdfing/autoconf.html#SEC160
file:///C|/pdfing/autoconf.html#SEC160
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC85

Autoconf:

AC_HAVE_FUNCS(syslog)
case "$DEFS" in
-DHAVE_SYSLOG) ;;
*) # syslog is not in the default libraries. See if it's in some other.
 saved_LIBS="$LIBS"
 for lib in bsd socket inet; do
 AC_CHECKING(for syslog in -l$lib)
 LIBS="$saved_LIBS -l$lib"
 AC_HAVE_FUNCS(syslog)
 case "$DEFS" in
 -DHAVE_SYSLOG) break ;;
 *) ;;
 esac
 LIBS="$saved_LIBS"
 done ;;
esac

Here is a way to write it for version 2:

AC_CHECK_FUNCS(syslog)
if test $ac_cv_func_syslog = no; then
 # syslog is not in the default libraries. See if it's in some other.
 for lib in bsd socket inet; do
 AC_CHECK_LIB($lib, syslog, [AC_DEFINE(HAVE_SYSLOG)
 LIBS="$LIBS -l$lib"; break])
 done
fi

If you were working around bugs in AC_DEFINE_UNQUOTED by adding backslashes before quotes, you need to remove them. It
now works predictably, and does not treat quotes (except back quotes) specially. See section 7.2 Setting Output Variables.

All of the Boolean shell variables set by Autoconf macros now use `yes' for the true value. Most of them use `no' for false, though
for backward compatibility some use the empty string instead. If you were relying on a shell variable being set to something like 1
or `t' for true, you need to change your tests.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.5.5 Changed Macro Writing

When defining your own macros, you should now use AC_DEFUN instead of define. AC_DEFUN automatically calls
AC_PROVIDE and ensures that macros called via AC_REQUIRE do not interrupt other macros, to prevent nested `checking...'
messages on the screen. There's no actual harm in continuing to use the older way, but it's less convenient and attractive. See
section 9.1 Macro Definitions.

You probably looked at the macros that came with Autoconf as a guide for how to do things. It would be a good idea to take a look
at the new versions of them, as the style is somewhat improved and they take advantage of some new features.

If you were doing tricky things with undocumented Autoconf internals (macros, variables, diversions), check whether you need to

file:///C|/pdfing/autoconf.html.htm (187 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC159
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC106

Autoconf:

change anything to account for changes that have been made. Perhaps you can even use an officially supported technique in version
2 instead of kludging. Or perhaps not.

To speed up your locally written feature tests, add caching to them. See whether any of your tests are of general enough usefulness
to encapsulate them into macros that you can share.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.6 Upgrading From Version 2.13

The introduction of the previous section (see section 15.5 Upgrading From Version 1) perfectly suits this section....

Autoconf version 2.50 is mostly backward compatible with version 2.13. However, it introduces better ways to do
some things, and doesn't support some of the ugly things in version 2.13. So, depending on how sophisticated your
`configure.ac' files are, you might have to do some manual work in order to upgrade to version 2.50. This
chapter points out some problems to watch for when upgrading. Also, perhaps your configure scripts could
benefit from some of the new features in version 2.50; the changes are summarized in the file `NEWS' in the Autoconf
distribution.

15.6.1 Changed Quotation Broken code which used to work

15.6.2 New Macros Interaction with foreign macros

15.6.3 Hosts and Cross-Compilation Bugward compatibility kludges

15.6.4 AC_LIBOBJ vs. LIBOBJS LIBOBJS is a forbidden token

15.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO A more generic scheme for testing sources

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.6.1 Changed Quotation

The most important changes are invisible to you: the implementation of most macros have completely changed. This allowed more
factorization of the code, better error messages, a higher uniformity of the user's interface etc. Unfortunately, as a side effect, some
construct which used to (miraculously) work might break starting with Autoconf 2.50. The most common culprit is bad quotation.

For instance, in the following example, the message is not properly quoted:

AC_INIT
AC_CHECK_HEADERS(foo.h,,
AC_MSG_ERROR(cannot find foo.h, bailing out))
AC_OUTPUT

Autoconf 2.13 simply ignores it:

file:///C|/pdfing/autoconf.html.htm (188 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC160
file:///C|/pdfing/autoconf.html#SEC162
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC162
file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#SEC166
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

$ autoconf-2.13; ./configure --silent
creating cache ./config.cache
configure: error: cannot find foo.h
$

while Autoconf 2.50 will produce a broken `configure':

$ autoconf-2.50; ./configure --silent
configure: error: cannot find foo.h
./configure: exit: bad non-numeric arg `bailing'
./configure: exit: bad non-numeric arg `bailing'
$

The message needs to be quoted, and the AC_MSG_ERROR invocation too!

AC_INIT
AC_CHECK_HEADERS(foo.h,,
 [AC_MSG_ERROR([cannot find foo.h, bailing out])])
AC_OUTPUT

Many many (and many more) Autoconf macros were lacking proper quotation, including no less than... AC_DEFUN itself!

$ cat configure.in
AC_DEFUN([AC_PROG_INSTALL],
[# My own much better version
])
AC_INIT
AC_PROG_INSTALL
AC_OUTPUT
$ autoconf-2.13
autoconf: Undefined macros:
BUG in Autoconf--please report AC_FD_MSG
BUG in Autoconf--please report AC_EPI
configure.in:1:AC_DEFUN([AC_PROG_INSTALL],
configure.in:5:AC_PROG_INSTALL
$ autoconf-2.50
$

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.6.2 New Macros

Because Autoconf has been dormant for years, Automake provided Autoconf-like macros for a while. Autoconf 2.50 now provides
better versions of these macros, integrated in the AC_ namespace, instead of AM_. But in order to ease the upgrading via
autoupdate, bindings to such AM_ macros are provided.

file:///C|/pdfing/autoconf.html.htm (189 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC162
file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Unfortunately Automake did not quote the names of these macros! Therefore, when m4 finds something like `AC_DEFUN
(AM_TYPE_PTRDIFF_T, ...)' in `aclocal.m4', AM_TYPE_PTRDIFF_T is expanded, replaced with its Autoconf
definition.

Fortunately Autoconf catches pre-AC_INIT expansions, and will complain, in its own words:

$ cat configure.in
AC_INIT
AM_TYPE_PTRDIFF_T
$ aclocal-1.4
$ autoconf
./aclocal.m4:17: error: m4_defn: undefined macro: _m4_divert_diversion
actypes.m4:289: AM_TYPE_PTRDIFF_T is expanded from...
./aclocal.m4:17: the top level
$

Future versions of Automake will simply no longer define most of these macros, and will properly quote the names of the
remaining macros. But you don't have to wait for it to happen to do the right thing right now: do not depend upon macros from
Automake as it is simply not its job to provide macros (but the one it requires itself):

$ cat configure.in
AC_INIT
AM_TYPE_PTRDIFF_T
$ rm aclocal.m4
$ autoupdate
autoupdate: `configure.in' is updated
$ cat configure.in
AC_INIT
AC_CHECK_TYPES([ptrdiff_t])
$ aclocal-1.4
$ autoconf
$

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.6.3 Hosts and Cross-Compilation

Based on the experience of compiler writers, and after long public debates, many aspects of the cross-compilation chain have
changed:

● the relationship between the build, host, and target architecture types,

● the command line interface for specifying them to configure,

● the variables defined in configure,

● the enabling of cross-compilation mode.

file:///C|/pdfing/autoconf.html.htm (190 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

The relationship between build, host, and target have been cleaned up: the chain of default is now simply: target defaults to host,
host to build, and build to the result of config.guess. Nevertheless, in order to ease the transition from 2.13 to 2.50, the
following transition scheme is implemented. Do not rely on it, as it will be completely disabled in a couple of releases (we cannot
keep it, as it proves to cause more problems than it cures).

They all default to the result of running config.guess, unless you specify either `--build' or `--host'. In this case, the
default becomes the system type you specified. If you specify both, and they're different, configure will enter cross compilation
mode, so it won't run any tests that require execution.

Hint: if you mean to override the result of config.guess, prefer `--build' over `--host'. In the future, `--host' will not
override the name of the build system type. Whenever you specify --host, be sure to specify --build too.

For backward compatibility, configure will accept a system type as an option by itself. Such an option will override the defaults
for build, host, and target system types. The following configure statement will configure a cross toolchain that will run on NetBSD/
alpha but generate code for GNU Hurd/sparc, which is also the build platform.

./configure --host=alpha-netbsd sparc-gnu

In Autoconf 2.13 and before, the variables build, host, and target had a different semantics before and after the invocation of
AC_CANONICAL_BUILD etc. Now, the argument of `--build' is strictly copied into build_alias, and is left empty
otherwise. After the AC_CANONICAL_BUILD, build is set to the canonicalized build type. To ease the transition, before, its
contents is the same as that of build_alias. Do not rely on this broken feature.

For consistency with the backward compatibility scheme exposed above, when `--host' is specified but `--build' isn't, the
build system will be assumed to be the same as `--host', and `build_alias' will be set to that value. Eventually, this
historically incorrect behavior will go away.

The former scheme to enable cross-compilation proved to cause more harm than good, in particular, it used to be triggered too
easily, leaving regular end users puzzled in front of cryptic error messages. configure could even enter cross-compilation mode
only because the compiler was not functional. This is mainly because configure used to try to detect cross-compilation, instead
of waiting for an explicit flag from the user.

Now, configure enters cross-compilation mode if and only if `--host' is passed.

That's the short documentation. To ease the transition between 2.13 and its successors, a more complicated scheme is implemented.
Do not rely on the following, as it will be removed in the near future.

If you specify `--host', but not `--build', when configure performs the first compiler test it will try to run an executable
produced by the compiler. If the execution fails, it will enter cross-compilation mode. This is fragile. Moreover, by the time the
compiler test is performed, it may be too late to modify the build-system type: other tests may have already been performed.
Therefore, whenever you specify --host, be sure to specify --build too.

./configure --build=i686-pc-linux-gnu --host=m68k-coff

will enter cross-compilation mode. The former interface, which consisted in setting the compiler to a cross-compiler without
informing configure is obsolete. For instance, configure will fail if it can't run the code generated by the specified compiler
if you configure as follows:

file:///C|/pdfing/autoconf.html.htm (191 of 250)27. 1. 2004 18:44:42

Autoconf:

./configure CC=m68k-coff-gcc

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.6.4 AC_LIBOBJ vs. LIBOBJS

Up to Autoconf 2.13, the replacement of functions was triggered via the variable LIBOBJS. Since Autoconf 2.50, the macro
AC_LIBOBJ should be used instead (see section 5.5.3 Generic Function Checks). Starting at Autoconf 2.53, the use of LIBOBJS
is an error.

This change is mandated by the unification of the GNU Build System components. In particular, the various fragile techniques used
to parse a `configure.ac' are all replaced with the use of traces. As a consequence, any action must be traceable, which
obsoletes critical variable assignments. Fortunately, LIBOBJS was the only problem, and it can even be handled gracefully (read,
"without your having to change something").

There were two typical uses of LIBOBJS: asking for a replacement function, and adjusting LIBOBJS for Automake and/or
Libtool.

As for function replacement, the fix is immediate: use AC_LIBOBJ. For instance:

LIBOBJS="$LIBOBJS fnmatch.o"
LIBOBJS="$LIBOBJS malloc.$ac_objext"

should be replaced with:

AC_LIBOBJ([fnmatch])
AC_LIBOBJ([malloc])

When asked for automatic de-ANSI-fication, Automake needs LIBOBJS'ed filenames to have `$U' appended to the base names.
Libtool requires the definition of LTLIBOBJS, whose suffixes are mapped to `.lo'. People used to run snippets such as:

This is necessary so that .o files in LIBOBJS are also built via
the ANSI2KNR-filtering rules.
LIBOBJS=`echo "$LIBOBJS" | sed 's/\.o /\$U.o /g;s/\.o$/\$U.o/'`
LTLIBOBJS=`echo "$LIBOBJS" | sed 's/\.o/\.lo/g'`
AC_SUBST(LTLIBOBJS)

Note that this code is wrong, because `.o' is not the only possible extension(4)! It should have read:

file:///C|/pdfing/autoconf.html.htm (192 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC166
file:///C|/pdfing/autoconf.html#SEC166
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#FOOT4

Autoconf:

This is necessary so that .o files in LIBOBJS are also built via
the ANSI2KNR-filtering rules.
LIB@&t@OBJS=`echo "$LIB@&t@OBJS" |
 sed 's,\.[[^.]]* ,$U&,g;s,\.[[^.]]*$,$U&,'`
LTLIBOBJS=`echo "$LIB@&t@OBJS" |
 sed 's,\.[[^.]]* ,.lo ,g;s,\.[[^.]]*$,.lo,'`
AC_SUBST(LTLIBOBJS)

You no longer have to use this: AC_OUTPUT normalizes LIBOBJS and LTLIBOBJS (hence it works with any version of
Automake and Libtool). Just remove these lines (autoupdate cannot handle this task, since this is not a macro).

Note that U must not be used in your Makefiles.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

15.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO

Since Autoconf 2.50, internal codes uses AC_PREPROC_IFELSE, AC_COMPILE_IFELSE, AC_LINK_IFELSE, and
AC_RUN_IFELSE on the other one hand and AC_LANG_SOURCES, and AC_LANG_PROGRAM on the other hand instead of the
deprecated AC_TRY_CPP, AC_TRY_COMPILE, AC_TRY_LINK, and AC_TRY_RUN. The motivations where:

● a more consistent interface: AC_TRY_COMPILE etc. were double quoting their arguments;

● the combinatoric explosion is solved by decomposing on the one hand the generation of sources, and on the other hand
executing the program;

● this scheme helps supporting more languages than plain C and C++.

In addition to the change of syntax, the philosphy has changed too: while emphasis was put on speed at the expense of accuracy,
today's Autoconf promotes accuracy of the testing framework at, ahem..., the expense of speed.

As a perfect example of what is not to be done, here is how to find out whether a header file contains a particular declaration, such
as a typedef, a structure, a structure member, or a function. Use AC_EGREP_HEADER instead of running grep directly on the
header file; on some systems the symbol might be defined in another header file that the file you are checking `#include's.

As a (bad) example, here is how you should not check for C preprocessor symbols, either defined by header files or predefined by
the C preprocessor: using AC_EGREP_CPP:

AC_EGREP_CPP(yes,
[#ifdef _AIX
 yes
#endif
], is_aix=yes, is_aix=no)

The above example, properly written would (i) use AC_LANG_PROGRAM, and (ii) run the compiler:

file:///C|/pdfing/autoconf.html.htm (193 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

AC_COMPILE_IFELSE([AC_LANG_PROGRAM(
[[#if !defined _AIX
error _AIX not defined
#endif
]])],
 [is_aix=yes],
 [is_aix=no])

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16. Generating Test Suites with Autotest

Note: This section describes an experimental feature which will
be part of Autoconf in a forthcoming release. Although we believe
Autotest is stabilizing, this documentation describes an interface which
might change in the future: do not depend upon Autotest without
subscribing to the Autoconf mailing lists.

It is paradoxical that portable projects depend on nonportable tools to run their test suite. Autoconf by itself is the paragon of this
problem: although it aims at perfectly portability, up to 2.13, its test suite was using DejaGNU, a rich and complex testing
framework, but which is far from being standard on Unix systems. Worse yet, it was likely to be missing on the most fragile
platforms, the very platforms that are most likely to torture Autoconf and exhibit deficiencies.

To circumvent this problem many package maintainers have developed their own testing framework, based on simple shell scripts
whose sole output are their exit status: the test succeeded, or failed. In addition, most of these tests share some common patterns,
what results in lots of duplicated code, tedious maintenance etc.

Following exactly the same reasoning that yielded to the inception of Autoconf, Autotest provides a test suite generation frame
work, based on M4 macros, building a portable shell script. The suite itself is equipped with automatic logging and tracing facilities
which greatly diminish the interaction with bug reporters, and simple timing reports.

Autoconf itself has been using Autotest for years, and we do attest that it has considerably improved the strength of the test suite,
and the quality of bug reports. Other projects are known to use some generation of Autotest, such as Bison, Free Recode, Free
Wdiff, GNU Tar, each of them having different needs, what slowly polishes Autotest as a general testing framework.

Nonetheless, compared to DejaGNU, Autotest is inadequate for interactive tool testing, which is probably its main limitation.

16.1 Using an Autotest Test Suite Autotest and the user

16.2 Writing `testsuite.at' Autotest macros

16.3 Running testsuite Scripts Running testsuite scripts

16.4 Making testsuite Scripts Using autom4te to create testsuite

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16.1 Using an Autotest Test Suite

file:///C|/pdfing/autoconf.html.htm (194 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC166
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

16.1.1 testsuite Scripts The concepts of Autotest

16.1.2 Autotest Logs Their contents

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16.1.1 testsuite Scripts

Generating testing or validation suites using Autotest is rather easy. The whole validation suite is held in a file to be processed
through autom4te, itself using GNU M4 under the scene, to produce a stand-alone Bourne shell script which then gets
distributed. Neither autom4te nor GNU M4 are not needed anymore at the installer end.

Each test of the validation suite should be part of some test group. A test group is a sequence of interwoven tests that ought to be
executed together, usually because one test in the group creates data files than a later test in the same group needs to read. Complex
test groups make later debugging more tedious. It is much better keeping keep only a few tests per test group, and if you can put
only one test per test group, this is just ideal.

For all but the simplest packages, some file such as `testsuite.at' does not fully hold all test sources, as these are often easier
to maintain in separate files. Each of these separate files holds a single test group, or a sequence of test groups all addressing some
common functionality in the package. In such cases, file `testsuite.at' only initializes the whole validation suite, and
sometimes do elementary health checking, before listing include statements for all other test files. The special file `package.m4',
containing the identification of the package, is automatically included if found.

The validation scripts that Autotest produces are by convention called testsuite. When run, testsuite executes each test
group in turn, producing only one summary line per test to say if that particular test succeeded or failed. At end of all tests,
summarizing counters get printed. If any test failed, one debugging script gets automatically generated for each test group which
failed. These debugging scripts are named `testsuite.nn', where nn is the sequence number of the test group. In the ideal
situation, none of the tests fail, and consequently, no debugging script is generated out of validation.

The automatic generation of debugging scripts for failed test has the purpose of easing the chase for bugs.

It often happens in practice that individual tests in the validation suite need to get information coming out of the configuration
process. Some of this information, common for all validation suites, is provided through the file `atconfig', automatically
created by AC_CONFIG_TESTDIR. For configuration informations which your testing environment specifically needs, you might
prepare an optional file named `atlocal.in', instantiated by AC_CONFIG_FILES. The configuration process produces
`atconfig' and `atlocal' out of these two input files, and these two produced files are automatically read by the
`testsuite' script.

Here is a diagram showing the relationship between files.

Files used in preparing a software package for distribution:

subfile-1.at ->.
 ... \
subfile-i.at ---->-- testsuite.at -->.
 ... / \
subfile-n.at ->' >-- autom4te* -->testsuite
 /
 [package.m4] ->'

file:///C|/pdfing/autoconf.html.htm (195 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#SEC170
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC170
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Files used in configuring a software package:

 .--> atconfig
 /
[atlocal.in] --> config.status* --<
 \
 `--> [atlocal]

Files created during the test suite execution:

atconfig -->. .--> testsuite.log
 \ /
 >-- testsuite* --<
 / \
[atlocal] ->' `--> [testsuite.nn*]

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16.1.2 Autotest Logs

When run, the test suite creates a log file named after itself, e.g., a test suite named testsuite creates `testsuite.log'. It
contains a lot of information, usually more than maintainers actually need, but therefore most of the time it contains all that is
needed:

command line arguments
A very bad Unix habit which is unfortunately wide spread consists of setting environment variables before the command,
such as in `CC=my-home-grown-cc ./testsuite'. This results in the test suite not knowing this change, hence (i) it
can't report it to you, and (ii) it cannot preserve the value of CC for subsequent runs(5). Autoconf faced exactly the same
problem, and solved it by asking users to pass the variable definitions as command line arguments. Autotest requires this
rule too, but has no means to enforce it; the log then contains a trace of the variables the user changed.

`ChangeLog' excerpts
The topmost lines of all the `ChangeLog's found in the source hierarchy. This is especially useful when bugs are reported
against development versions of the package, since the version string does not provide sufficient information to know the
exact state of the sources the user compiled. Of course this relies on the use of a `ChangeLog'.

build machine
Running a test suite in a cross-compile environment is not an easy task, since it would mean having the test suite run on a
machine build, while running programs on a machine host. It is much simpler to run both the test suite and the programs on
host, but then, from the point of view of the test suite, there remains a single environment, host = build. The log contains
relevant information on the state of the build machine, including some important environment variables.

tested programs
The absolute path and answers to `--version' of the tested programs (see 16.2 Writing `testsuite.at',
AT_TESTED).

configuration log

file:///C|/pdfing/autoconf.html.htm (196 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#FOOT5
file:///C|/pdfing/autoconf.html#SEC171

Autoconf:

The contents of `config.log', as created by configure, are appended. It contains the configuration flags and a
detailed report on the configuration itself.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16.2 Writing `testsuite.at'

The `testsuite.at' is a Bourne shell script making use of special Autotest M4 macros. It often contains a call to AT_INIT
nears its beginning followed by one call to m4_include per source file for tests. Each such included file, or the remainder of
`testsuite.at' if include files are not used, contain a sequence of test groups. Each test group begins with one call to
AT_SETUP, it contains an arbitrary number of shell commands or calls to AT_CHECK, and it completes with one call to
AT_CLEANUP.

Macro: AT_INIT ([name])
Initialize Autotest. Giving a name to the test suite is encouraged if your package includes several test suites. In any case, the
test suite always displays the package name and version. It also inherits the package bug report address.

Macro: AT_TESTED (executables)
Log the path and answer to `--version' of each program in space-separated list executables. Several invocations register
new executables, in other words, don't fear registering one program several times.

Autotest test suites rely on the PATH to find the tested program. This saves from generating the absolute paths to the various tools,
and makes it possible to test installed programs. Therefore, knowing what programs are being exercised is crucial to understand
some problems in the test suite itself, or its occasional misuses. It is a good idea to also subscribe foreign programs you depend
upon, to ease incompatibility diagnostics.

Macro: AT_SETUP (test-group-name)
This macro starts a group of related tests, all to be executed in the same subshell. It accepts a single argument, which holds a
few words (no more than about 30 or 40 characters) quickly describing the purpose of the test group being started.

Macro: AT_KEYWORDS (keywords)
Associate the space-separated list of keywords to the enclosing test group. This makes it possible to run "slices" of the test
suite. For instance if some of your test groups exercise some `foo' feature, then using `AT_KEYWORDS(foo)' lets you run
`./testsuite -k foo' to run exclusively these test groups. The title of the test group is automatically recorded to
AT_KEYWORDS.

Several invocations within a test group accumulate new keywords. In other words, don't fear registering several times the
same keyword in a test group.

Macro: AT_CLEANUP
End the current test group.

Macro: AT_DATA (file, contents)
Initialize an input data file with given contents. Of course, the contents have to be properly quoted between square brackets
to protect against included commas or spurious M4 expansion. The contents ought to end with an end of line.

Macro: AT_CHECK (commands, [status = ``0''], [stdout], [stderr])
Execute a test by performing given shell commands. These commands should normally exit with status, while producing
expected stdout and stderr contents. If commands exit with status 77, then the whole test group is skipped.

file:///C|/pdfing/autoconf.html.htm (197 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC170
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

The commands must not redirect the standard output, nor the standard error.

If status, or stdout, or stderr is `ignore', then the corresponding value is not checked.

The special value `expout' for stdout means the expected output of the commands is the content of the file `expout'. If
stdout is `stdout', then the standard output of the commands is available for further tests in the file `stdout'. Similarly
for stderr with `expout' and `stderr'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16.3 Running testsuite Scripts

Autotest test suites support the following arguments:

`--help'
`-h'

Display the list of options and exit successfully.

`--version'
`-V'

Display the version of the test suite and exit successfully.

`--clean'
`-c'

Remove all the files the test suite might have created and exit. Meant for clean Makefile targets.

`--list'
`-l'

List all the tests (or only the selection), including their possible keywords.

By default all the tests are performed (or described with `--list') in the default environment first silently, then verbosely, but the
environment, set of tests, and verbosity level can be tuned:

`variable=value'
Set the environment variable to value. Do not run `FOO=foo ./testsuite' as debugging scripts would then run in a
different environment.

The variable AUTOTEST_PATH specifies the testing path to prepend to PATH. It handles specially relative paths (not
starting with `/'): they are considered to be relative to the top level of the package being built. All the directories are made
absolute, first starting from the top level build tree, then from the source tree. For instance `./testsuite
AUTOTEST_PATH=tests:bin' for a `/src/foo-1.0' source package built in `/tmp/foo' results in `/tmp/foo/
tests:/tmp/foo/bin' and then `/src/foo-1.0/tests:/src/foo-1.0/bin' being prepended to PATH.

`number'
`number-number'
`number-'
`-number'

Add the corresponding test groups, with obvious semantics, to the selection.

`--keywords=keywords'

file:///C|/pdfing/autoconf.html.htm (198 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

`-k keywords'
Add to the selection the test groups which title or keywords (arguments to AT_SETUP or AT_KEYWORDS) match all the
keywords of the comma separated list keywords.

Running `./testsuite -k autoupdate,FUNC' will select all the tests tagged with `autoupdate' and `FUNC' (as
in `AC_CHECK_FUNC', `AC_FUNC_FNMATCH' etc.) while `./testsuite -k autoupdate -k FUNC' runs all the
tests tagged with `autoupdate' or `FUNC'.

`--errexit'
`-e'

If any test fails, immediately abort testing. It implies `--debug': post test group clean up, debugging script generation, and
logging are inhibited. This option is meant for the full test suite, it is not really useful for generated debugging scripts.

`--verbose'
`-v'

Force more verbosity in the detailed output of what is being done. This is the default for debugging scripts.

`--debug'
`-d'

Do not remove the files after a test group was performed --but they are still removed before, therefore using this option is
sane when running several test groups. Do not create debugging scripts. Do not log (in order to preserve supposedly existing
full log file). This is the default for debugging scripts.

`--trace'
`-x'

Trigger shell tracing of the test groups.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

16.4 Making testsuite Scripts

For putting Autotest into movement, you need some configuration and Makefile machinery. We recommend, at least if your
package uses deep or shallow hierarchies, that you use `tests/' as the name of the directory holding all your tests and their
`Makefile'. Here is a check list of things to do.

● Make sure to create the file `package.m4', which defines the identity of the package. It must define
AT_PACKAGE_STRING, the full signature of the package, and AT_PACKAGE_BUGREPORT, the address to which bug
reports should be sent. For sake of completeness, we suggest that you also define AT_PACKAGE_NAME,
AT_PACKAGE_TARNAME, and AT_PACKAGE_VERSION. See section 4.1 Initializing configure, for a description of
these variables. We suggest the following Makefile excerpt:

$(srcdir)/package.m4: $(top_srcdir)/configure.ac
 { \
 echo '# Signature of the current package.'; \
 echo 'm4_define([AT_PACKAGE_NAME], [@PACKAGE_NAME@])'; \
 echo 'm4_define([AT_PACKAGE_TARNAME], [@PACKAGE_TARNAME@])'; \
 echo 'm4_define([AT_PACKAGE_VERSION], [@PACKAGE_VERSION@])'; \
 echo 'm4_define([AT_PACKAGE_STRING], [@PACKAGE_STRING@])'; \
 echo 'm4_define([AT_PACKAGE_BUGREPORT], [@PACKAGE_BUGREPORT@])'; \
 } >$(srcdir)/package.m4

file:///C|/pdfing/autoconf.html.htm (199 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC16

Autoconf:

Be sure to distribute `package.m4' and to put it into the source hierarchy: the test suite ought to be shipped!

● Invoke AC_CONFIG_TESTDIR.

Macro: AC_CONFIG_TESTDIR (directory, [test-path = `directory'])
An Autotest test suite is to be configured in directory. This macro requires the instantiation of `directory/
atconfig' from `directory/atconfig.in', and sets the default AUTOTEST_PATH to test-path (see section
16.3 Running testsuite Scripts).

● Still within `configure.ac', as appropriate, ensure that some AC_CONFIG_FILES command includes substitution for
`tests/atlocal'.

● The `tests/Makefile.in' should be modified so the validation in your package is triggered by `make check'. An
example is provided below.

With Automake, here is a minimal example about how to link `make check' with a validation suite.

EXTRA_DIST = testsuite.at testsuite
TESTSUITE = $(srcdir)/testsuite
check-local: atconfig atlocal $(TESTSUITE)
 $(SHELL) $(TESTSUITE)

AUTOTEST = $(AUTOM4TE) --language=autotest
$(TESTSUITE): $(srcdir)/testsuite.at
 $(AUTOTEST) -I $(srcdir) $@.at -o $@.tmp
 mv $@.tmp $@

You might want to list explicitly the dependencies, i.e., the list of the files `testsuite.at' includes.

With strict Autoconf, you might need to add lines inspired from the following:

subdir = tests

atconfig: $(top_builddir)/config.status
 cd $(top_builddir) && \
 $(SHELL) ./config.status $(subdir)/$@

atlocal: $(srcdir)/atlocal.in $(top_builddir)/config.status
 cd $(top_builddir) && \
 $(SHELL) ./config.status $(subdir)/$@

and manage to have `atconfig.in' and $(EXTRA_DIST) distributed.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

17. Frequent Autoconf Questions, with answers

file:///C|/pdfing/autoconf.html.htm (200 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#SEC175
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Several questions about Autoconf come up occasionally. Here some of them are addressed.

17.1 Distributing configure Scripts Distributing configure scripts

17.2 Why Require GNU M4? Why not use the standard M4?

17.3 How Can I Bootstrap? Autoconf and GNU M4 require each other?

17.4 Why Not Imake? Why GNU uses configure instead of Imake

17.5 How Do I #define Installation Directories? Passing datadir to program

17.6 What is `autom4te.cache'? What is it? Can I remove it?

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

17.1 Distributing configure Scripts

What are the restrictions on distributing configure
scripts that Autoconf generates? How does that affect my
programs that use them?

There are no restrictions on how the configuration scripts that Autoconf produces may be distributed or used. In Autoconf version
1, they were covered by the GNU General Public License. We still encourage software authors to distribute their work under terms
like those of the GPL, but doing so is not required to use Autoconf.

Of the other files that might be used with configure, `config.h.in' is under whatever copyright you use for your
`configure.ac'. `config.sub' and `config.guess' have an exception to the GPL when they are used with an Autoconf-
generated configure script, which permits you to distribute them under the same terms as the rest of your package. `install-
sh' is from the X Consortium and is not copyrighted.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

17.2 Why Require GNU M4?

Why does Autoconf require GNU M4?

Many M4 implementations have hard-coded limitations on the size and number of macros that Autoconf exceeds. They also lack
several builtin macros that it would be difficult to get along without in a sophisticated application like Autoconf, including:

m4_builtin
m4_indir
m4_bpatsubst
__file__
__line__

Autoconf requires version 1.4 or above of GNU M4 because it uses frozen state files.

file:///C|/pdfing/autoconf.html.htm (201 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC175
file:///C|/pdfing/autoconf.html#SEC176
file:///C|/pdfing/autoconf.html#SEC177
file:///C|/pdfing/autoconf.html#SEC178
file:///C|/pdfing/autoconf.html#SEC179
file:///C|/pdfing/autoconf.html#SEC180
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC176
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC175
file:///C|/pdfing/autoconf.html#SEC177
file:///C|/pdfing/autoconf.html#SEC177
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Since only software maintainers need to use Autoconf, and since GNU M4 is simple to configure and install, it seems reasonable to
require GNU M4 to be installed also. Many maintainers of GNU and other free software already have most of the GNU utilities
installed, since they prefer them.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

17.3 How Can I Bootstrap?

If Autoconf requires GNU M4 and GNU M4 has an Autoconf
configure script, how do I bootstrap? It seems like a chicken
and egg problem!

This is a misunderstanding. Although GNU M4 does come with a configure script produced by Autoconf, Autoconf is not
required in order to run the script and install GNU M4. Autoconf is only required if you want to change the M4 configure script,
which few people have to do (mainly its maintainer).

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

17.4 Why Not Imake?

Why not use Imake instead of configure scripts?

Several people have written addressing this question, so I include adaptations of their explanations here.

The following answer is based on one written by Richard Pixley:

Autoconf generated scripts frequently work on machines that it has never been set up to handle before. That is, it
does a good job of inferring a configuration for a new system. Imake cannot do this.

Imake uses a common database of host specific data. For X11, this makes sense because the distribution is made as a
collection of tools, by one central authority who has control over the database.

GNU tools are not released this way. Each GNU tool has a maintainer; these maintainers are scattered across the
world. Using a common database would be a maintenance nightmare. Autoconf may appear to be this kind of
database, but in fact it is not. Instead of listing host dependencies, it lists program requirements.

If you view the GNU suite as a collection of native tools, then the problems are similar. But the GNU development
tools can be configured as cross tools in almost any host+target permutation. All of these configurations can be
installed concurrently. They can even be configured to share host independent files across hosts. Imake doesn't
address these issues.

Imake templates are a form of standardization. The GNU coding standards address the same issues without
necessarily imposing the same restrictions.

Here is some further explanation, written by Per Bothner:

file:///C|/pdfing/autoconf.html.htm (202 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC176
file:///C|/pdfing/autoconf.html#SEC178
file:///C|/pdfing/autoconf.html#SEC178
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC177
file:///C|/pdfing/autoconf.html#SEC179
file:///C|/pdfing/autoconf.html#SEC179
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

One of the advantages of Imake is that it easy to generate large Makefiles using cpp's `#include' and macro
mechanisms. However, cpp is not programmable: it has limited conditional facilities, and no looping. And cpp
cannot inspect its environment.

All of these problems are solved by using sh instead of cpp. The shell is fully programmable, has macro
substitution, can execute (or source) other shell scripts, and can inspect its environment.

Paul Eggert elaborates more:

With Autoconf, installers need not assume that Imake itself is already installed and working well. This may not seem
like much of an advantage to people who are accustomed to Imake. But on many hosts Imake is not installed or the
default installation is not working well, and requiring Imake to install a package hinders the acceptance of that
package on those hosts. For example, the Imake template and configuration files might not be installed properly on a
host, or the Imake build procedure might wrongly assume that all source files are in one big directory tree, or the
Imake configuration might assume one compiler whereas the package or the installer needs to use another, or there
might be a version mismatch between the Imake expected by the package and the Imake supported by the host. These
problems are much rarer with Autoconf, where each package comes with its own independent configuration
processor.

Also, Imake often suffers from unexpected interactions between make and the installer's C preprocessor. The
fundamental problem here is that the C preprocessor was designed to preprocess C programs, not `Makefile's.
This is much less of a problem with Autoconf, which uses the general-purpose preprocessor M4, and where the
package's author (rather than the installer) does the preprocessing in a standard way.

Finally, Mark Eichin notes:

Imake isn't all that extensible, either. In order to add new features to Imake, you need to provide your own project
template, and duplicate most of the features of the existing one. This means that for a sophisticated project, using the
vendor-provided Imake templates fails to provide any leverage--since they don't cover anything that your own
project needs (unless it is an X11 program).

On the other side, though:

The one advantage that Imake has over configure: `Imakefile's tend to be much shorter (likewise, less
redundant) than `Makefile.in's. There is a fix to this, however--at least for the Kerberos V5 tree, we've modified
things to call in common `post.in' and `pre.in' `Makefile' fragments for the entire tree. This means that a lot
of common things don't have to be duplicated, even though they normally are in configure setups.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

17.5 How Do I #define Installation Directories?

file:///C|/pdfing/autoconf.html.htm (203 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC178
file:///C|/pdfing/autoconf.html#SEC180
file:///C|/pdfing/autoconf.html#SEC180
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

My program needs library files, installed in datadir and
similar. If I use

AC_DEFINE_UNQUOTED([DATADIR], [$datadir],
 [Define to the read-only architecture-independent
 data directory.])

I get

#define DATADIR "${prefix}/share"

As already explained, this behavior is on purpose, mandated by the GNU Coding Standards, see 4.7.2 Installation Directory
Variables. There are several means to achieve a similar goal:

● Do not use AC_DEFINE but use your `Makefile' to pass the actual value of datadir via compilation flags, see 4.7.2
Installation Directory Variables, for the details.

● This solution can be simplified when compiling a program: you may either extend the CPPFLAGS:

CPPFLAGS = -DDATADIR=\"$(datadir)\" @CPPFLAGS@

or create a dedicated header file:

DISTCLEANFILES = datadir.h
datadir.h: Makefile
 echo '#define DATADIR "$(datadir)"' >$@

● Use AC_DEFINE but have configure compute the literal value of datadir and others. Many people have wrapped
macros to automate this task. For instance, the macro AC_DEFINE_DIR from the Autoconf Macro Archive.

This solution does not conform to the GNU Coding Standards.

● Note that all the previous solutions hard wire the absolute path to these directories in the executables, which is not a good
property. You may try to compute the paths relatively to prefix, and try to find prefix at runtime, this way your
package is relocatable. Some macros are already available to address this issue: see adl_COMPUTE_RELATIVE_PATHS
and adl_COMPUTE_STANDARD_RELATIVE_PATHS on the Autoconf Macro Archive.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

file:///C|/pdfing/autoconf.html.htm (204 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC24
http://www.gnu.org/software/ac-archive/
http://www.gnu.org/software/ac-archive/
file:///C|/pdfing/autoconf.html#SEC179
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

17.6 What is `autom4te.cache'?

What is this directory `autom4te.cache'? Can I safely remove it?

In the GNU Build System, `configure.ac' plays a central role and is read by many tools: autoconf to create `configure',
autoheader to create `config.h.in', automake to create `Makefile.in', autoscan to check the completeness of
`configure.ac', autoreconf to check the GNU Build System components that are used. To "read `configure.ac'"
actually means to compile it with M4, which can be a very long process for complex `configure.ac'.

This is why all these tools, instead of running directly M4, invoke autom4te (see section 8.2.1 Invoking autom4te) which,
while answering to a specific demand, stores additional information in `autom4te.cache' for future runs. For instance, if you
run autoconf, behind the scenes, autom4te will also store information for the other tools, so that when you invoke
autoheader or automake etc., re-processing `configure.ac' is not needed. The speed up is frequently of 30, and is
increasing with the size of `configure.ac'.

But it is and remains being simply a cache: you can safely remove it.

Can I permanently get rid of it?

The creation of this cache can be disabled from `~/.autom4te.cfg', see 8.2.2 Customizing autom4te, for more details. You
should be aware that disabling the cache slows down the Autoconf test suite by 40%. The more GNU Build System components are
used, the more the cache is useful; for instance running `autoreconf -f' on the Coreutils is twice slower without the cache
although `--force' implies that the cache is not fully exploited, and eight times slower than without `--force'.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

18. History of Autoconf

You may be wondering, Why was Autoconf originally written? How did it get into its present form? (Why does it look like gorilla
spit?) If you're not wondering, then this chapter contains no information useful to you, and you might as well skip it. If you are
wondering, then let there be light....

18.1 Genesis Prehistory and naming of configure

18.2 Exodus The plagues of M4 and Perl

18.3 Leviticus The priestly code of portability arrives

18.4 Numbers Growth and contributors

18.5 Deuteronomy Approaching the promises of easy configuration

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

18.1 Genesis

file:///C|/pdfing/autoconf.html.htm (205 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC99
file:///C|/pdfing/autoconf.html#SEC180
file:///C|/pdfing/autoconf.html#SEC182
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC182
file:///C|/pdfing/autoconf.html#SEC183
file:///C|/pdfing/autoconf.html#SEC184
file:///C|/pdfing/autoconf.html#SEC185
file:///C|/pdfing/autoconf.html#SEC186
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC183
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

In June 1991 I was maintaining many of the GNU utilities for the Free Software Foundation. As they were ported to more platforms
and more programs were added, the number of `-D' options that users had to select in the `Makefile' (around 20) became
burdensome. Especially for me--I had to test each new release on a bunch of different systems. So I wrote a little shell script to
guess some of the correct settings for the fileutils package, and released it as part of fileutils 2.0. That configure script worked
well enough that the next month I adapted it (by hand) to create similar configure scripts for several other GNU utilities
packages. Brian Berliner also adapted one of my scripts for his CVS revision control system.

Later that summer, I learned that Richard Stallman and Richard Pixley were developing similar scripts to use in the GNU compiler
tools; so I adapted my configure scripts to support their evolving interface: using the file name `Makefile.in' as the
templates; adding `+srcdir', the first option (of many); and creating `config.status' files.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

18.2 Exodus

As I got feedback from users, I incorporated many improvements, using Emacs to search and replace, cut and paste, similar
changes in each of the scripts. As I adapted more GNU utilities packages to use configure scripts, updating them all by hand
became impractical. Rich Murphey, the maintainer of the GNU graphics utilities, sent me mail saying that the configure scripts
were great, and asking if I had a tool for generating them that I could send him. No, I thought, but I should! So I started to work out
how to generate them. And the journey from the slavery of hand-written configure scripts to the abundance and ease of
Autoconf began.

Cygnus configure, which was being developed at around that time, is table driven; it is meant to deal mainly with a discrete
number of system types with a small number of mainly unguessable features (such as details of the object file format). The
automatic configuration system that Brian Fox had developed for Bash takes a similar approach. For general use, it seems to me a
hopeless cause to try to maintain an up-to-date database of which features each variant of each operating system has. It's easier and
more reliable to check for most features on the fly--especially on hybrid systems that people have hacked on locally or that have
patches from vendors installed.

I considered using an architecture similar to that of Cygnus configure, where there is a single configure script that reads
pieces of `configure.in' when run. But I didn't want to have to distribute all of the feature tests with every package, so I settled
on having a different configure made from each `configure.in' by a preprocessor. That approach also offered more control
and flexibility.

I looked briefly into using the Metaconfig package, by Larry Wall, Harlan Stenn, and Raphael Manfredi, but I decided not to for
several reasons. The Configure scripts it produces are interactive, which I find quite inconvenient; I didn't like the ways it
checked for some features (such as library functions); I didn't know that it was still being maintained, and the Configure scripts
I had seen didn't work on many modern systems (such as System V R4 and NeXT); it wasn't very flexible in what it could do in
response to a feature's presence or absence; I found it confusing to learn; and it was too big and complex for my needs (I didn't
realize then how much Autoconf would eventually have to grow).

I considered using Perl to generate my style of configure scripts, but decided that M4 was better suited to the job of simple
textual substitutions: it gets in the way less, because output is implicit. Plus, everyone already has it. (Initially I didn't rely on the
GNU extensions to M4.) Also, some of my friends at the University of Maryland had recently been putting M4 front ends on
several programs, including tvtwm, and I was interested in trying out a new language.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

18.3 Leviticus

file:///C|/pdfing/autoconf.html.htm (206 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC182
file:///C|/pdfing/autoconf.html#SEC184
file:///C|/pdfing/autoconf.html#SEC184
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC183
file:///C|/pdfing/autoconf.html#SEC185
file:///C|/pdfing/autoconf.html#SEC185
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

Since my configure scripts determine the system's capabilities automatically, with no interactive user intervention, I decided to
call the program that generates them Autoconfig. But with a version number tacked on, that name would be too long for old UNIX
file systems, so I shortened it to Autoconf.

In the fall of 1991 I called together a group of fellow questers after the Holy Grail of portability (er, that is, alpha testers) to give
me feedback as I encapsulated pieces of my handwritten scripts in M4 macros and continued to add features and improve the
techniques used in the checks. Prominent among the testers were Fran@,cois Pinard, who came up with the idea of making an
Autoconf shell script to run M4 and check for unresolved macro calls; Richard Pixley, who suggested running the compiler instead
of searching the file system to find include files and symbols, for more accurate results; Karl Berry, who got Autoconf to configure
TeX and added the macro index to the documentation; and Ian Lance Taylor, who added support for creating a C header file as an
alternative to putting `-D' options in a `Makefile', so he could use Autoconf for his UUCP package. The alpha testers cheerfully
adjusted their files again and again as the names and calling conventions of the Autoconf macros changed from release to release.
They all contributed many specific checks, great ideas, and bug fixes.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

18.4 Numbers

In July 1992, after months of alpha testing, I released Autoconf 1.0, and converted many GNU packages to use it. I was surprised
by how positive the reaction to it was. More people started using it than I could keep track of, including people working on
software that wasn't part of the GNU Project (such as TCL, FSP, and Kerberos V5). Autoconf continued to improve rapidly, as
many people using the configure scripts reported problems they encountered.

Autoconf turned out to be a good torture test for M4 implementations. UNIX M4 started to dump core because of the length of the
macros that Autoconf defined, and several bugs showed up in GNU M4 as well. Eventually, we realized that we needed to use some
features that only GNU M4 has. 4.3BSD M4, in particular, has an impoverished set of builtin macros; the System V version is
better, but still doesn't provide everything we need.

More development occurred as people put Autoconf under more stresses (and to uses I hadn't anticipated). Karl Berry added checks
for X11. david zuhn contributed C++ support. Fran@,cois Pinard made it diagnose invalid arguments. Jim Blandy bravely coerced
it into configuring GNU Emacs, laying the groundwork for several later improvements. Roland McGrath got it to configure the
GNU C Library, wrote the autoheader script to automate the creation of C header file templates, and added a `--verbose'
option to configure. Noah Friedman added the `--autoconf-dir' option and AC_MACRODIR environment variable. (He
also coined the term autoconfiscate to mean "adapt a software package to use Autoconf".) Roland and Noah improved the quoting
protection in AC_DEFINE and fixed many bugs, especially when I got sick of dealing with portability problems from February
through June, 1993.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

18.5 Deuteronomy

A long wish list for major features had accumulated, and the effect of several years of patching by various people had left some
residual cruft. In April 1994, while working for Cygnus Support, I began a major revision of Autoconf. I added most of the features
of the Cygnus configure that Autoconf had lacked, largely by adapting the relevant parts of Cygnus configure with the help
of david zuhn and Ken Raeburn. These features include support for using `config.sub', `config.guess', `--host', and `--
target'; making links to files; and running configure scripts in subdirectories. Adding these features enabled Ken to convert
GNU as, and Rob Savoye to convert DejaGNU, to using Autoconf.

file:///C|/pdfing/autoconf.html.htm (207 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC184
file:///C|/pdfing/autoconf.html#SEC186
file:///C|/pdfing/autoconf.html#SEC186
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC185
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

I added more features in response to other peoples' requests. Many people had asked for configure scripts to share the results of
the checks between runs, because (particularly when configuring a large source tree, like Cygnus does) they were frustratingly
slow. Mike Haertel suggested adding site-specific initialization scripts. People distributing software that had to unpack on MS-
DOS asked for a way to override the `.in' extension on the file names, which produced file names like `config.h.in'
containing two dots. Jim Avera did an extensive examination of the problems with quoting in AC_DEFINE and AC_SUBST; his
insights led to significant improvements. Richard Stallman asked that compiler output be sent to `config.log' instead of `/dev/
null', to help people debug the Emacs configure script.

I made some other changes because of my dissatisfaction with the quality of the program. I made the messages showing results of
the checks less ambiguous, always printing a result. I regularized the names of the macros and cleaned up coding style
inconsistencies. I added some auxiliary utilities that I had developed to help convert source code packages to use Autoconf. With
the help of Fran@,cois Pinard, I made the macros not interrupt each others' messages. (That feature revealed some performance
bottlenecks in GNU M4, which he hastily corrected!) I reorganized the documentation around problems people want to solve. And I
began a test suite, because experience had shown that Autoconf has a pronounced tendency to regress when we change it.

Again, several alpha testers gave invaluable feedback, especially Fran@,cois Pinard, Jim Meyering, Karl Berry, Rob Savoye, Ken
Raeburn, and Mark Eichin.

Finally, version 2.0 was ready. And there was much rejoicing. (And I have free time again. I think. Yeah, right.)

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

A. Copying This Manual

A.1 GNU Free Documentation License License for copying this manual

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

A.1 GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the

file:///C|/pdfing/autoconf.html.htm (208 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC186
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC189
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such,
"Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of
the text.

file:///C|/pdfing/autoconf.html.htm (209 of 250)27. 1. 2004 18:44:42

Autoconf:

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

file:///C|/pdfing/autoconf.html.htm (210 of 250)27. 1. 2004 18:44:42

Autoconf:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

14. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version
by various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

file:///C|/pdfing/autoconf.html.htm (211 of 250)27. 1. 2004 18:44:42

Autoconf:

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements."

7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is
included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than
one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of

file:///C|/pdfing/autoconf.html.htm (212 of 250)27. 1. 2004 18:44:42

Autoconf:

section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any Warrany Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright
and license notices just after the title page:

 Copyright (C) year your name.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled ``GNU
 Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

 with the Invariant Sections being list their titles, with
 the Front-Cover Texts being list, and with the Back-Cover Texts
 being list.

file:///C|/pdfing/autoconf.html.htm (213 of 250)27. 1. 2004 18:44:42

http://www.gnu.org/copyleft/
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About

Autoconf:

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your
choice of free software license, such as the GNU General Public License, to permit their use in free software.

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B. Indices

B.1 Environment Variable Index Index of environment variables used

B.2 Output Variable Index Index of variables set in output files

B.3 Preprocessor Symbol Index Index of C preprocessor symbols defined

B.4 Autoconf Macro Index Index of Autoconf macros

B.5 M4 Macro Index Index of M4, M4sugar, and M4sh macros

B.6 Autotest Macro Index Index of Autotest macros

B.7 Program and Function Index Index of those with portability problems

B.8 Concept Index General index

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.1 Environment Variable Index

This is an alphabetical list of the environment variables that Autoconf checks.

Jump to:

C E I L M N P R S W

Index Entry Section

C

CDPATH 10.7 Special Shell Variables

CONFIG_COMMANDS 15.1 Obsolete `config.status' Invocation

CONFIG_FILES 15.1 Obsolete `config.status' Invocation

CONFIG_HEADERS 15.1 Obsolete `config.status' Invocation

CONFIG_LINKS 15.1 Obsolete `config.status' Invocation

CONFIG_SHELL 14. Recreating a Configuration

CONFIG_SITE 12.6 Setting Site Defaults

CONFIG_STATUS 14. Recreating a Configuration

E

file:///C|/pdfing/autoconf.html.htm (214 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC189
file:///C|/pdfing/autoconf.html#SEC191
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC191
file:///C|/pdfing/autoconf.html#SEC192
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC194
file:///C|/pdfing/autoconf.html#SEC195
file:///C|/pdfing/autoconf.html#SEC196
file:///C|/pdfing/autoconf.html#SEC197
file:///C|/pdfing/autoconf.html#SEC198
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC192
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#ev_C
file:///C|/pdfing/autoconf.html#ev_E
file:///C|/pdfing/autoconf.html#ev_I
file:///C|/pdfing/autoconf.html#ev_L
file:///C|/pdfing/autoconf.html#ev_M
file:///C|/pdfing/autoconf.html#ev_N
file:///C|/pdfing/autoconf.html#ev_P
file:///C|/pdfing/autoconf.html#ev_R
file:///C|/pdfing/autoconf.html#ev_S
file:///C|/pdfing/autoconf.html#ev_W
file:///C|/pdfing/autoconf.html#IDX715
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX854
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#IDX856
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#IDX858
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#IDX860
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#IDX850
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#IDX847
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#IDX852
file:///C|/pdfing/autoconf.html#SEC149

Autoconf:

ENV 10.7 Special Shell Variables

I

IFS 10.7 Special Shell Variables

L

LANG 10.7 Special Shell Variables

LANGUAGE 10.7 Special Shell Variables

LC_ADDRESS 10.7 Special Shell Variables

LC_ALL 10.7 Special Shell Variables

LC_COLLATE 10.7 Special Shell Variables

LC_CTYPE 10.7 Special Shell Variables

LC_IDENTIFICATION 10.7 Special Shell Variables

LC_MEASUREMENT 10.7 Special Shell Variables

LC_MESSAGES 10.7 Special Shell Variables

LC_MONETARY 10.7 Special Shell Variables

LC_NAME 10.7 Special Shell Variables

LC_NUMERIC 10.7 Special Shell Variables

LC_PAPER 10.7 Special Shell Variables

LC_TELEPHONE 10.7 Special Shell Variables

LC_TIME 10.7 Special Shell Variables

LINENO 10.7 Special Shell Variables

M

MAIL 10.7 Special Shell Variables

MAILPATH 10.7 Special Shell Variables

N

NULLCMD 10.7 Special Shell Variables

P

PATH_SEPARATOR 10.7 Special Shell Variables

PS1 10.7 Special Shell Variables

PS2 10.7 Special Shell Variables

PS4 10.7 Special Shell Variables

PWD 10.7 Special Shell Variables

R

RANDOM 10.7 Special Shell Variables

S

file:///C|/pdfing/autoconf.html.htm (215 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX734
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX716
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX717
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX725
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX726
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX718
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX719
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX720
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX727
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX728
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX721
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX722
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX729
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX723
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX730
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX731
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX724
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX732
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX735
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX736
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX733
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX742
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX737
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX738
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX739
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX740
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX743
file:///C|/pdfing/autoconf.html#SEC121

Autoconf:

SIMPLE_BACKUP_SUFFIX 15.3 Using autoupdate to Modernize `configure.ac'

status 10.7 Special Shell Variables

W

WARNINGS 3.4 Using autoconf to Create configure

WARNINGS 3.5 Using autoreconf to Update configure Scripts

WARNINGS 4.8.2 Using autoheader to Create `config.h.in'

WARNINGS 8.2.1 Invoking autom4te

Jump to:

C E I L M N P R S W

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.2 Output Variable Index

This is an alphabetical list of the variables that Autoconf can substitute into files that it creates, typically one or more
`Makefile's. See section 7.2 Setting Output Variables, for more information on how this is done.

Jump to:

A B C D E F G H I K L M N O P R S T U X Y

Index Entry Section

A

abs_builddir 4.7.1 Preset Output Variables

abs_srcdir 4.7.1 Preset Output Variables

abs_top_builddir 4.7.1 Preset Output Variables

abs_top_srcdir 4.7.1 Preset Output Variables

ALLOCA 5.5.2 Particular Function Checks

AWK 5.2.1 Particular Program Checks

B

bindir 4.7.2 Installation Directory Variables

build 11.2 Getting the Canonical System Type

build_alias 11.2 Getting the Canonical System Type

build_cpu 11.2 Getting the Canonical System Type

build_os 11.2 Getting the Canonical System Type

build_vendor 11.2 Getting the Canonical System Type

builddir 4.7.1 Preset Output Variables

file:///C|/pdfing/autoconf.html.htm (216 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX864
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#IDX741
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#IDX5
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#IDX8
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#IDX116
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#IDX649
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#ev_C
file:///C|/pdfing/autoconf.html#ev_E
file:///C|/pdfing/autoconf.html#ev_I
file:///C|/pdfing/autoconf.html#ev_L
file:///C|/pdfing/autoconf.html#ev_M
file:///C|/pdfing/autoconf.html#ev_N
file:///C|/pdfing/autoconf.html#ev_P
file:///C|/pdfing/autoconf.html#ev_R
file:///C|/pdfing/autoconf.html#ev_S
file:///C|/pdfing/autoconf.html#ev_W
file:///C|/pdfing/autoconf.html#SEC191
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#ov_A
file:///C|/pdfing/autoconf.html#ov_B
file:///C|/pdfing/autoconf.html#ov_C
file:///C|/pdfing/autoconf.html#ov_D
file:///C|/pdfing/autoconf.html#ov_E
file:///C|/pdfing/autoconf.html#ov_F
file:///C|/pdfing/autoconf.html#ov_G
file:///C|/pdfing/autoconf.html#ov_H
file:///C|/pdfing/autoconf.html#ov_I
file:///C|/pdfing/autoconf.html#ov_K
file:///C|/pdfing/autoconf.html#ov_L
file:///C|/pdfing/autoconf.html#ov_M
file:///C|/pdfing/autoconf.html#ov_N
file:///C|/pdfing/autoconf.html#ov_O
file:///C|/pdfing/autoconf.html#ov_P
file:///C|/pdfing/autoconf.html#ov_R
file:///C|/pdfing/autoconf.html#ov_S
file:///C|/pdfing/autoconf.html#ov_T
file:///C|/pdfing/autoconf.html#ov_U
file:///C|/pdfing/autoconf.html#ov_X
file:///C|/pdfing/autoconf.html#ov_Y
file:///C|/pdfing/autoconf.html#IDX72
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX80
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX76
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX84
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX210
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX147
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX86
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX818
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX813
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX819
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX821
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX820
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX70
file:///C|/pdfing/autoconf.html#SEC23

Autoconf:

C

CC 5.10.3 C Compiler Characteristics

CC 5.10.3 C Compiler Characteristics

CC 5.11 System Services

CFLAGS 4.7.1 Preset Output Variables

CFLAGS 5.10.3 C Compiler Characteristics

configure_input 4.7.1 Preset Output Variables

CPP 5.10.3 C Compiler Characteristics

CPPFLAGS 4.7.1 Preset Output Variables

cross_compiling 11.1 Specifying the System Type

CXX 5.10.4 C++ Compiler Characteristics

CXXCPP 5.10.4 C++ Compiler Characteristics

CXXFLAGS 4.7.1 Preset Output Variables

CXXFLAGS 5.10.4 C++ Compiler Characteristics

D

datadir 4.7.2 Installation Directory Variables

DEFS 4.7.1 Preset Output Variables

E

ECHO_C 4.7.1 Preset Output Variables

ECHO_N 4.7.1 Preset Output Variables

ECHO_T 4.7.1 Preset Output Variables

EGREP 5.2.1 Particular Program Checks

exec_prefix 4.7.2 Installation Directory Variables

EXEEXT 5.10 Compilers and Preprocessors

EXEEXT 15.4 Obsolete Macros

F

F77 5.10.5 Fortran 77 Compiler Characteristics

FFLAGS 4.7.1 Preset Output Variables

FFLAGS 5.10.5 Fortran 77 Compiler Characteristics

FGREP 5.2.1 Particular Program Checks

FLIBS 5.10.5 Fortran 77 Compiler Characteristics

G

GETGROUPS_LIBS 5.5.2 Particular Function Checks

GETLOADAVG_LIBS 5.5.2 Particular Function Checks

H

file:///C|/pdfing/autoconf.html.htm (217 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX475
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX514
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX559
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX48
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX476
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX50
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX482
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX52
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX811
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#IDX517
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#IDX521
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#IDX54
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX518
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#IDX88
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX56
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX60
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX61
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX62
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX150
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX90
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX469
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#IDX902
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX524
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX64
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX525
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX153
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX531
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX242
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX258
file:///C|/pdfing/autoconf.html#SEC46

Autoconf:

host 11.2 Getting the Canonical System Type

host_alias 11.2 Getting the Canonical System Type

host_cpu 11.2 Getting the Canonical System Type

host_os 11.2 Getting the Canonical System Type

host_vendor 11.2 Getting the Canonical System Type

I

includedir 4.7.2 Installation Directory Variables

infodir 4.7.2 Installation Directory Variables

INSTALL 5.2.1 Particular Program Checks

INSTALL_DATA 5.2.1 Particular Program Checks

INSTALL_PROGRAM 5.2.1 Particular Program Checks

INSTALL_SCRIPT 5.2.1 Particular Program Checks

K

KMEM_GROUP 5.5.2 Particular Function Checks

L

LDFLAGS 4.7.1 Preset Output Variables

LEX 5.2.1 Particular Program Checks

LEX_OUTPUT_ROOT 5.2.1 Particular Program Checks

LEXLIB 5.2.1 Particular Program Checks

libdir 4.7.2 Installation Directory Variables

libexecdir 4.7.2 Installation Directory Variables

LIBOBJS 5.5.2 Particular Function Checks

LIBOBJS 5.5.2 Particular Function Checks

LIBOBJS 5.5.2 Particular Function Checks

LIBOBJS 5.5.3 Generic Function Checks

LIBOBJS 5.5.3 Generic Function Checks

LIBOBJS 5.8.1 Particular Structure Checks

LIBS 4.7.1 Preset Output Variables

LIBS 5.12 UNIX Variants

LIBS 15.4 Obsolete Macros

LIBS 15.4 Obsolete Macros

LN_S 5.2.1 Particular Program Checks

localstatedir 4.7.2 Installation Directory Variables

M

mandir 4.7.2 Installation Directory Variables

N

file:///C|/pdfing/autoconf.html.htm (218 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX824
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX814
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX825
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX827
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX826
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX92
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX94
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX156
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX158
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX157
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX159
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX257
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX66
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX162
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX165
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX163
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX96
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX98
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX255
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX280
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX288
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX366
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX375
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX424
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX68
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX575
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX1014
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1083
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX168
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX100
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX102
file:///C|/pdfing/autoconf.html#SEC24

Autoconf:

NEED_SETGID 5.5.2 Particular Function Checks

O

OBJEXT 5.10 Compilers and Preprocessors

OBJEXT 15.4 Obsolete Macros

oldincludedir 4.7.2 Installation Directory Variables

P

PACKAGE_BUGREPORT 4.1 Initializing configure

PACKAGE_NAME 4.1 Initializing configure

PACKAGE_STRING 4.1 Initializing configure

PACKAGE_TARNAME 4.1 Initializing configure

PACKAGE_VERSION 4.1 Initializing configure

POW_LIB 5.5.2 Particular Function Checks

prefix 4.7.2 Installation Directory Variables

program_transform_name 12.5 Transforming Program Names When Installing

R

RANLIB 5.2.1 Particular Program Checks

S

sbindir 4.7.2 Installation Directory Variables

SET_MAKE 4.4 Outputting Files

sharedstatedir 4.7.2 Installation Directory Variables

srcdir 4.7.1 Preset Output Variables

subdirs 4.11 Configuring Other Packages in Subdirectories

sysconfdir 4.7.2 Installation Directory Variables

T

target 11.2 Getting the Canonical System Type

target_alias 11.2 Getting the Canonical System Type

target_cpu 11.2 Getting the Canonical System Type

target_os 11.2 Getting the Canonical System Type

target_vendor 11.2 Getting the Canonical System Type

top_builddir 4.7.1 Preset Output Variables

top_srcdir 4.7.1 Preset Output Variables

U

U 15.6.4 AC_LIBOBJ vs. LIBOBJS

X

file:///C|/pdfing/autoconf.html.htm (219 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX256
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX470
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#IDX979
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX104
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX24
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX12
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX21
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX15
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX18
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX331
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX106
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX846
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#IDX171
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX108
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX44
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#IDX110
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX78
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX140
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#IDX112
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#IDX830
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX815
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX831
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX833
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX832
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX74
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX82
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#IDX1088
file:///C|/pdfing/autoconf.html#SEC165

Autoconf:

X_CFLAGS 5.11 System Services

X_EXTRA_LIBS 5.11 System Services

X_LIBS 5.11 System Services

X_PRE_LIBS 5.11 System Services

Y

YACC 5.2.1 Particular Program Checks

Jump to:

A B C D E F G H I K L M N O P R S T U X Y

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.3 Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define. To work with Autoconf, C source code
needs to use these names in #if directives.

Jump to:

_
C D F G H I L M N O P R S T U V W X Y

Index Entry Section

_

__CHAR_UNSIGNED__ 5.10.3 C Compiler Characteristics

__PROTOTYPES 5.10.3 C Compiler Characteristics

_ALL_SOURCE 5.12 UNIX Variants

_FILE_OFFSET_BITS 5.11 System Services

_GNU_SOURCE 5.12 UNIX Variants

_LARGE_FILES 5.11 System Services

_LARGEFILE_SOURCE 5.5.2 Particular Function Checks

_MINIX 5.12 UNIX Variants

_POSIX_1_SOURCE 5.12 UNIX Variants

_POSIX_SOURCE 5.12 UNIX Variants

_POSIX_VERSION 5.6.2 Particular Header Checks

C

C_ALLOCA 5.5.2 Particular Function Checks

C_GETLOADAVG 5.5.2 Particular Function Checks

CLOSEDIR_VOID 5.5.2 Particular Function Checks

file:///C|/pdfing/autoconf.html.htm (220 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX548
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX550
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX549
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX551
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX174
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#ov_A
file:///C|/pdfing/autoconf.html#ov_B
file:///C|/pdfing/autoconf.html#ov_C
file:///C|/pdfing/autoconf.html#ov_D
file:///C|/pdfing/autoconf.html#ov_E
file:///C|/pdfing/autoconf.html#ov_F
file:///C|/pdfing/autoconf.html#ov_G
file:///C|/pdfing/autoconf.html#ov_H
file:///C|/pdfing/autoconf.html#ov_I
file:///C|/pdfing/autoconf.html#ov_K
file:///C|/pdfing/autoconf.html#ov_L
file:///C|/pdfing/autoconf.html#ov_M
file:///C|/pdfing/autoconf.html#ov_N
file:///C|/pdfing/autoconf.html#ov_O
file:///C|/pdfing/autoconf.html#ov_P
file:///C|/pdfing/autoconf.html#ov_R
file:///C|/pdfing/autoconf.html#ov_S
file:///C|/pdfing/autoconf.html#ov_T
file:///C|/pdfing/autoconf.html#ov_U
file:///C|/pdfing/autoconf.html#ov_X
file:///C|/pdfing/autoconf.html#ov_Y
file:///C|/pdfing/autoconf.html#SEC192
file:///C|/pdfing/autoconf.html#SEC194
file:///C|/pdfing/autoconf.html#SEC194
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#cv__
file:///C|/pdfing/autoconf.html#cv_C
file:///C|/pdfing/autoconf.html#cv_D
file:///C|/pdfing/autoconf.html#cv_F
file:///C|/pdfing/autoconf.html#cv_G
file:///C|/pdfing/autoconf.html#cv_H
file:///C|/pdfing/autoconf.html#cv_I
file:///C|/pdfing/autoconf.html#cv_L
file:///C|/pdfing/autoconf.html#cv_M
file:///C|/pdfing/autoconf.html#cv_N
file:///C|/pdfing/autoconf.html#cv_O
file:///C|/pdfing/autoconf.html#cv_P
file:///C|/pdfing/autoconf.html#cv_R
file:///C|/pdfing/autoconf.html#cv_S
file:///C|/pdfing/autoconf.html#cv_T
file:///C|/pdfing/autoconf.html#cv_U
file:///C|/pdfing/autoconf.html#cv_V
file:///C|/pdfing/autoconf.html#cv_W
file:///C|/pdfing/autoconf.html#cv_X
file:///C|/pdfing/autoconf.html#cv_Y
file:///C|/pdfing/autoconf.html#IDX500
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX510
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX569
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX557
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX572
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX558
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX238
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX578
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX580
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX579
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX399
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX208
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX254
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX217
file:///C|/pdfing/autoconf.html#SEC46

Autoconf:

const 5.10.3 C Compiler Characteristics

D

DGUX 5.5.2 Particular Function Checks

DIRENT 15.4 Obsolete Macros

F

F77_DUMMY_MAIN 5.10.5 Fortran 77 Compiler Characteristics

F77_FUNC 5.10.5 Fortran 77 Compiler Characteristics

F77_FUNC_ 5.10.5 Fortran 77 Compiler Characteristics

F77_MAIN 5.10.5 Fortran 77 Compiler Characteristics

F77_NO_MINUS_C_MINUS_O 5.10.5 Fortran 77 Compiler Characteristics

G

GETGROUPS_T 5.9.1 Particular Type Checks

GETLODAVG_PRIVILEGED 5.5.2 Particular Function Checks

GETPGRP_VOID 5.5.2 Particular Function Checks

gid_t 5.9.1 Particular Type Checks

GWINSZ_IN_SYS_IOCTL 5.6.2 Particular Header Checks

H

HAVE__BOOL 5.6.2 Particular Header Checks

HAVE_ALLOCA_H 5.5.2 Particular Function Checks

HAVE_CONFIG_H 4.8 Configuration Header Files

HAVE_DECL_STRERROR_R 5.5.2 Particular Function Checks

HAVE_DECL_symbol 5.7.2 Generic Declaration Checks

HAVE_DIRENT_H 5.6.2 Particular Header Checks

HAVE_DOPRNT 5.5.2 Particular Function Checks

HAVE_function 5.5.3 Generic Function Checks

HAVE_GETMNTENT 5.5.2 Particular Function Checks

HAVE_header 5.6.3 Generic Header Checks

HAVE_LONG_DOUBLE 5.10.3 C Compiler Characteristics

HAVE_LONG_FILE_NAMES 5.11 System Services

HAVE_LSTAT_EMPTY_STRING_BUG 5.5.2 Particular Function Checks

HAVE_MALLOC 5.5.2 Particular Function Checks

HAVE_MBRTOWC 5.5.2 Particular Function Checks

HAVE_MMAP 5.5.2 Particular Function Checks

HAVE_NDIR_H 5.6.2 Particular Header Checks

HAVE_NLIST_H 5.5.2 Particular Function Checks

HAVE_OBSTACK 5.5.2 Particular Function Checks

HAVE_REALLOC 5.5.2 Particular Function Checks

file:///C|/pdfing/autoconf.html.htm (221 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX491
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX247
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX894
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX534
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX540
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX541
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX537
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX528
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX442
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX252
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX266
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX464
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX405
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX392
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX209
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX115
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#IDX336
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX415
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#IDX378
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX354
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX363
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX262
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX410
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#IDX503
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX562
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX318
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX275
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX284
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX292
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX379
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX250
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX296
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX300
file:///C|/pdfing/autoconf.html#SEC46

Autoconf:

HAVE_RESTARTABLE_SYSCALLS 15.4 Obsolete Macros

HAVE_ST_BLKSIZE 5.8.1 Particular Structure Checks

HAVE_ST_BLOCKS 5.8.1 Particular Structure Checks

HAVE_ST_RDEV 5.8.1 Particular Structure Checks

HAVE_STAT_EMPTY_STRING_BUG 5.5.2 Particular Function Checks

HAVE_STDBOOL_H 5.6.2 Particular Header Checks

HAVE_STRCOLL 5.5.2 Particular Function Checks

HAVE_STRERROR_R 5.5.2 Particular Function Checks

HAVE_STRFTIME 5.5.2 Particular Function Checks

HAVE_STRINGIZE 5.10.3 C Compiler Characteristics

HAVE_STRNLEN 5.5.2 Particular Function Checks

HAVE_STRUCT_STAT_ST_BLKSIZE 5.8.1 Particular Structure Checks

HAVE_STRUCT_STAT_ST_BLOCKS 5.8.1 Particular Structure Checks

HAVE_STRUCT_STAT_ST_RDEV 5.8.1 Particular Structure Checks

HAVE_SYS_DIR_H 5.6.2 Particular Header Checks

HAVE_SYS_NDIR_H 5.6.2 Particular Header Checks

HAVE_SYS_WAIT_H 5.6.2 Particular Header Checks

HAVE_TM_ZONE 5.8.1 Particular Structure Checks

HAVE_TZNAME 5.8.1 Particular Structure Checks

HAVE_UTIME_NULL 5.5.2 Particular Function Checks

HAVE_VFORK_H 5.5.2 Particular Function Checks

HAVE_VPRINTF 5.5.2 Particular Function Checks

HAVE_WAIT3 15.4 Obsolete Macros

HAVE_WORKING_FORK 5.5.2 Particular Function Checks

HAVE_WORKING_VFORK 5.5.2 Particular Function Checks

I

inline 5.10.3 C Compiler Characteristics

INT_16_BITS 15.4 Obsolete Macros

L

LONG_64_BITS 15.4 Obsolete Macros

LSTAT_FOLLOWS_SLASHED_SYMLINK 5.5.2 Particular Function Checks

M

MAJOR_IN_MKDEV 5.6.2 Particular Header Checks

MAJOR_IN_SYSMACROS 5.6.2 Particular Header Checks

malloc 5.5.2 Particular Function Checks

mbstate_t 5.9.1 Particular Type Checks

mode_t 5.9.1 Particular Type Checks

file:///C|/pdfing/autoconf.html.htm (222 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX1037
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX419
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX423
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX427
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX317
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX391
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX327
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX335
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX341
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX506
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX345
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX418
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX422
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX428
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX380
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX381
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX398
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX434
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX435
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX349
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX230
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX353
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX915
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX231
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX232
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX497
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX940
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX959
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX271
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX384
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX385
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX276
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX445
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX448
file:///C|/pdfing/autoconf.html#SEC59

Autoconf:

N

NDIR 15.4 Obsolete Macros

NEED_MEMORY_H 15.4 Obsolete Macros

NEED_SETGID 5.5.2 Particular Function Checks

NLIST_NAME_UNION 5.5.2 Particular Function Checks

NO_MINUS_C_MINUS_O 5.10.3 C Compiler Characteristics

O

off_t 5.9.1 Particular Type Checks

P

PACKAGE_BUGREPORT 4.1 Initializing configure

PACKAGE_NAME 4.1 Initializing configure

PACKAGE_STRING 4.1 Initializing configure

PACKAGE_TARNAME 4.1 Initializing configure

PACKAGE_VERSION 4.1 Initializing configure

PARAMS 5.10.3 C Compiler Characteristics

pid_t 5.9.1 Particular Type Checks

PROTOTYPES 5.10.3 C Compiler Characteristics

R

realloc 5.5.2 Particular Function Checks

RETSIGTYPE 5.9.1 Particular Type Checks

S

SELECT_TYPE_ARG1 5.5.2 Particular Function Checks

SELECT_TYPE_ARG234 5.5.2 Particular Function Checks

SELECT_TYPE_ARG5 5.5.2 Particular Function Checks

SETPGRP_VOID 5.5.2 Particular Function Checks

SETVBUF_REVERSED 5.5.2 Particular Function Checks

size_t 5.9.1 Particular Type Checks

STDC_HEADERS 5.6.2 Particular Header Checks

STRERROR_R_CHAR_P 5.5.2 Particular Function Checks

SVR4 5.5.2 Particular Function Checks

SYS_SIGLIST_DECLARED 15.4 Obsolete Macros

SYSDIR 15.4 Obsolete Macros

SYSNDIR 15.4 Obsolete Macros

T

TIME_WITH_SYS_TIME 5.6.2 Particular Header Checks

file:///C|/pdfing/autoconf.html.htm (223 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX897
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX968
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX253
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX251
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX479
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX451
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX25
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX13
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX22
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX16
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX19
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX511
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX454
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX509
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX301
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX457
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX305
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX306
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX307
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX311
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX323
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX460
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX395
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX337
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX246
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX889
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX896
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX895
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX402
file:///C|/pdfing/autoconf.html#SEC50

Autoconf:

TM_IN_SYS_TIME 5.8.1 Particular Structure Checks

U

uid_t 5.9.1 Particular Type Checks

UMAX 5.5.2 Particular Function Checks

UMAX4_3 5.5.2 Particular Function Checks

USG 15.4 Obsolete Macros

V

vfork 5.5.2 Particular Function Checks

volatile 5.10.3 C Compiler Characteristics

W

WORDS_BIGENDIAN 5.10.3 C Compiler Characteristics

X

X_DISPLAY_MISSING 5.11 System Services

Y

YYTEXT_POINTER 5.2.1 Particular Program Checks

Jump to:

_
C D F G H I L M N O P R S T U V W X Y

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.4 Autoconf Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the macros are listed without their preceding
`AC_'.

Jump to:

A B C D E F G H I L M O P R S T U V W X Y

Index Entry Section

A

AH_BOTTOM 4.8.3 Autoheader Macros

AH_TEMPLATE 4.8.3 Autoheader Macros

AH_TOP 4.8.3 Autoheader Macros

file:///C|/pdfing/autoconf.html.htm (224 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX431
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX463
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX248
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX249
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX1064
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX233
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX494
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX487
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX552
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX164
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#cv__
file:///C|/pdfing/autoconf.html#cv_C
file:///C|/pdfing/autoconf.html#cv_D
file:///C|/pdfing/autoconf.html#cv_F
file:///C|/pdfing/autoconf.html#cv_G
file:///C|/pdfing/autoconf.html#cv_H
file:///C|/pdfing/autoconf.html#cv_I
file:///C|/pdfing/autoconf.html#cv_L
file:///C|/pdfing/autoconf.html#cv_M
file:///C|/pdfing/autoconf.html#cv_N
file:///C|/pdfing/autoconf.html#cv_O
file:///C|/pdfing/autoconf.html#cv_P
file:///C|/pdfing/autoconf.html#cv_R
file:///C|/pdfing/autoconf.html#cv_S
file:///C|/pdfing/autoconf.html#cv_T
file:///C|/pdfing/autoconf.html#cv_U
file:///C|/pdfing/autoconf.html#cv_V
file:///C|/pdfing/autoconf.html#cv_W
file:///C|/pdfing/autoconf.html#cv_X
file:///C|/pdfing/autoconf.html#cv_Y
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC195
file:///C|/pdfing/autoconf.html#SEC195
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#ac_A
file:///C|/pdfing/autoconf.html#ac_B
file:///C|/pdfing/autoconf.html#ac_C
file:///C|/pdfing/autoconf.html#ac_D
file:///C|/pdfing/autoconf.html#ac_E
file:///C|/pdfing/autoconf.html#ac_F
file:///C|/pdfing/autoconf.html#ac_G
file:///C|/pdfing/autoconf.html#ac_H
file:///C|/pdfing/autoconf.html#ac_I
file:///C|/pdfing/autoconf.html#ac_L
file:///C|/pdfing/autoconf.html#ac_M
file:///C|/pdfing/autoconf.html#ac_O
file:///C|/pdfing/autoconf.html#ac_P
file:///C|/pdfing/autoconf.html#ac_R
file:///C|/pdfing/autoconf.html#ac_S
file:///C|/pdfing/autoconf.html#ac_T
file:///C|/pdfing/autoconf.html#ac_U
file:///C|/pdfing/autoconf.html#ac_V
file:///C|/pdfing/autoconf.html#ac_W
file:///C|/pdfing/autoconf.html#ac_X
file:///C|/pdfing/autoconf.html#ac_Y
file:///C|/pdfing/autoconf.html#IDX127
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX121
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX124
file:///C|/pdfing/autoconf.html#SEC30

Autoconf:

AH_VERBATIM 4.8.3 Autoheader Macros

AIX 5.12 UNIX Variants

ALLOCA 15.4 Obsolete Macros

ARG_ARRAY 15.4 Obsolete Macros

ARG_ENABLE 12.2 Choosing Package Options

ARG_PROGRAM 12.5 Transforming Program Names When Installing

ARG_VAR 7.2 Setting Output Variables

ARG_WITH 12.1 Working With External Software

AU_DEFUN 9.5 Obsoleting Macros

B

BEFORE 9.4.2 Suggested Ordering

BOTTOM 4.8.3 Autoheader Macros

C

C_BIGENDIAN 5.10.3 C Compiler Characteristics

C_CHAR_UNSIGNED 5.10.3 C Compiler Characteristics

C_CONST 5.10.3 C Compiler Characteristics

C_CROSS 15.4 Obsolete Macros

C_INLINE 5.10.3 C Compiler Characteristics

C_LONG_DOUBLE 5.10.3 C Compiler Characteristics

C_PROTOTYPES 5.10.3 C Compiler Characteristics

C_STRINGIZE 5.10.3 C Compiler Characteristics

C_VOLATILE 5.10.3 C Compiler Characteristics

CACHE_CHECK 7.3 Caching Results

CACHE_LOAD 7.3.3 Cache Checkpointing

CACHE_SAVE 7.3.3 Cache Checkpointing

CACHE_VAL 7.3 Caching Results

CANONICAL_BUILD 11.2 Getting the Canonical System Type

CANONICAL_HOST 11.2 Getting the Canonical System Type

CANONICAL_SYSTEM 15.4 Obsolete Macros

CANONICAL_TARGET 11.2 Getting the Canonical System Type

CHAR_UNSIGNED 15.4 Obsolete Macros

CHECK_DECL 5.7.2 Generic Declaration Checks

CHECK_DECLS 5.7.2 Generic Declaration Checks

CHECK_FILE 5.3 Files

CHECK_FILES 5.3 Files

CHECK_FUNC 5.5.3 Generic Function Checks

CHECK_FUNCS 5.5.3 Generic Function Checks

CHECK_HEADER 5.6.3 Generic Header Checks

file:///C|/pdfing/autoconf.html.htm (225 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX118
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX568
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX866
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX868
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX839
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#IDX845
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#IDX628
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#IDX835
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#IDX702
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#IDX699
file:///C|/pdfing/autoconf.html#SEC111
file:///C|/pdfing/autoconf.html#IDX128
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX486
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX499
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX490
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX870
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX496
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX502
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX508
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX505
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX493
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX632
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#IDX634
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#IDX636
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#IDX630
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#IDX817
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX823
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX872
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX829
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#IDX874
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX412
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#IDX414
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#IDX190
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#IDX192
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#IDX360
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX362
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX407
file:///C|/pdfing/autoconf.html#SEC51

Autoconf:

CHECK_HEADERS 5.6.3 Generic Header Checks

CHECK_LIB 5.4 Library Files

CHECK_MEMBER 5.8.2 Generic Structure Checks

CHECK_MEMBERS 5.8.2 Generic Structure Checks

CHECK_PROG 5.2.2 Generic Program and File Checks

CHECK_PROGS 5.2.2 Generic Program and File Checks

CHECK_SIZEOF 5.10.2 Generic Compiler Characteristics

CHECK_TOOL 5.2.2 Generic Program and File Checks

CHECK_TOOLS 5.2.2 Generic Program and File Checks

CHECK_TYPE 5.9.2 Generic Type Checks

CHECK_TYPE 15.4 Obsolete Macros

CHECK_TYPES 5.9.2 Generic Type Checks

CHECKING 15.4 Obsolete Macros

COMPILE_CHECK 15.4 Obsolete Macros

COMPILE_IFELSE 6.4 Running the Compiler

CONFIG_AUX_DIR 4.3 Finding configure Input

CONFIG_COMMANDS 4.9 Running Arbitrary Configuration Commands

CONFIG_FILES 4.6 Creating Configuration Files

CONFIG_HEADERS 4.8 Configuration Header Files

CONFIG_LIBOBJ_DIR 5.5.3 Generic Function Checks

CONFIG_LINKS 4.10 Creating Configuration Links

CONFIG_SRCDIR 4.3 Finding configure Input

CONFIG_SUBDIRS 4.11 Configuring Other Packages in Subdirectories

CONFIG_TESTDIR 16.4 Making testsuite Scripts

CONST 15.4 Obsolete Macros

COPYRIGHT 4.2 Notices in configure

CROSS_CHECK 15.4 Obsolete Macros

CYGWIN 15.4 Obsolete Macros

D

DECL_SYS_SIGLIST 15.4 Obsolete Macros

DECL_YYTEXT 15.4 Obsolete Macros

DEFINE 7.1 Defining C Preprocessor Symbols

DEFINE_UNQUOTED 7.1 Defining C Preprocessor Symbols

DEFUN 9.1 Macro Definitions

DEFUN 9.5 Obsoleting Macros

DIAGNOSE 9.3 Reporting Messages

DIR_HEADER 15.4 Obsolete Macros

DYNIX_SEQ 15.4 Obsolete Macros

file:///C|/pdfing/autoconf.html.htm (226 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX409
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#IDX194
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#IDX437
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#IDX439
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#IDX176
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX178
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX472
file:///C|/pdfing/autoconf.html#SEC63
file:///C|/pdfing/autoconf.html#IDX180
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX182
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX466
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#IDX876
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX468
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#IDX878
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX880
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX605
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#IDX38
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#IDX130
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#IDX46
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#IDX114
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#IDX372
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX136
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#IDX36
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#IDX139
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#IDX1110
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#IDX882
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX30
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#IDX884
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX886
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX888
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX891
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX617
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#IDX620
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#IDX688
file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#IDX701
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#IDX691
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#IDX893
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX899
file:///C|/pdfing/autoconf.html#SEC154

Autoconf:

E

EGREP_CPP 6.3 Running the Preprocessor

EGREP_HEADER 6.3 Running the Preprocessor

EMXOS2 15.4 Obsolete Macros

ENABLE 12.2 Choosing Package Options

ERROR 15.4 Obsolete Macros

EXEEXT 15.4 Obsolete Macros

F

F77_DUMMY_MAIN 5.10.5 Fortran 77 Compiler Characteristics

F77_FUNC 5.10.5 Fortran 77 Compiler Characteristics

F77_LIBRARY_LDFLAGS 5.10.5 Fortran 77 Compiler Characteristics

F77_MAIN 5.10.5 Fortran 77 Compiler Characteristics

F77_WRAPPERS 5.10.5 Fortran 77 Compiler Characteristics

FATAL 9.3 Reporting Messages

FIND_X 15.4 Obsolete Macros

FIND_XTRA 15.4 Obsolete Macros

FUNC_ALLOCA 5.5.2 Particular Function Checks

FUNC_CHECK 15.4 Obsolete Macros

FUNC_CHOWN 5.5.2 Particular Function Checks

FUNC_CLOSEDIR_VOID 5.5.2 Particular Function Checks

FUNC_ERROR_AT_LINE 5.5.2 Particular Function Checks

FUNC_FNMATCH 5.5.2 Particular Function Checks

FUNC_FNMATCH_GNU 5.5.2 Particular Function Checks

FUNC_FORK 5.5.2 Particular Function Checks

FUNC_FSEEKO 5.5.2 Particular Function Checks

FUNC_GETGROUPS 5.5.2 Particular Function Checks

FUNC_GETLOADAVG 5.5.2 Particular Function Checks

FUNC_GETMNTENT 5.5.2 Particular Function Checks

FUNC_GETPGRP 5.5.2 Particular Function Checks

FUNC_LSTAT 5.5.2 Particular Function Checks

FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK 5.5.2 Particular Function Checks

FUNC_MALLOC 5.5.2 Particular Function Checks

FUNC_MBRTOWC 5.5.2 Particular Function Checks

FUNC_MEMCMP 5.5.2 Particular Function Checks

FUNC_MKTIME 5.5.2 Particular Function Checks

FUNC_MMAP 5.5.2 Particular Function Checks

FUNC_OBSTACK 5.5.2 Particular Function Checks

FUNC_REALLOC 5.5.2 Particular Function Checks

FUNC_SELECT_ARGTYPES 5.5.2 Particular Function Checks

file:///C|/pdfing/autoconf.html.htm (227 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX603
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#IDX601
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#IDX904
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX841
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#IDX906
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX901
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX533
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX543
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX530
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX536
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX539
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX695
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#IDX908
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX910
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX207
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX912
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX213
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX216
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX220
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX223
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX226
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX229
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX237
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX241
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX245
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX261
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX265
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX316
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX270
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX274
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX283
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX279
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX287
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX291
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX295
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX299
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX304
file:///C|/pdfing/autoconf.html#SEC46

Autoconf:

FUNC_SETPGRP 5.5.2 Particular Function Checks

FUNC_SETVBUF_REVERSED 5.5.2 Particular Function Checks

FUNC_STAT 5.5.2 Particular Function Checks

FUNC_STRCOLL 5.5.2 Particular Function Checks

FUNC_STRERROR_R 5.5.2 Particular Function Checks

FUNC_STRFTIME 5.5.2 Particular Function Checks

FUNC_STRNLEN 5.5.2 Particular Function Checks

FUNC_STRTOD 5.5.2 Particular Function Checks

FUNC_UTIME_NULL 5.5.2 Particular Function Checks

FUNC_VPRINTF 5.5.2 Particular Function Checks

FUNC_WAIT3 15.4 Obsolete Macros

G

GCC_TRADITIONAL 15.4 Obsolete Macros

GETGROUPS_T 15.4 Obsolete Macros

GETLOADAVG 15.4 Obsolete Macros

GNU_SOURCE 5.12 UNIX Variants

H

HAVE_C_BACKSLASH_A 5.10.3 C Compiler Characteristics

HAVE_FUNCS 15.4 Obsolete Macros

HAVE_HEADERS 15.4 Obsolete Macros

HAVE_LIBRARY 15.4 Obsolete Macros

HAVE_POUNDBANG 15.4 Obsolete Macros

HEADER_CHECK 15.4 Obsolete Macros

HEADER_DIRENT 5.6.2 Particular Header Checks

HEADER_EGREP 15.4 Obsolete Macros

HEADER_MAJOR 5.6.2 Particular Header Checks

HEADER_STAT 5.6.2 Particular Header Checks

HEADER_STDBOOL 5.6.2 Particular Header Checks

HEADER_STDC 5.6.2 Particular Header Checks

HEADER_SYS_WAIT 5.6.2 Particular Header Checks

HEADER_TIME 5.6.2 Particular Header Checks

HEADER_TIOCGWINSZ 5.6.2 Particular Header Checks

HELP_STRING 12.3 Making Your Help Strings Look Pretty

I

INIT 4.1 Initializing configure

INIT 15.4 Obsolete Macros

INLINE 15.4 Obsolete Macros

file:///C|/pdfing/autoconf.html.htm (228 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX310
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX322
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX315
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX326
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX334
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX340
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX344
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX330
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX348
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX352
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX914
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX917
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX919
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX921
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX571
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX484
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX923
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX925
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX927
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX929
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX931
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX377
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX933
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX383
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX387
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX390
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX394
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX397
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX401
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX404
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX843
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#IDX10
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX935
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX937
file:///C|/pdfing/autoconf.html#SEC154

Autoconf:

INT_16_BITS 15.4 Obsolete Macros

IRIX_SUN 15.4 Obsolete Macros

ISC_POSIX 5.12 UNIX Variants

L

LANG_C 15.4 Obsolete Macros

LANG_CALL 6.2.3 Generating Sources

LANG_CONFTEST 6.2.3 Generating Sources

LANG_CPLUSPLUS 15.4 Obsolete Macros

LANG_FORTRAN77 15.4 Obsolete Macros

LANG_FUNC_LINK_TRY 6.2.3 Generating Sources

LANG_POP 6.1 Language Choice

LANG_PROGRAM 6.2.3 Generating Sources

LANG_PUSH 6.1 Language Choice

LANG_RESTORE 15.4 Obsolete Macros

LANG_SAVE 15.4 Obsolete Macros

LANG_SOURCE 6.2.3 Generating Sources

LIBOBJ 5.5.3 Generic Function Checks

LIBSOURCE 5.5.3 Generic Function Checks

LIBSOURCES 5.5.3 Generic Function Checks

LINK_FILES 15.4 Obsolete Macros

LINK_IFELSE 6.5 Running the Linker

LN_S 15.4 Obsolete Macros

LONG_64_BITS 15.4 Obsolete Macros

LONG_DOUBLE 15.4 Obsolete Macros

LONG_FILE_NAMES 15.4 Obsolete Macros

M

MAJOR_HEADER 15.4 Obsolete Macros

MEMORY_H 15.4 Obsolete Macros

MINGW32 15.4 Obsolete Macros

MINIX 5.12 UNIX Variants

MINUS_C_MINUS_O 15.4 Obsolete Macros

MMAP 15.4 Obsolete Macros

MODE_T 15.4 Obsolete Macros

MSG_CHECKING 7.4 Printing Messages

MSG_ERROR 7.4 Printing Messages

MSG_FAILURE 7.4 Printing Messages

MSG_NOTICE 7.4 Printing Messages

MSG_RESULT 7.4 Printing Messages

file:///C|/pdfing/autoconf.html.htm (229 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX939
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX942
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX574
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX944
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX595
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#IDX589
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#IDX946
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX948
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX597
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#IDX585
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#IDX593
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#IDX583
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#IDX950
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX952
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX591
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#IDX365
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX368
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX370
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX954
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX607
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#IDX956
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX958
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX961
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX963
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX965
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX967
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX970
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX577
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#IDX972
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX974
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX976
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX638
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#IDX644
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#IDX646
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#IDX642
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#IDX640
file:///C|/pdfing/autoconf.html#SEC88

Autoconf:

MSG_WARN 7.4 Printing Messages

O

OBJEXT 15.4 Obsolete Macros

OBSOLETE 15.4 Obsolete Macros

OFF_T 15.4 Obsolete Macros

OUTPUT 4.4 Outputting Files

OUTPUT 15.4 Obsolete Macros

OUTPUT_COMMANDS 15.4 Obsolete Macros

OUTPUT_COMMANDS_POST 4.9 Running Arbitrary Configuration Commands

OUTPUT_COMMANDS_PRE 4.9 Running Arbitrary Configuration Commands

P

PACKAGE_BUGREPORT 4.1 Initializing configure

PACKAGE_NAME 4.1 Initializing configure

PACKAGE_STRING 4.1 Initializing configure

PACKAGE_TARNAME 4.1 Initializing configure

PACKAGE_VERSION 4.1 Initializing configure

PATH_PROG 5.2.2 Generic Program and File Checks

PATH_PROGS 5.2.2 Generic Program and File Checks

PATH_TOOL 5.2.2 Generic Program and File Checks

PATH_X 5.11 System Services

PATH_XTRA 5.11 System Services

PID_T 15.4 Obsolete Macros

PREFIX 15.4 Obsolete Macros

PREFIX_DEFAULT 4.12 Default Prefix

PREFIX_PROGRAM 4.12 Default Prefix

PREPROC_IFELSE 6.3 Running the Preprocessor

PREREQ 4.2 Notices in configure

PROG_AWK 5.2.1 Particular Program Checks

PROG_CC 5.10.3 C Compiler Characteristics

PROG_CC_C_O 5.10.3 C Compiler Characteristics

PROG_CC_STDC 15.4 Obsolete Macros

PROG_CPP 5.10.3 C Compiler Characteristics

PROG_CXX 5.10.4 C++ Compiler Characteristics

PROG_CXXCPP 5.10.4 C++ Compiler Characteristics

PROG_EGREP 5.2.1 Particular Program Checks

PROG_F77_C_O 5.10.5 Fortran 77 Compiler Characteristics

PROG_FGREP 5.2.1 Particular Program Checks

PROG_FORTRAN 5.10.5 Fortran 77 Compiler Characteristics

file:///C|/pdfing/autoconf.html.htm (230 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX648
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#IDX978
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX981
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX983
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX40
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#IDX985
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX987
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX134
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#IDX132
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#IDX23
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX11
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX20
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX14
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX17
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#IDX184
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX186
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX188
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#IDX545
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX547
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX989
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX991
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX142
file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#IDX144
file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#IDX599
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#IDX27
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#IDX146
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX474
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX478
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX993
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX481
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX516
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#IDX520
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#IDX149
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX527
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#IDX152
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX523
file:///C|/pdfing/autoconf.html#SEC66

Autoconf:

PROG_GCC_TRADITIONAL 5.10.3 C Compiler Characteristics

PROG_INSTALL 5.2.1 Particular Program Checks

PROG_LEX 5.2.1 Particular Program Checks

PROG_LN_S 5.2.1 Particular Program Checks

PROG_MAKE_SET 4.4 Outputting Files

PROG_RANLIB 5.2.1 Particular Program Checks

PROG_YACC 5.2.1 Particular Program Checks

PROGRAM_CHECK 15.4 Obsolete Macros

PROGRAM_EGREP 15.4 Obsolete Macros

PROGRAM_PATH 15.4 Obsolete Macros

PROGRAMS_CHECK 15.4 Obsolete Macros

PROGRAMS_PATH 15.4 Obsolete Macros

R

REMOTE_TAPE 15.4 Obsolete Macros

REPLACE_FNMATCH 5.5.2 Particular Function Checks

REPLACE_FUNCS 5.5.3 Generic Function Checks

REQUIRE 9.4.1 Prerequisite Macros

REQUIRE_CPP 6.1 Language Choice

RESTARTABLE_SYSCALLS 15.4 Obsolete Macros

RETSIGTYPE 15.4 Obsolete Macros

REVISION 4.2 Notices in configure

RSH 15.4 Obsolete Macros

RUN_IFELSE 6.6 Checking Run Time Behavior

S

SCO_INTL 15.4 Obsolete Macros

SEARCH_LIBS 5.4 Library Files

SET_MAKE 15.4 Obsolete Macros

SETVBUF_REVERSED 15.4 Obsolete Macros

SIZE_T 15.4 Obsolete Macros

SIZEOF_TYPE 15.4 Obsolete Macros

ST_BLKSIZE 15.4 Obsolete Macros

ST_BLOCKS 15.4 Obsolete Macros

ST_RDEV 15.4 Obsolete Macros

STAT_MACROS_BROKEN 5.6.2 Particular Header Checks

STAT_MACROS_BROKEN 15.4 Obsolete Macros

STDC_HEADERS 15.4 Obsolete Macros

STRCOLL 15.4 Obsolete Macros

STRUCT_ST_BLKSIZE 5.8.1 Particular Structure Checks

file:///C|/pdfing/autoconf.html.htm (231 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX513
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX155
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX161
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX167
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX43
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#IDX170
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX173
file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#IDX999
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1001
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1003
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX995
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX997
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1005
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX357
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX374
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#IDX697
file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#IDX587
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#IDX1007
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1009
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX33
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#IDX1011
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX609
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#IDX1013
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX196
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#IDX1018
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1016
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1022
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1020
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1030
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1032
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1034
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX388
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#IDX1024
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1026
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1028
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX417
file:///C|/pdfing/autoconf.html#SEC56

Autoconf:

STRUCT_ST_BLOCKS 5.8.1 Particular Structure Checks

STRUCT_ST_RDEV 5.8.1 Particular Structure Checks

STRUCT_TIMEZONE 5.8.1 Particular Structure Checks

STRUCT_TM 5.8.1 Particular Structure Checks

SUBST 7.2 Setting Output Variables

SUBST_FILE 7.2 Setting Output Variables

SYS_INTERPRETER 5.11 System Services

SYS_LARGEFILE 5.11 System Services

SYS_LONG_FILE_NAMES 5.11 System Services

SYS_POSIX_TERMIOS 5.11 System Services

SYS_RESTARTABLE_SYSCALLS 15.4 Obsolete Macros

SYS_SIGLIST_DECLARED 15.4 Obsolete Macros

T

TEMPLATE 4.8.3 Autoheader Macros

TEST_CPP 15.4 Obsolete Macros

TEST_PROGRAM 15.4 Obsolete Macros

TIME_WITH_SYS_TIME 15.4 Obsolete Macros

TIMEZONE 15.4 Obsolete Macros

TOP 4.8.3 Autoheader Macros

TRY_COMPILE 15.4 Obsolete Macros

TRY_CPP 15.4 Obsolete Macros

TRY_LINK 15.4 Obsolete Macros

TRY_LINK_FUNC 15.4 Obsolete Macros

TRY_RUN 15.4 Obsolete Macros

TYPE_GETGROUPS 5.9.1 Particular Type Checks

TYPE_MBSTATE_T 5.9.1 Particular Type Checks

TYPE_MODE_T 5.9.1 Particular Type Checks

TYPE_OFF_T 5.9.1 Particular Type Checks

TYPE_PID_T 5.9.1 Particular Type Checks

TYPE_SIGNAL 5.9.1 Particular Type Checks

TYPE_SIZE_T 5.9.1 Particular Type Checks

TYPE_UID_T 5.9.1 Particular Type Checks

U

UID_T 15.4 Obsolete Macros

UNISTD_H 15.4 Obsolete Macros

USG 15.4 Obsolete Macros

UTIME_NULL 15.4 Obsolete Macros

file:///C|/pdfing/autoconf.html.htm (232 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX421
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX426
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX433
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX430
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#IDX622
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#IDX624
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#IDX554
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX556
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX561
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX564
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX1036
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1039
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX122
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX1041
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1043
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1047
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1045
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX125
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX1049
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1051
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1053
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1055
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1057
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX441
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX444
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX447
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX450
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX453
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX456
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX459
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX462
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#IDX1059
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1061
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1063
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1066
file:///C|/pdfing/autoconf.html#SEC154

Autoconf:

V

VALIDATE_CACHED_SYSTEM_TUPLE 15.4 Obsolete Macros

VERBATIM 4.8.3 Autoheader Macros

VERBOSE 15.4 Obsolete Macros

VFORK 15.4 Obsolete Macros

VPRINTF 15.4 Obsolete Macros

W

WAIT3 15.4 Obsolete Macros

WARN 15.4 Obsolete Macros

WARNING 9.3 Reporting Messages

WITH 12.1 Working With External Software

WORDS_BIGENDIAN 15.4 Obsolete Macros

X

XENIX_DIR 15.4 Obsolete Macros

Y

YYTEXT_POINTER 15.4 Obsolete Macros

Jump to:

A B C D E F G H I L M O P R S T U V W X Y

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.5 M4 Macro Index

This is an alphabetical list of the M4, M4sugar, and M4sh macros. To make the list easier to use, the macros are listed without their
preceding `m4_' or `AS_'.

Jump to:

B D M P Q U

Index Entry Section

B

bpatsubst 8.3.1 Redefined M4 Macros

bregexp 8.3.1 Redefined M4 Macros

D

defn 8.3.1 Redefined M4 Macros

file:///C|/pdfing/autoconf.html.htm (233 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX1068
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX119
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#IDX1070
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1072
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1074
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1076
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1078
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX693
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#IDX837
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#IDX1080
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1082
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#IDX1085
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#ac_A
file:///C|/pdfing/autoconf.html#ac_B
file:///C|/pdfing/autoconf.html#ac_C
file:///C|/pdfing/autoconf.html#ac_D
file:///C|/pdfing/autoconf.html#ac_E
file:///C|/pdfing/autoconf.html#ac_F
file:///C|/pdfing/autoconf.html#ac_G
file:///C|/pdfing/autoconf.html#ac_H
file:///C|/pdfing/autoconf.html#ac_I
file:///C|/pdfing/autoconf.html#ac_L
file:///C|/pdfing/autoconf.html#ac_M
file:///C|/pdfing/autoconf.html#ac_O
file:///C|/pdfing/autoconf.html#ac_P
file:///C|/pdfing/autoconf.html#ac_R
file:///C|/pdfing/autoconf.html#ac_S
file:///C|/pdfing/autoconf.html#ac_T
file:///C|/pdfing/autoconf.html#ac_U
file:///C|/pdfing/autoconf.html#ac_V
file:///C|/pdfing/autoconf.html#ac_W
file:///C|/pdfing/autoconf.html#ac_X
file:///C|/pdfing/autoconf.html#ac_Y
file:///C|/pdfing/autoconf.html#SEC194
file:///C|/pdfing/autoconf.html#SEC196
file:///C|/pdfing/autoconf.html#SEC196
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#ms_B
file:///C|/pdfing/autoconf.html#ms_D
file:///C|/pdfing/autoconf.html#ms_M
file:///C|/pdfing/autoconf.html#ms_P
file:///C|/pdfing/autoconf.html#ms_Q
file:///C|/pdfing/autoconf.html#ms_U
file:///C|/pdfing/autoconf.html#IDX669
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX673
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX659
file:///C|/pdfing/autoconf.html#SEC101

Autoconf:

defn 8.3.1 Redefined M4 Macros

DIRNAME 8.4 Programming in M4sh

dnl 8.3.1 Redefined M4 Macros

dquote 8.3.2 Evaluation Macros

M

m4_exit 8.3.1 Redefined M4 Macros

m4_if 8.3.1 Redefined M4 Macros

m4_wrap 8.3.1 Redefined M4 Macros

MKDIR_P 8.4 Programming in M4sh

P

pattern_allow 8.3.3 Forbidden Patterns

pattern_forbid 8.3.3 Forbidden Patterns

Q

quote 8.3.2 Evaluation Macros

U

undefine 8.3.1 Redefined M4 Macros

Jump to:

B D M P Q U

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.6 Autotest Macro Index

This is an alphabetical list of the Autotest macros. To make the list easier to use, the macros are listed without their preceding
`AT_'.

Jump to:

C D I K S T

Index Entry Section

C

CHECK 16.2 Writing `testsuite.at'

CLEANUP 16.2 Writing `testsuite.at'

D

file:///C|/pdfing/autoconf.html.htm (234 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX671
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX685
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#IDX657
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX677
file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#IDX661
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX665
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX675
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#IDX687
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#IDX683
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#IDX681
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#IDX679
file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#IDX667
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#ms_B
file:///C|/pdfing/autoconf.html#ms_D
file:///C|/pdfing/autoconf.html#ms_M
file:///C|/pdfing/autoconf.html#ms_P
file:///C|/pdfing/autoconf.html#ms_Q
file:///C|/pdfing/autoconf.html#ms_U
file:///C|/pdfing/autoconf.html#SEC195
file:///C|/pdfing/autoconf.html#SEC197
file:///C|/pdfing/autoconf.html#SEC197
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#at_C
file:///C|/pdfing/autoconf.html#at_D
file:///C|/pdfing/autoconf.html#at_I
file:///C|/pdfing/autoconf.html#at_K
file:///C|/pdfing/autoconf.html#at_S
file:///C|/pdfing/autoconf.html#at_T
file:///C|/pdfing/autoconf.html#IDX1106
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#IDX1102
file:///C|/pdfing/autoconf.html#SEC171

Autoconf:

DATA 16.2 Writing `testsuite.at'

I

INIT 16.2 Writing `testsuite.at'

K

KEYWORDS 16.2 Writing `testsuite.at'

S

SETUP 16.2 Writing `testsuite.at'

T

TESTED 16.2 Writing `testsuite.at'

Jump to:

C D I K S T

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.7 Program and Function Index

This is an alphabetical list of the programs and functions which portability is discussed in this document.

Jump to:

! . /
A B C D E F G I L M P R S T U V

Index Entry Section

!

! 10.8 Limitations of Shell Builtins

.

. 10.8 Limitations of Shell Builtins

/

/usr/xpg4/bin/sh on Solaris 10.1 Shellology

A

alloca 5.5.2 Particular Function Checks

awk 10.9 Limitations of Usual Tools

file:///C|/pdfing/autoconf.html.htm (235 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX1104
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#IDX1094
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#IDX1100
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#IDX1098
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#IDX1096
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#at_C
file:///C|/pdfing/autoconf.html#at_D
file:///C|/pdfing/autoconf.html#at_I
file:///C|/pdfing/autoconf.html#at_K
file:///C|/pdfing/autoconf.html#at_S
file:///C|/pdfing/autoconf.html#at_T
file:///C|/pdfing/autoconf.html#SEC196
file:///C|/pdfing/autoconf.html#SEC198
file:///C|/pdfing/autoconf.html#SEC198
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#pr_!
file:///C|/pdfing/autoconf.html#pr_.
file:///C|/pdfing/autoconf.html#pr_/
file:///C|/pdfing/autoconf.html#pr_A
file:///C|/pdfing/autoconf.html#pr_B
file:///C|/pdfing/autoconf.html#pr_C
file:///C|/pdfing/autoconf.html#pr_D
file:///C|/pdfing/autoconf.html#pr_E
file:///C|/pdfing/autoconf.html#pr_F
file:///C|/pdfing/autoconf.html#pr_G
file:///C|/pdfing/autoconf.html#pr_I
file:///C|/pdfing/autoconf.html#pr_L
file:///C|/pdfing/autoconf.html#pr_M
file:///C|/pdfing/autoconf.html#pr_P
file:///C|/pdfing/autoconf.html#pr_R
file:///C|/pdfing/autoconf.html#pr_S
file:///C|/pdfing/autoconf.html#pr_T
file:///C|/pdfing/autoconf.html#pr_U
file:///C|/pdfing/autoconf.html#pr_V
file:///C|/pdfing/autoconf.html#IDX745
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX744
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX707
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#IDX211
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX763
file:///C|/pdfing/autoconf.html#SEC123

Autoconf:

B

break 10.8 Limitations of Shell Builtins

C

case 10.8 Limitations of Shell Builtins

cat 10.9 Limitations of Usual Tools

cd 10.8 Limitations of Shell Builtins

chown 5.5.2 Particular Function Checks

closedir 5.5.2 Particular Function Checks

cmp 10.9 Limitations of Usual Tools

cp 10.9 Limitations of Usual Tools

D

date 10.9 Limitations of Usual Tools

diff 10.9 Limitations of Usual Tools

dirname 10.9 Limitations of Usual Tools

E

echo 10.8 Limitations of Shell Builtins

egrep 10.9 Limitations of Usual Tools

error_at_line 5.5.2 Particular Function Checks

exit 10.8 Limitations of Shell Builtins

export 10.8 Limitations of Shell Builtins

expr 10.9 Limitations of Usual Tools

expr 10.9 Limitations of Usual Tools

expr (`|') 10.9 Limitations of Usual Tools

F

false 10.8 Limitations of Shell Builtins

fgrep 10.9 Limitations of Usual Tools

fnmatch 5.5.2 Particular Function Checks

fnmatch 5.5.2 Particular Function Checks

fnmatch 5.5.2 Particular Function Checks

for 10.8 Limitations of Shell Builtins

fork 5.5.2 Particular Function Checks

fseeko 5.5.2 Particular Function Checks

G

getgroups 5.5.2 Particular Function Checks

getloadavg 5.5.2 Particular Function Checks

file:///C|/pdfing/autoconf.html.htm (236 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX746
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX748
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX764
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX747
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX214
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX218
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX765
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX766
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX767
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX768
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX769
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX749
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX770
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX221
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX750
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX751
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX771
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX773
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX772
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX752
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX774
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX224
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX227
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX358
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX753
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX234
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX239
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX243
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX259
file:///C|/pdfing/autoconf.html#SEC46

Autoconf:

getmntent 5.5.2 Particular Function Checks

getpgid 5.5.2 Particular Function Checks

getpgrp 5.5.2 Particular Function Checks

grep 10.9 Limitations of Usual Tools

I

if 10.8 Limitations of Shell Builtins

L

ln 10.9 Limitations of Usual Tools

ls 10.9 Limitations of Usual Tools

lstat 5.5.2 Particular Function Checks

lstat 5.5.2 Particular Function Checks

M

malloc 5.5.2 Particular Function Checks

mbrtowc 5.5.2 Particular Function Checks

memcmp 5.5.2 Particular Function Checks

mkdir 10.9 Limitations of Usual Tools

mktime 5.5.2 Particular Function Checks

mmap 5.5.2 Particular Function Checks

mv 10.9 Limitations of Usual Tools

P

pwd 10.8 Limitations of Shell Builtins

R

realloc 5.5.2 Particular Function Checks

S

sed 10.9 Limitations of Usual Tools

sed (`t') 10.9 Limitations of Usual Tools

select 5.5.2 Particular Function Checks

set 10.8 Limitations of Shell Builtins

setpgrp 5.5.2 Particular Function Checks

setvbuf 5.5.2 Particular Function Checks

shift 10.8 Limitations of Shell Builtins

snprintf 5.5.1 Portability of C Functions

source 10.8 Limitations of Shell Builtins

sprintf 5.5.1 Portability of C Functions

sscanf 5.5.1 Portability of C Functions

file:///C|/pdfing/autoconf.html.htm (237 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX263
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX267
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX268
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX775
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX754
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX776
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX778
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX272
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX320
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX277
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX285
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX281
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX780
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX289
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX293
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX782
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX755
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX302
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX784
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX785
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX308
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX756
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX312
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX324
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX757
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX197
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX758
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX199
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX201
file:///C|/pdfing/autoconf.html#SEC45

Autoconf:

stat 5.5.2 Particular Function Checks

strcoll 5.5.2 Particular Function Checks

strerror_r 5.5.2 Particular Function Checks

strftime 5.5.2 Particular Function Checks

strnlen 5.5.1 Portability of C Functions

strnlen 5.5.2 Particular Function Checks

strtod 5.5.2 Particular Function Checks

T

test 10.8 Limitations of Shell Builtins

touch 10.9 Limitations of Usual Tools

trap 10.8 Limitations of Shell Builtins

true 10.8 Limitations of Shell Builtins

U

unlink 5.5.1 Portability of C Functions

unset 10.8 Limitations of Shell Builtins

utime 5.5.2 Particular Function Checks

V

va_copy 5.5.1 Portability of C Functions

va_list 5.5.1 Portability of C Functions

vfork 5.5.2 Particular Function Checks

vprintf 5.5.2 Particular Function Checks

vsnprintf 5.5.1 Portability of C Functions

vsprintf 5.5.1 Portability of C Functions

Jump to:

! . /
A B C D E F G I L M P R S T U V

[<] [>] [<<] [Up] [>>] [Top] [Contents] [Index] [?]

B.8 Concept Index

This is an alphabetical list of the files, tools, and concepts introduced in this document.

Jump to:

" $ @ _ `
A B C D E F H I L M O P Q R S T U V Z

file:///C|/pdfing/autoconf.html.htm (238 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX319
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX328
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX338
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX342
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX202
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX346
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX332
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX759
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX786
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX760
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX761
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX203
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX762
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#IDX350
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX204
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX205
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX235
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX355
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX198
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#IDX200
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#pr_!
file:///C|/pdfing/autoconf.html#pr_.
file:///C|/pdfing/autoconf.html#pr_/
file:///C|/pdfing/autoconf.html#pr_A
file:///C|/pdfing/autoconf.html#pr_B
file:///C|/pdfing/autoconf.html#pr_C
file:///C|/pdfing/autoconf.html#pr_D
file:///C|/pdfing/autoconf.html#pr_E
file:///C|/pdfing/autoconf.html#pr_F
file:///C|/pdfing/autoconf.html#pr_G
file:///C|/pdfing/autoconf.html#pr_I
file:///C|/pdfing/autoconf.html#pr_L
file:///C|/pdfing/autoconf.html#pr_M
file:///C|/pdfing/autoconf.html#pr_P
file:///C|/pdfing/autoconf.html#pr_R
file:///C|/pdfing/autoconf.html#pr_S
file:///C|/pdfing/autoconf.html#pr_T
file:///C|/pdfing/autoconf.html#pr_U
file:///C|/pdfing/autoconf.html#pr_V
file:///C|/pdfing/autoconf.html#SEC197
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#cp_"
file:///C|/pdfing/autoconf.html#cp_$
file:///C|/pdfing/autoconf.html#cp_@
file:///C|/pdfing/autoconf.html#cp__
file:///C|/pdfing/autoconf.html#cp_`
file:///C|/pdfing/autoconf.html#cp_A
file:///C|/pdfing/autoconf.html#cp_B
file:///C|/pdfing/autoconf.html#cp_C
file:///C|/pdfing/autoconf.html#cp_D
file:///C|/pdfing/autoconf.html#cp_E
file:///C|/pdfing/autoconf.html#cp_F
file:///C|/pdfing/autoconf.html#cp_H
file:///C|/pdfing/autoconf.html#cp_I
file:///C|/pdfing/autoconf.html#cp_L
file:///C|/pdfing/autoconf.html#cp_M
file:///C|/pdfing/autoconf.html#cp_O
file:///C|/pdfing/autoconf.html#cp_P
file:///C|/pdfing/autoconf.html#cp_Q
file:///C|/pdfing/autoconf.html#cp_R
file:///C|/pdfing/autoconf.html#cp_S
file:///C|/pdfing/autoconf.html#cp_T
file:///C|/pdfing/autoconf.html#cp_U
file:///C|/pdfing/autoconf.html#cp_V
file:///C|/pdfing/autoconf.html#cp_Z

Autoconf:

Index Entry Section

"

`"$@"' 10.5 Shell Substitutions

$

$(commands) 10.5 Shell Substitutions

$<, explicit rules, and VPATH 10.10 Limitations of Make

$<, inference rules, and VPATH 10.10 Limitations of Make

$U 15.6.4 AC_LIBOBJ vs. LIBOBJS

${var=expanded-value} 10.5 Shell Substitutions

${var=literal} 10.5 Shell Substitutions

@

`@&t@' 8.1.5 Quadrigraphs

`@S|@' 8.1.5 Quadrigraphs

_

_m4_divert_diversion 15.6.2 New Macros

`

`commands` 10.5 Shell Substitutions

A

`acconfig.h' 15.2 `acconfig.h'

`aclocal.m4' 3. Making configure Scripts

Ash 10.1 Shellology

autoconf 3.4 Using autoconf to Create configure

autoheader 4.8.2 Using autoheader to Create `config.h.in'

Autom4te Library 8.2.1 Invoking autom4te

`autom4te.cache' 8.2.1 Invoking autom4te

`autom4te.cfg' 8.2.1 Invoking autom4te

Automake 2.1 Automake

automatic rule rewriting and VPATH 10.10 Limitations of Make

autoreconf 3.5 Using autoreconf to Update configure Scripts

autoscan 3.2 Using autoscan to Create `configure.ac'

Autotest 16. Generating Test Suites with Autotest

AUTOTEST_PATH 16.3 Running testsuite Scripts

autoupdate 15.3 Using autoupdate to Modernize `configure.ac'

B

file:///C|/pdfing/autoconf.html.htm (239 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX709
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#IDX714
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#IDX801
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX798
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX1089
file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#IDX711
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#IDX710
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#IDX1087
file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#IDX712
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#IDX861
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#IDX704
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#IDX653
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#IDX652
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#IDX654
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#IDX1
file:///C|/pdfing/autoconf.html#SEC3
file:///C|/pdfing/autoconf.html#IDX804
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#IDX1090
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#IDX1107
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC153

Autoconf:

Back trace 3.4 Using autoconf to Create configure

Back trace 8.2.1 Invoking autom4te

Bash 10.1 Shellology

Bash 2.05 and later 10.1 Shellology

BSD make and `obj/' 10.10 Limitations of Make

C

Cache 7.3 Caching Results

Cache variable 7.3.1 Cache Variable Names

Cache, enabling 13.9 configure Invocation

Command Substitution 10.5 Shell Substitutions

Comments in `Makefile' rules 10.10 Limitations of Make

`config.h' 4.8 Configuration Header Files

`config.h.bot' 15.2 `acconfig.h'

`config.h.in' 4.8.1 Configuration Header Templates

`config.h.top' 15.2 `acconfig.h'

config.status 14. Recreating a Configuration

config.sub 11.1 Specifying the System Type

Configuration Header 4.8 Configuration Header Files

Configuration Header Template 4.8.1 Configuration Header Templates

configure 3. Making configure Scripts

configure 13. Running configure Scripts

`configure.ac' 3. Making configure Scripts

`configure.in' 3. Making configure Scripts

Copyright Notice 4.2 Notices in configure

D

Darwin 6.7 Systemology

Declaration, checking 5.7 Declarations

dnl 9.1 Macro Definitions

dnl 9.6 Coding Style

double-colon rules and VPATH 10.10 Limitations of Make

E

Endianness 5.10.3 C Compiler Characteristics

explicit rules, $<, and VPATH 10.10 Limitations of Make

F

FDL, GNU Free Documentation License A.1 GNU Free Documentation License

File, checking 5.3 Files

file:///C|/pdfing/autoconf.html.htm (240 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX6
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#IDX650
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#IDX705
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#IDX706
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#IDX792
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#IDX848
file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#IDX713
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#IDX789
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#IDX863
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#IDX862
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#IDX812
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#IDX4
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#IDX3
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#IDX31
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#IDX610
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#IDX689
file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#IDX703
file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#IDX796
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX488
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#IDX800
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX1111
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC42

Autoconf:

Function, checking 5.5.2 Particular Function Checks

H

Header, checking 5.6 Header Files

I

ifnames 3.3 Using ifnames to List Conditionals

Includes, default 5.1.2 Default Includes

Instantiation 4.4 Outputting Files

L

Language 6.1 Language Choice

Library, checking 5.4 Library Files

Libtool 2.2 Libtool

Links 4.10 Creating Configuration Links

Listing directories 10.9 Limitations of Usual Tools

M

M4sugar 8.3 Programming in M4sugar

Macro invocation stack 3.4 Using autoconf to Create configure

Macro invocation stack 8.2.1 Invoking autom4te

make -k 10.10 Limitations of Make

make and SHELL 10.10 Limitations of Make

`Makefile' rules and comments 10.10 Limitations of Make

Making directories 10.9 Limitations of Usual Tools

Messages, from autoconf 9.3 Reporting Messages

Messages, from configure 7.4 Printing Messages

Moving open files 10.9 Limitations of Usual Tools

O

`obj/', subdirectory 10.10 Limitations of Make

obstack 5.5.2 Particular Function Checks

P

`package.m4' 16.4 Making testsuite Scripts

POSIX termios headers 5.11 System Services

prerequisite directories and VPATH 10.10 Limitations of Make

Previous Variable 7.2 Setting Output Variables

Programs, checking 5.2 Alternative Programs

Q

file:///C|/pdfing/autoconf.html.htm (241 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#IDX41
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#IDX2
file:///C|/pdfing/autoconf.html#SEC4
file:///C|/pdfing/autoconf.html#IDX137
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#IDX779
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX655
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#IDX7
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#IDX651
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#IDX793
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX788
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX790
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX781
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#IDX783
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX791
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX297
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#IDX1108
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#IDX565
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX806
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX625
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC39
file:///C|/pdfing/autoconf.html#SEC39

Autoconf:

QNX 4.25 6.7 Systemology

quadrigraphs 8.1.5 Quadrigraphs

quotation 3.1.2 The Autoconf Language

quotation 8.1 M4 Quotation

R

Revision 4.2 Notices in configure

Rule, Single Suffix Inference 10.10 Limitations of Make

S

Separated Dependencies 10.10 Limitations of Make

SHELL and make 10.10 Limitations of Make

Single Suffix Inference Rule 10.10 Limitations of Make

Structure, checking 5.8 Structures

suffix rules, $<, and VPATH 10.10 Limitations of Make

Symbolic links 10.9 Limitations of Usual Tools

T

termios POSIX headers 5.11 System Services

test group 16.1.1 testsuite Scripts

testsuite 16.1.1 testsuite Scripts

testsuite 16.3 Running testsuite Scripts

Tru64 6.7 Systemology

U

undefined macro 15.6.2 New Macros

Unix version 7 6.7 Systemology

V

V7 6.7 Systemology

Variable, Precious 7.2 Setting Output Variables

Version 4.2 Notices in configure

VPATH 10.10 Limitations of Make

VPATH and automatic rule rewriting 10.10 Limitations of Make

VPATH and double-colon rules 10.10 Limitations of Make

VPATH and prerequisite directories 10.10 Limitations of Make

VPATH, explicit rules, and $< 10.10 Limitations of Make

VPATH, inference rules, and $< 10.10 Limitations of Make

VPATH, resolving target pathnames 10.10 Limitations of Make

Z

file:///C|/pdfing/autoconf.html.htm (242 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX611
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#IDX34
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#IDX809
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX810
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX787
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX808
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#IDX797
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX777
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#IDX566
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#IDX1092
file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#IDX1091
file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#IDX612
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#IDX1086
file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#IDX613
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#IDX614
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#IDX626
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#IDX28
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#IDX794
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX803
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX795
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX805
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX802
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX799
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#IDX807
file:///C|/pdfing/autoconf.html#SEC124

Autoconf:

Zsh 10.1 Shellology

Jump to:

" $ @ _ `
A B C D E F H I L M O P Q R S T U V Z

[Top] [Contents] [Index] [?]

Footnotes

(1)

GNU Autoconf, Automake and Libtool, by G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor. New Riders, 2000, ISBN
1578701902.

(2)

Using defn.

(3)

Yet another great name from Lars J. Aas.

(4)

Yet another reason why assigning LIBOBJS directly is discouraged.

(5)

When a failure occurs, the test suite is rerun, verbosely, and the user is asked to "play" with this failure to provide better
information. It is important to keep the same environment between the first run, and bug-tracking runs.

[Top] [Contents] [Index] [?]

Table of Contents

1. Introduction
2. The GNU Build System

2.1 Automake
2.2 Libtool
2.3 Pointers

file:///C|/pdfing/autoconf.html.htm (243 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#IDX708
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#cp_"
file:///C|/pdfing/autoconf.html#cp_$
file:///C|/pdfing/autoconf.html#cp_@
file:///C|/pdfing/autoconf.html#cp__
file:///C|/pdfing/autoconf.html#cp_`
file:///C|/pdfing/autoconf.html#cp_A
file:///C|/pdfing/autoconf.html#cp_B
file:///C|/pdfing/autoconf.html#cp_C
file:///C|/pdfing/autoconf.html#cp_D
file:///C|/pdfing/autoconf.html#cp_E
file:///C|/pdfing/autoconf.html#cp_F
file:///C|/pdfing/autoconf.html#cp_H
file:///C|/pdfing/autoconf.html#cp_I
file:///C|/pdfing/autoconf.html#cp_L
file:///C|/pdfing/autoconf.html#cp_M
file:///C|/pdfing/autoconf.html#cp_O
file:///C|/pdfing/autoconf.html#cp_P
file:///C|/pdfing/autoconf.html#cp_Q
file:///C|/pdfing/autoconf.html#cp_R
file:///C|/pdfing/autoconf.html#cp_S
file:///C|/pdfing/autoconf.html#cp_T
file:///C|/pdfing/autoconf.html#cp_U
file:///C|/pdfing/autoconf.html#cp_V
file:///C|/pdfing/autoconf.html#cp_Z
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#DOCF1
file:///C|/pdfing/autoconf.html#DOCF2
file:///C|/pdfing/autoconf.html#DOCF3
file:///C|/pdfing/autoconf.html#DOCF4
file:///C|/pdfing/autoconf.html#DOCF5
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC1
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC3
file:///C|/pdfing/autoconf.html#SEC4
file:///C|/pdfing/autoconf.html#SEC5

Autoconf:

3. Making configure Scripts

3.1 Writing `configure.ac'

3.1.1 A Shell Script Compiler
3.1.2 The Autoconf Language
3.1.3 Standard `configure.ac' Layout

3.2 Using autoscan to Create `configure.ac'
3.3 Using ifnames to List Conditionals
3.4 Using autoconf to Create configure
3.5 Using autoreconf to Update configure Scripts

4. Initialization and Output Files

4.1 Initializing configure
4.2 Notices in configure
4.3 Finding configure Input
4.4 Outputting Files
4.5 Performing Configuration Actions
4.6 Creating Configuration Files
4.7 Substitutions in Makefiles

4.7.1 Preset Output Variables
4.7.2 Installation Directory Variables
4.7.3 Build Directories
4.7.4 Automatic Remaking

4.8 Configuration Header Files

4.8.1 Configuration Header Templates
4.8.2 Using autoheader to Create `config.h.in'
4.8.3 Autoheader Macros

4.9 Running Arbitrary Configuration Commands
4.10 Creating Configuration Links
4.11 Configuring Other Packages in Subdirectories
4.12 Default Prefix

5. Existing Tests

5.1 Common Behavior

5.1.1 Standard Symbols
5.1.2 Default Includes

5.2 Alternative Programs

file:///C|/pdfing/autoconf.html.htm (244 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC7
file:///C|/pdfing/autoconf.html#SEC8
file:///C|/pdfing/autoconf.html#SEC9
file:///C|/pdfing/autoconf.html#SEC10
file:///C|/pdfing/autoconf.html#SEC11
file:///C|/pdfing/autoconf.html#SEC12
file:///C|/pdfing/autoconf.html#SEC13
file:///C|/pdfing/autoconf.html#SEC14
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC16
file:///C|/pdfing/autoconf.html#SEC17
file:///C|/pdfing/autoconf.html#SEC18
file:///C|/pdfing/autoconf.html#SEC19
file:///C|/pdfing/autoconf.html#SEC20
file:///C|/pdfing/autoconf.html#SEC21
file:///C|/pdfing/autoconf.html#SEC22
file:///C|/pdfing/autoconf.html#SEC23
file:///C|/pdfing/autoconf.html#SEC24
file:///C|/pdfing/autoconf.html#SEC25
file:///C|/pdfing/autoconf.html#SEC26
file:///C|/pdfing/autoconf.html#SEC27
file:///C|/pdfing/autoconf.html#SEC28
file:///C|/pdfing/autoconf.html#SEC29
file:///C|/pdfing/autoconf.html#SEC30
file:///C|/pdfing/autoconf.html#SEC31
file:///C|/pdfing/autoconf.html#SEC32
file:///C|/pdfing/autoconf.html#SEC33
file:///C|/pdfing/autoconf.html#SEC34
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC36
file:///C|/pdfing/autoconf.html#SEC37
file:///C|/pdfing/autoconf.html#SEC38
file:///C|/pdfing/autoconf.html#SEC39

Autoconf:

5.2.1 Particular Program Checks
5.2.2 Generic Program and File Checks

5.3 Files
5.4 Library Files
5.5 Library Functions

5.5.1 Portability of C Functions
5.5.2 Particular Function Checks
5.5.3 Generic Function Checks

5.6 Header Files

5.6.1 Portability of Headers
5.6.2 Particular Header Checks
5.6.3 Generic Header Checks

5.7 Declarations

5.7.1 Particular Declaration Checks
5.7.2 Generic Declaration Checks

5.8 Structures

5.8.1 Particular Structure Checks
5.8.2 Generic Structure Checks

5.9 Types

5.9.1 Particular Type Checks
5.9.2 Generic Type Checks

5.10 Compilers and Preprocessors

5.10.1 Specific Compiler Characteristics
5.10.2 Generic Compiler Characteristics
5.10.3 C Compiler Characteristics
5.10.4 C++ Compiler Characteristics
5.10.5 Fortran 77 Compiler Characteristics

5.11 System Services
5.12 UNIX Variants

6. Writing Tests

6.1 Language Choice
6.2 Writing Test Programs

file:///C|/pdfing/autoconf.html.htm (245 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC40
file:///C|/pdfing/autoconf.html#SEC41
file:///C|/pdfing/autoconf.html#SEC42
file:///C|/pdfing/autoconf.html#SEC43
file:///C|/pdfing/autoconf.html#SEC44
file:///C|/pdfing/autoconf.html#SEC45
file:///C|/pdfing/autoconf.html#SEC46
file:///C|/pdfing/autoconf.html#SEC47
file:///C|/pdfing/autoconf.html#SEC48
file:///C|/pdfing/autoconf.html#SEC49
file:///C|/pdfing/autoconf.html#SEC50
file:///C|/pdfing/autoconf.html#SEC51
file:///C|/pdfing/autoconf.html#SEC52
file:///C|/pdfing/autoconf.html#SEC53
file:///C|/pdfing/autoconf.html#SEC54
file:///C|/pdfing/autoconf.html#SEC55
file:///C|/pdfing/autoconf.html#SEC56
file:///C|/pdfing/autoconf.html#SEC57
file:///C|/pdfing/autoconf.html#SEC58
file:///C|/pdfing/autoconf.html#SEC59
file:///C|/pdfing/autoconf.html#SEC60
file:///C|/pdfing/autoconf.html#SEC61
file:///C|/pdfing/autoconf.html#SEC62
file:///C|/pdfing/autoconf.html#SEC63
file:///C|/pdfing/autoconf.html#SEC64
file:///C|/pdfing/autoconf.html#SEC65
file:///C|/pdfing/autoconf.html#SEC66
file:///C|/pdfing/autoconf.html#SEC67
file:///C|/pdfing/autoconf.html#SEC68
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC70
file:///C|/pdfing/autoconf.html#SEC71

Autoconf:

6.2.1 Guidelines for Test Programs
6.2.2 Test Functions
6.2.3 Generating Sources

6.3 Running the Preprocessor
6.4 Running the Compiler
6.5 Running the Linker
6.6 Checking Run Time Behavior
6.7 Systemology
6.8 Multiple Cases

7. Results of Tests

7.1 Defining C Preprocessor Symbols
7.2 Setting Output Variables
7.3 Caching Results

7.3.1 Cache Variable Names
7.3.2 Cache Files
7.3.3 Cache Checkpointing

7.4 Printing Messages

8. Programming in M4

8.1 M4 Quotation

8.1.1 Active Characters
8.1.2 One Macro Call
8.1.3 Quotation and Nested Macros
8.1.4 changequote is Evil
8.1.5 Quadrigraphs
8.1.6 Quotation Rule Of Thumb

8.2 Using autom4te

8.2.1 Invoking autom4te
8.2.2 Customizing autom4te

8.3 Programming in M4sugar

8.3.1 Redefined M4 Macros
8.3.2 Evaluation Macros
8.3.3 Forbidden Patterns

8.4 Programming in M4sh

9. Writing Autoconf Macros

file:///C|/pdfing/autoconf.html.htm (246 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC72
file:///C|/pdfing/autoconf.html#SEC73
file:///C|/pdfing/autoconf.html#SEC74
file:///C|/pdfing/autoconf.html#SEC75
file:///C|/pdfing/autoconf.html#SEC76
file:///C|/pdfing/autoconf.html#SEC77
file:///C|/pdfing/autoconf.html#SEC78
file:///C|/pdfing/autoconf.html#SEC79
file:///C|/pdfing/autoconf.html#SEC80
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC82
file:///C|/pdfing/autoconf.html#SEC83
file:///C|/pdfing/autoconf.html#SEC84
file:///C|/pdfing/autoconf.html#SEC85
file:///C|/pdfing/autoconf.html#SEC86
file:///C|/pdfing/autoconf.html#SEC87
file:///C|/pdfing/autoconf.html#SEC88
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC90
file:///C|/pdfing/autoconf.html#SEC91
file:///C|/pdfing/autoconf.html#SEC92
file:///C|/pdfing/autoconf.html#SEC93
file:///C|/pdfing/autoconf.html#SEC94
file:///C|/pdfing/autoconf.html#SEC95
file:///C|/pdfing/autoconf.html#SEC96
file:///C|/pdfing/autoconf.html#SEC97
file:///C|/pdfing/autoconf.html#SEC98
file:///C|/pdfing/autoconf.html#SEC99
file:///C|/pdfing/autoconf.html#SEC100
file:///C|/pdfing/autoconf.html#SEC101
file:///C|/pdfing/autoconf.html#SEC102
file:///C|/pdfing/autoconf.html#SEC103
file:///C|/pdfing/autoconf.html#SEC104
file:///C|/pdfing/autoconf.html#SEC105

Autoconf:

9.1 Macro Definitions
9.2 Macro Names
9.3 Reporting Messages
9.4 Dependencies Between Macros

9.4.1 Prerequisite Macros
9.4.2 Suggested Ordering

9.5 Obsoleting Macros
9.6 Coding Style

10. Portable Shell Programming

10.1 Shellology
10.2 Here-Documents
10.3 File Descriptors
10.4 File System Conventions
10.5 Shell Substitutions
10.6 Assignments
10.7 Special Shell Variables
10.8 Limitations of Shell Builtins
10.9 Limitations of Usual Tools
10.10 Limitations of Make

11. Manual Configuration

11.1 Specifying the System Type
11.2 Getting the Canonical System Type
11.3 Using the System Type

12. Site Configuration

12.1 Working With External Software
12.2 Choosing Package Options
12.3 Making Your Help Strings Look Pretty
12.4 Configuring Site Details
12.5 Transforming Program Names When Installing

12.5.1 Transformation Options
12.5.2 Transformation Examples
12.5.3 Transformation Rules

12.6 Setting Site Defaults

13. Running configure Scripts

13.1 Basic Installation
13.2 Compilers and Options

file:///C|/pdfing/autoconf.html.htm (247 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC106
file:///C|/pdfing/autoconf.html#SEC107
file:///C|/pdfing/autoconf.html#SEC108
file:///C|/pdfing/autoconf.html#SEC109
file:///C|/pdfing/autoconf.html#SEC110
file:///C|/pdfing/autoconf.html#SEC111
file:///C|/pdfing/autoconf.html#SEC112
file:///C|/pdfing/autoconf.html#SEC113
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC115
file:///C|/pdfing/autoconf.html#SEC116
file:///C|/pdfing/autoconf.html#SEC117
file:///C|/pdfing/autoconf.html#SEC118
file:///C|/pdfing/autoconf.html#SEC119
file:///C|/pdfing/autoconf.html#SEC120
file:///C|/pdfing/autoconf.html#SEC121
file:///C|/pdfing/autoconf.html#SEC122
file:///C|/pdfing/autoconf.html#SEC123
file:///C|/pdfing/autoconf.html#SEC124
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC126
file:///C|/pdfing/autoconf.html#SEC127
file:///C|/pdfing/autoconf.html#SEC128
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC130
file:///C|/pdfing/autoconf.html#SEC131
file:///C|/pdfing/autoconf.html#SEC132
file:///C|/pdfing/autoconf.html#SEC133
file:///C|/pdfing/autoconf.html#SEC134
file:///C|/pdfing/autoconf.html#SEC135
file:///C|/pdfing/autoconf.html#SEC136
file:///C|/pdfing/autoconf.html#SEC137
file:///C|/pdfing/autoconf.html#SEC138
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC140
file:///C|/pdfing/autoconf.html#SEC141

Autoconf:

13.3 Compiling For Multiple Architectures
13.4 Installation Names
13.5 Optional Features
13.6 Specifying the System Type
13.7 Sharing Defaults
13.8 Defining Variables
13.9 configure Invocation

14. Recreating a Configuration
15. Obsolete Constructs

15.1 Obsolete `config.status' Invocation
15.2 `acconfig.h'
15.3 Using autoupdate to Modernize `configure.ac'
15.4 Obsolete Macros
15.5 Upgrading From Version 1

15.5.1 Changed File Names
15.5.2 Changed Makefiles
15.5.3 Changed Macros
15.5.4 Changed Results
15.5.5 Changed Macro Writing

15.6 Upgrading From Version 2.13

15.6.1 Changed Quotation
15.6.2 New Macros
15.6.3 Hosts and Cross-Compilation
15.6.4 AC_LIBOBJ vs. LIBOBJS
15.6.5 AC_FOO_IFELSE vs. AC_TRY_FOO

16. Generating Test Suites with Autotest

16.1 Using an Autotest Test Suite

16.1.1 testsuite Scripts
16.1.2 Autotest Logs

16.2 Writing `testsuite.at'
16.3 Running testsuite Scripts
16.4 Making testsuite Scripts

17. Frequent Autoconf Questions, with answers

17.1 Distributing configure Scripts
17.2 Why Require GNU M4?
17.3 How Can I Bootstrap?
17.4 Why Not Imake?

file:///C|/pdfing/autoconf.html.htm (248 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC142
file:///C|/pdfing/autoconf.html#SEC143
file:///C|/pdfing/autoconf.html#SEC144
file:///C|/pdfing/autoconf.html#SEC145
file:///C|/pdfing/autoconf.html#SEC146
file:///C|/pdfing/autoconf.html#SEC147
file:///C|/pdfing/autoconf.html#SEC148
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC150
file:///C|/pdfing/autoconf.html#SEC151
file:///C|/pdfing/autoconf.html#SEC152
file:///C|/pdfing/autoconf.html#SEC153
file:///C|/pdfing/autoconf.html#SEC154
file:///C|/pdfing/autoconf.html#SEC155
file:///C|/pdfing/autoconf.html#SEC156
file:///C|/pdfing/autoconf.html#SEC157
file:///C|/pdfing/autoconf.html#SEC158
file:///C|/pdfing/autoconf.html#SEC159
file:///C|/pdfing/autoconf.html#SEC160
file:///C|/pdfing/autoconf.html#SEC161
file:///C|/pdfing/autoconf.html#SEC162
file:///C|/pdfing/autoconf.html#SEC163
file:///C|/pdfing/autoconf.html#SEC164
file:///C|/pdfing/autoconf.html#SEC165
file:///C|/pdfing/autoconf.html#SEC166
file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC168
file:///C|/pdfing/autoconf.html#SEC169
file:///C|/pdfing/autoconf.html#SEC170
file:///C|/pdfing/autoconf.html#SEC171
file:///C|/pdfing/autoconf.html#SEC172
file:///C|/pdfing/autoconf.html#SEC173
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC175
file:///C|/pdfing/autoconf.html#SEC176
file:///C|/pdfing/autoconf.html#SEC177
file:///C|/pdfing/autoconf.html#SEC178

Autoconf:

17.5 How Do I #define Installation Directories?
17.6 What is `autom4te.cache'?

18. History of Autoconf

18.1 Genesis
18.2 Exodus
18.3 Leviticus
18.4 Numbers
18.5 Deuteronomy

A. Copying This Manual

A.1 GNU Free Documentation License

A.1.1 ADDENDUM: How to use this License for your documents

B. Indices

B.1 Environment Variable Index
B.2 Output Variable Index
B.3 Preprocessor Symbol Index
B.4 Autoconf Macro Index
B.5 M4 Macro Index
B.6 Autotest Macro Index
B.7 Program and Function Index
B.8 Concept Index

[Top] [Contents] [Index] [?]

Short Table of Contents

1. Introduction
2. The GNU Build System
3. Making configure Scripts
4. Initialization and Output Files
5. Existing Tests
6. Writing Tests
7. Results of Tests
8. Programming in M4
9. Writing Autoconf Macros
10. Portable Shell Programming
11. Manual Configuration
12. Site Configuration
13. Running configure Scripts
14. Recreating a Configuration
15. Obsolete Constructs

file:///C|/pdfing/autoconf.html.htm (249 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC179
file:///C|/pdfing/autoconf.html#SEC180
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC182
file:///C|/pdfing/autoconf.html#SEC183
file:///C|/pdfing/autoconf.html#SEC184
file:///C|/pdfing/autoconf.html#SEC185
file:///C|/pdfing/autoconf.html#SEC186
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC188
file:///C|/pdfing/autoconf.html#SEC189
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC191
file:///C|/pdfing/autoconf.html#SEC192
file:///C|/pdfing/autoconf.html#SEC193
file:///C|/pdfing/autoconf.html#SEC194
file:///C|/pdfing/autoconf.html#SEC195
file:///C|/pdfing/autoconf.html#SEC196
file:///C|/pdfing/autoconf.html#SEC197
file:///C|/pdfing/autoconf.html#SEC198
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
file:///C|/pdfing/autoconf.html#SEC1
file:///C|/pdfing/autoconf.html#SEC2
file:///C|/pdfing/autoconf.html#SEC6
file:///C|/pdfing/autoconf.html#SEC15
file:///C|/pdfing/autoconf.html#SEC35
file:///C|/pdfing/autoconf.html#SEC69
file:///C|/pdfing/autoconf.html#SEC81
file:///C|/pdfing/autoconf.html#SEC89
file:///C|/pdfing/autoconf.html#SEC105
file:///C|/pdfing/autoconf.html#SEC114
file:///C|/pdfing/autoconf.html#SEC125
file:///C|/pdfing/autoconf.html#SEC129
file:///C|/pdfing/autoconf.html#SEC139
file:///C|/pdfing/autoconf.html#SEC149
file:///C|/pdfing/autoconf.html#SEC150

Autoconf:

16. Generating Test Suites with Autotest
17. Frequent Autoconf Questions, with answers
18. History of Autoconf
A. Copying This Manual
B. Indices

[Top] [Contents] [Index] [?]

About this document

This document was generated using texi2html

The buttons in the navigation panels have the following meaning:

Button Name Go to From 1.2.3 go to

[<] Back previous section in reading order 1.2.2

[>] Forward next section in reading order 1.2.4

[<<] FastBack
previous or up-and-previous
section

1.1

[Up] Up up section 1.2

[>>] FastForward next or up-and-next section 1.3

[Top] Top cover (top) of document

[Contents] Contents table of contents

[Index] Index concept index

[?] About this page

where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following
structure:

● 1. Section One
❍ 1.1 Subsection One-One

■ ...
❍ 1.2 Subsection One-Two

■ 1.2.1 Subsubsection One-Two-One
■ 1.2.2 Subsubsection One-Two-Two
■ 1.2.3 Subsubsection One-Two-Three <== Current Position
■ 1.2.4 Subsubsection One-Two-Four

❍ 1.3 Subsection One-Three
■ ...

❍ 1.4 Subsection One-Four

This document was generated by Jeff Bailey on December, 24 2002 using texi2html

file:///C|/pdfing/autoconf.html.htm (250 of 250)27. 1. 2004 18:44:42

file:///C|/pdfing/autoconf.html#SEC167
file:///C|/pdfing/autoconf.html#SEC174
file:///C|/pdfing/autoconf.html#SEC181
file:///C|/pdfing/autoconf.html#SEC187
file:///C|/pdfing/autoconf.html#SEC190
file:///C|/pdfing/autoconf.html#SEC_Top
file:///C|/pdfing/autoconf.html#SEC_Contents
file:///C|/pdfing/autoconf.html#SEC_About
http://www.mathematik.uni-kl.de/~obachman/Texi2html
http://www.mathematik.uni-kl.de/~obachman/Texi2html

	Local Disk
	Autoconf:

