automake

automake

Node: Top, Next: Introduction, Previous: (dir), Up: (dir)

GNU Automake

Thisfile documents the GNU Automake package. Automake is a program which creates GNU standards-
compliant Makefiles from template files. This edition documents version 1.7.8.

« Introduction: Automake's purpose

. Generdlities: General ideas

. Examples. Some example packages

. Invoking Automake: Creating a Makefile.in

. configure: Scanning configure.ac or configure.in

. Topleve: Thetop-level Makefile.am

. Alternative: An alternative approach to subdirectories
. Rebuilding: Automatic rebuilding of Makefile

« Programs:. Building programs and libraries

. Other objects. Other derived objects

. Other GNU Tools: Other GNU Tools

. Documentation: Building documentation

. Instal: What getsinstalled

. Clean: What gets cleaned

. Dist: What goesin adistribution

. Tests: Support for test suites

. Options: Changing Automake's behavior

. Miscellaneous: Miscellaneous rules

. Include: Including extrafilesin an Automake template.
. Conditionals: Conditionals

« Gnits: Theeffectof - -gnuand--gnits

. Cygnus: The effect of - - cygnus

. Extending: Extending Automake

. Distributing: Distributing the Makefile.in

. API versioning: About compatibility between Automake versions
. FAQ: Frequently Asked Questions

. Macro and Variable Index:

file://IC|/pdfing/automake.html.htm (1 of 124)27. 1. 2004 18:45:04

automake

. Genera Index:

Node: Introduction, Next: Generalities, Previous: Top, Up: Top

Introduction

Automake is atool for automatically generating Makef i | e. i nsfromfilescalled Makefi | e. am

Each Makef i | e. amisbasicaly aseries of make variable definitionsl, with rules being thrown in
occasionaly. The generated Makef i | e. i nsare compliant with the GNU Makefile standards.

The GNU Makefile Standards Document (see M akefile Conventions) is long, complicated, and subject

to change. The goal of Automake isto remove the burden of Makefile maintenance from the back of the
individual GNU maintainer (and put it on the back of the Automake maintainer).

The typical Automake input fileis simply a series of variable definitions. Each such fileis processed to
createaMakef i | e. i n. There should generally be one Makef i | e. amper directory of aproject.

Automake does constrain a project in certain ways; for instance it assumes that the project uses
Autoconf (see Introduction), and enforces certain restrictions on the conf i gur e. i n contents2.

Automake requiresper | inorder to generate the Makef i | e. i ns. However, the distributions created
by Automake are fully GNU standards-compliant, and do not require per | in order to be built.

Mail suggestions and bug reports for Automake to bug-automake@gnu.org.

Node: Generalities, Next: Examples, Previous: Introduction, Up: Top

General ideas

The following sections cover afew basic ideas that will help you understand how Automake works.

. General Operation: General operation of Automake

. Strictness: Standards conformance checking

« Uniform: The Uniform Naming Scheme

. Canonicalization: How derived variables are named

. User Variables: Variables reserved for the user

. Auxiliary Programs. Programs automake might require

file://IC|/pdfing/automake.html.htm (2 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/standards.html#Makefile%20Conventions
file:///C|/pdfing/autoconf.html#Top
mailto:bug-automake@gnu.org

automake

Node: General Operation, Next: Strictness, Previous: Generalities, Up: Generalities

General Operation

Automake works by reading a Makef i | e. amand generating aMakefi | e. i n. Certain variables and
targets defined in the Makef i | e. aminstruct Automake to generate more specialized code; for
instance, abi n_ PROGRAMS variable definition will cause targets for compiling and linking programsto
be generated.

The variable definitions and targets in the Makef i | e. amare copied verbatim into the generated file.
Thisalows you to add arbitrary code into the generated Makef i | e. i n. For instance the Automake

distribution includes a non-standard cvs- di st target, which the Automake maintainer uses to make
distributions from his source control system.

Note that most GNU make extensions are not recognized by Automake. Using such extensionsin a
Makef i | e. amwill lead to errors or confusing behavior.

A special exception isthat the GNU make append operator, +=, is supported. This operator appends its
right hand argument to the variable specified on the left. Automake will translate the operator into an
ordinary = operator; += will thus work with any make program.

Automake tries to keep comments grouped with any adjoining targets or variable definitions,

A target defined in Makef i | e. amgenerally overrides any such target of a similar name that would be
automatically generated by aut onmake. Although thisis a supported feature, it is generally best to avoid
making use of it, as sometimes the generated rules are very particular.

Similarly, avariable defined in Makef i | e. amor AC_SUBST'ed from conf i gur e. i n will override
any definition of the variable that aut omake would ordinarily create. This feature is more often useful
than the ability to override atarget definition. Be warned that many of the variables generated by

aut onake are considered to be for internal use only, and their names might change in future rel eases.

When examining a variable definition, Automake will recursively examine variables referenced in the
definition. For example, if Automake islooking at the content of f oo SOURCES in this snippet

XS = a.c b.c
foo SOURCES = c.c $(xs)

it would usethefilesa. ¢, b. ¢, and c. ¢ asthe contentsof f oo SOURCES.

file:///C)/pdfing/automake.html.htm (3 of 124)27. 1. 2004 18:45:04

automake

Automake also allows aform of comment which is not copied into the output; all lines beginning with
(leading spaces allowed) are completely ignored by Automake.

It is customary to make thefirst line of Makef i | e. amread:

Process this file with automake to produce Makefile.in

Node: Strictness, Next: Uniform, Previous: General Operation, Up: Generalities

Strictness

While Automake is intended to be used by maintainers of GNU packages, it does make some effort to
accommodate those who wish to use it, but do not want to use all the GNU conventions.

To this end, Automake supports three levels of strictness--the strictness indicating how stringently
Automake should check standards conformance.

Thevalid strictness levels are:

foreign
Automake will check for only those things which are absolutely required for proper operations.
For instance, whereas GNU standards dictate the existence of a NEWS file, it will not be required
in this mode. The name comes from the fact that Automake is intended to be used for GNU
programs; these relaxed rules are not the standard mode of operation.

gnu
Automake will check--as much as possible--for compliance to the GNU standards for packages.
Thisisthe default.

gnits
Automake will check for compliance to the as-yet-unwritten Gnits standards. These are based on
the GNU standards, but are even more detailed. Unless you are a Gnits standards contributor, it is
recommended that you avoid this option until such time as the Gnits standard is actually
published (which may never happen).

For more information on the precise implications of the strictness level, see Gnits.

Automake also has a special "cygnus' mode which is similar to strictness but handled differently. This
mode is useful for packages which are put into a"Cygnus" styletree (e.g., the GCC tree). For more
information on this mode, see Cygnus.

file://IC|/pdfing/automake.html.htm (4 of 124)27. 1. 2004 18:45:04

automake

Node: Uniform, Next: Canonicalization, Previous: Strictness, Up: Generalities

The Uniform Naming Scheme

Automake variables generally follow a uniform naming scheme that makesiit easy to decide how
programs (and other derived objects) are built, and how they are installed. This scheme also supports
conf i gur e time determination of what should be built.

At make time, certain variables are used to determine which objects are to be built. The variable names
are made of severa pieces which are concatenated together.

The piece which tells automake what is being built is commonly called the primary. For instance, the
primary PROGRANMS holds alist of programs which are to be compiled and linked.

A different set of namesis used to decide where the built objects should be installed. These names are
prefixes to the primary which indicate which standard directory should be used as the installation
directory. The standard directory names are given in the GNU standards (see Directory Variables).
Automake extends this list with pkgl i bdi r, pkgi ncl udedi r , and pkgdat adi r ; these are the
same as the non-pk g versions, but with @GPACKAGE@appended. For instance, pkgl i bdi r isdefined
as$(libdir)/ @PACKAGE@

For each primary, there is one additional variable named by prepending EXTRA _ to the primary name.
Thisvariable is used to list objects which may or may not be built, depending on what conf i gur e
decides. Thisvariableis required because Automake must statically know the entire list of objects that
may be built in order to generate aMakef i | e. i n that will work in all cases.

For instance, cpi o decides at configure time which programs are built. Some of the programs are
installed in bi ndi r, and some areinstaled in sbi ndi r:

EXTRA PROGRAMS = nt rnt

bi n_ PROGRAMS = cpi 0 pax
sbi n_PROGRAMS = @/ORE_PROCRAMS@

Defining a primary without a prefix as avariable, e.g., PROGRAMS, is an error.

Note that the common di r suffix isleft off when constructing the variable names; thus one writes
bi n_PROGRANMS and not bi ndi r _ PROGRANS.

Not every sort of object can be installed in every directory. Automake will flag those attemptsit findsin

file:///C)/pdfing/automake.html.htm (5 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/standards.html#Directory%20Variables

automake

error. Automake will aso diagnose obvious misspellings in directory names.

Sometimes the standard directories--even as augmented by Automake-- are not enough. In particular it is
sometimes useful, for clarity, to install objects in a subdirectory of some predefined directory. To this
end, Automake allows you to extend the list of possible installation directories. A given prefix (e.g.
zar)isvalidif avariable of the same name with di r appended isdefined (e.g. zar di r).

For instance, until HTML support is part of Automake, you could use thisto install rav HTML
documentation:

htmdir = $(prefix)/htmn
ht M _DATA = aut omake. ht m

The special prefix noi nst indicates that the objects in question should be built but not installed at all.
Thisisusually used for objects required to build the rest of your package, for instance static libraries
(see A Library), or helper scripts.

The special prefix check indicates that the objects in question should not be built until the make
check command is run. Those objects are not installed either.

The current primary names are PROGRAMS, LI BRARI ES, LI SP, PYTHON, JAVA, SCRI PTS, DATA,
HEADERS, MANS, and TEXI NFCS.

Some primaries also allow additional prefixes which control other aspects of aut omake's behavior.
The currently defined prefixesaredi st _, nodi st _, and nobase_. These prefixes are explained later
(see Program and Library Variables).

Node: Canonicalization, Next: User Variables, Previous: Uniform, Up: Generalities

How derived variables are named

Sometimes a Makefile variable name is derived from some text the maintainer supplies. For instance, a
program name listed in _ PROGRAMS is rewritten into the name of a_ SOURCES variable. In cases like
this, Automake canonicalizes the text, so that program names and the like do not have to follow
Makefile variable naming rules. All charactersin the name except for letters, numbers, the strudel (@),
and the underscore are turned into underscores when making variable references.

For example, if your program isnamed sni f f - gl ue, the derived variable name would be
sni ff gl ue SOURCES, notsni ff - gl ue_SOURCES. Similarly the sources for alibrary named

file:///C)/pdfing/automake.html.htm (6 of 124)27. 1. 2004 18:45:04

automake

| i brunbl e++. a should belistedinthel i brunbl e a SOURCES variable.

The strudel is an addition, to make the use of Autoconf substitutionsin variable names less obfuscating.

Node: User Variables, Next: Auxiliary Programs, Previous. Canonicalization, Up: Generalities

Variables reserved for the user

Some Makef i | e variables are reserved by the GNU Coding Standards for the use of the "user” - the
person building the package. For instance, CFLAGS is one such variable.

Sometimes package developers are tempted to set user variables such as CFLAGS because it appears to
make their job easier - they don't have to introduce a second variable into every target.

However, the package itself should never set a user variable, particularly not to include switches which
are required for proper compilation of the package. Since these variables are documented as being for
the package builder, that person rightfully expects to be able to override any of these variables at build
time.

To get around this problem, automake introduces an automake-specific shadow variable for each user
flag variable. (Shadow variables are not introduced for variables like CC, where they would make no
sense.) The shadow variable is named by prepending AM _ to the user variable's name. For instance, the
shadow variable for YFLAGS isAM_YFLAGS.

Node: Auxiliary Programs, Previous. User Variables, Up: Generalities

Programs automake might require

Automake sometimes requires helper programs so that the generated Makef i | e can do itswork
properly. There are afairly large number of them, and we list them here.

ansi 2knr. c

ansi 2knr. 1
These two files are used by the automatic de-ANSI-fication support (see ANSI).

conpil e
Thisisawrapper for compilers which don't accept both - ¢ and - 0 at the sametime. It isonly
used when absolutely required. Such compilers are rare.

confi g. guess

config.sub

file://IC|/pdfing/automake.html.htm (7 of 124)27. 1. 2004 18:45:04

automake

These programs compute the canonical triplets for the given build, host, or target architecture.
These programs are updated regularly to support new architectures and fix probes broken by
changesin new kernel versions. Y ou are encouraged to fetch the latest versions of these files
from<ftp://ftp.gnu.org/ gnu/ confi g/ > before making arelease.

depconp
This program understands how to run a compiler so that it will generate not only the desired
output but also dependency information which is then used by the automatic dependency tracking
feature.

elisp-conmp
This program is used to byte-compile Emacs Lisp code.

install -sh
Thisisareplacement for thei nst al | program which works on platformswherei nst al | is
unavailable or unusable.

ndat e- sh
This script isused to generate aver si on. t exi file. It examines afile and prints some date
information about it.

m ssi ng
Thiswraps a number of programs which are typically only required by maintainers. If the
program in question doesn't exist, m ssi ng prints an informative warning and attempts to fix
things so that the build can continue.

nkinstalldirs
Thisworks around the fact that nkdi r - p isnot portable.

py-conpil e
Thisis used to byte-compile Python scripts.

t exi nfo. tex
Not a program, thisfileisrequired for rake dvi , make ps and make pdf towork when
Texinfo sources are in the package.

yl wr ap
This program wraps | ex and yacc and ensures that, for instance, multiple yacc instances can
be invoked in asingle directory in paralel.

Node: Examples, Next: Invoking Automake, Previous. Generalities, Up: Top

Some example packages

. Complete: A simple example, start to finish
. Hello: A classic program
. true: Building true and false

Node: Complete, Next: Hello, Previous. Examples, Up: Examples

file://IC|/pdfing/automake.html.htm (8 of 124)27. 1. 2004 18:45:04

automake

A simple example, start to finish

Let's suppose you just finished writing zar doz, a program to make your head float from vortex to
vortex. Y ou've been using Autoconf to provide a portability framework, but your Makef i | e. i nshave
been ad-hoc. Y ou want to make them bulletproof, so you turn to Automake.

Thefirst step isto update your conf i gur e. i n to include the commands that aut onake needs. The
way to do thisistoadd an AM | NI T_AUTOMAKE call just after AC | NI T:

AC | NIl T(zardoz, 1.0)
AM | NI T_AUTOVAKE

Since your program doesn't have any complicating factors (e.g., it doesn't use get t ext , it doesn't want
to build a shared library), you're done with this part. That was easy!

Now you must regenerate conf i gur e. But to do that, you'll need to tell aut oconf how to find the
new macro you've used. The easiest way to do thisisto usetheacl ocal program to generate your

acl ocal . m for you. But wait... maybe you aready have an acl ocal . ¥, because you had to write
some hairy macros for your program. Theacl ocal program letsyou put your own macros into

aci ncl ude. n4, so simply rename and then run:

mv acl ocal . md aci ncl ude. n4
acl ocal
aut oconf

Now it istime to write your Makef i | e. amfor zar doz. Sincezar doz isauser program, you want

toinstall it where the rest of the user programs go: bi ndi r . Additionally, zar doz has some Texinfo

documentation. Your conf i gur e. i n script uses AC_REPLACE_FUNCS, so you need to link against
$(LI BOBJS) . So here'swhat you'd write:

bi n_ PROGRAMS = zar doz
zardoz_SOURCES = main.c head.c float.c vortex9.c gun.c
zardoz_LDADD = $(LIBOBJS)

I nfo_TEXI NFOS = zardoz.t exi

Now you can run aut onmake --add- m ssi ng to generate your Makef i | e. i n and grab any

file:///C)/pdfing/automake.html.htm (9 of 124)27. 1. 2004 18:45:04

automake

auxiliary files you might need, and you're done!

Node: Hello, Next: true, Previous. Complete, Up: Examples

A classic program

GNU hello isrenowned for its classic simplicity and versatility. This section shows how Automake

could be used with the GNU Hello package. The examples below are from the latest beta version of
GNU Héllo, but with all of the maintainer-only code stripped out, aswell as all copyright comments.

Of course, GNU Hello is somewhat more featureful than your traditional two-liner. GNU Hello is
internationalized, does option processing, and has a manual and a test suite.

Hereistheconfi gure. i n from GNU Hello. Please note: Thecallsto AC | NI T and
AM | NI T_AUTOMAKE in this example use a deprecated syntax. For the current approach, see the
description of AM | NI T_AUTOMAKE in Public macros.

dnl Process this file with autoconf to produce a configure
script.

AC I NI T(src/hello.c)

AM I NI T_AUTOVAKE(hel l 0, 1.3.11)

AM_CONFI G_HEADER(confi g. h)

dnl Set of avail abl e | anguages.
ALL LI NGUAS="de fr es ko nl no pl pt sl sv"

dnl Checks for prograns.

AC PROG CC

AC | SC PGCsI X

dnl Checks for libraries.

dnl Checks for header files.

AC _STDC_HEADERS

AC HAVE HEADERS(string.h fcntl.h sys/file.h sys/param h)

dnl Checks for library functions.
AC_FUNC_ALLQOCA

dnl Check for st _blksize in struct stat
AC ST BLKSI ZE

file://IC|/pdfing/automake.html.htm (10 of 124)27. 1. 2004 18:45:04

ftp://prep.ai.mit.edu/pub/gnu/hello-1.3.tar.gz

automake

dnl internationalization nmacros
AM GNU_GETTEXT
AC QUTPUT([Makefil e doc/ Makefile intl/Makefile po/ Makefile.in \
src/ Makefile tests/ Makefile tests/hello],
[chnod +x tests/hello])

The AM_ macros are provided by Automake (or the Gettext library); the rest are standard A utoconf
macros.

Thetop-level Makefi | e. am

EXTRA DI ST = BUGS ChangelLog. O
SUBDI RS = doc intl po src tests

Asyou can see, al the work hereisreally done in subdirectories.

Thepo andi nt| directories are automatically generated using get t ext i ze; they will not be
discussed here.

Indoc/ Makefi | e. amwe see:

I nfo_TEXI NFOS = hel | 0.t exi
hel | o TEXI NFOS = gpl . texi

Thisis sufficient to build, install, and distribute the GNU Hello manual.
Hereist est s/ Mbakefi |l e. am

TESTS = hell o
EXTRA DI ST = hello.in testdata

The script hel | o isgenerated by conf i gur e, and isthe only test case. neke check will run this
test.

Last wehavesr c/ Makefi | e. am where all the real work is done:

bi n_PROGRAMS = hell o

file:///C)/pdfing/automake.html.htm (11 of 124)27. 1. 2004 18:45:04

automake

hel | o SOURCES = hello.c version.c getopt.c getoptl.c getopt.h
system h

hel | o_LDADD = @ NTLLI BS@ @\LLOCA@

| ocal edir = $(datadir)/locale

| NCLUDES = -I../intl -DLOCALEDI R=\"$(localedir)\"

Node: true, Previous: Hello, Up: Examples

Building true and false

Here is another, trickier example. It shows how to generate two programs (t r ue and f al se) from the
same sourcefile (t r ue. c). Thedifficult part is that each compilation of t r ue. ¢ requires different

cpp flags.

bi n_PROGRAMS = true fal se
fal se_ SOURCES =
fal se_ LDADD = fal se.o

true.o: true.c
$(COWPI LE) -DEXIT CODE=0 -c true.c

fal se.o0: true.c
$(COWI LE) -DEXIT CODE=1 -0 false.o -c true.c

Note that thereisnot r ue_ SOURCES definition. Automake will implicitly assume that there is a source
filenamedt r ue. c, and definerulesto compilet rue. o andlinkt rue. Thetrue. o: true. crule
supplied by the above Makef i | e. am will override the Automake generated rule to build t r ue. o.

f al se_ SOURCES is defined to be empty--that way no implicit value is substituted. Because we have
not listed the source of f al se, we haveto tell Automake how to link the program. Thisis the purpose
of thef al se_LDADDIine. A f al se_ DEPENDENCI ES variable, holding the dependencies of the

f al se target will be automatically generated by Automake from the content of f al se_LDADD.

The above rules won't work if your compiler doesn't accept both - ¢ and - 0. The simplest fix for thisis
to introduce a bogus dependency (to avoid problems with aparallel make):

true.o: true.c false.o
$(COWPI LE) -DEXIT_CODE=0 -c true.c

file://IC|/pdfing/automake.html.htm (12 of 124)27. 1. 2004 18:45:04

automake

fal se.o: true.c
$(COWPI LE) -DEXIT CODE=1 -c true.c & & nv true.o false.o

Also, these explicit rules do not work if the de-ANSI-fication feature is used (see ANSI). Supporting de-
ANSI-fication requires a little more work:

true. o: true. c false.o
$(COWPI LE) -DEXIT _CODE=0 -c true.c

false. o0: true. c
$(COWPI LE) -DEXIT CODE=1 -c true.c & nv true. o false.o

Asit turns out, there is also a much easier way to do this same task. Some of the above techniques are
useful enough that we've kept the example in the manual. However if you wereto buildt r ue and
f al se inrea life, you would probably use per-program compilation flags, like so:

bi n_PROGRAMS = fal se true

fal se_ SOURCES = true.c
fal se_ CPPFLAGS = - DEXI T_CODE=1

true_SOURCES = true.c
true_CPPFLAGS = - DEXI T_CODE=0

In this case Automake will causet r ue. ¢ to be compiled twice, with different flags. De-ANSI-fication
will work automatically. In this instance, the names of the object files would be chosen by automake;
they would bef al se-true. o andtrue-true. o.(Thename of the object filesrarely matters.)

Node: Invoking Automake, Next: configure, Previous. Examples, Up: Top

Creating a Makefile.in

To create dl the Makef i | e. i nsfor apackage, run the aut omake program in the top level directory,
with no arguments. aut ormake will automatically find each appropriate Makef i | e. am(by scanning
confi gure. i n; see configure) and generate the corresponding Makef i | e. i n. Note that

aut omake hasarather ssmplistic view of what constitutes a package; it assumes that a package has
only oneconfi gure. i n, at thetop. If your package has multipleconf i gur e. i ns, then you must
run aut omake in each directory holding aconf i gur e. i n. (Alternatively, you may rely on

file://IC|/pdfing/automake.html.htm (13 of 124)27. 1. 2004 18:45:04

automake

Autoconf'saut or econf , which is able to recurse your package tree and run aut omake where
appropriate.)

Y ou can optionally give aut omake an argument; . amis appended to the argument and the result is
used as the name of the input file. Thisfeatureis generally only used to automatically rebuild an out-of -
date Makefi | e. i n. Notethat aut onake must always be run from the topmost directory of a project,
even if being used to regenerate the Makef i | e. i n in some subdirectory. Thisis necessary because
aut omake must scan conf i gur e. i n, and because aut omake uses the knowledge that a

Makefi |l e. i nisinasubdirectory to change its behavior in some cases.

Automake will run aut oconf toscanconfi gure. i n anditsdependencies(acl ocal . n4),
therefore aut oconf must be in your PATH. If there is an AUTOCONF variable in your environment it
will be used instead of aut oconf , thisallows you to select a particular version of Autoconf. By the
way, don't misunderstand this paragraph: Automake runs aut oconf to scan your confi gure. i n,
thiswon't build conf i gur e and you still have to run aut oconf yourself for this purpose.

aut omake accepts the following options:

-a

- -add- m ssi ng
Automake requires certain common files to exist in certain situations; for instance conf i g.
guess isrequiredif confi gure. i n runs AC_CANONI CAL_HOST. Automake is distributed
with several of these files (see Auxiliary Programs); this option will cause the missing ones to be
automatically added to the package, whenever possible. In general if Automake tellsyou afileis
missing, try using this option. By default Automake tries to make a symbolic link pointing to its
own copy of the missing file; this can be changed with - - copy.

Many of the potentially-missing files are common scripts whose location may be specified viathe
AC CONFI G_AUX_ DI Rmacro. Therefore, AC_CONFI G_AUX DI R's setting affects whether a
fileis considered missing, and where the missing file is added (see Optional).

-- 11 bdi r =dir
Look for Automake data filesin directory dir instead of in the installation directory. Thisis
typically used for debugging.

-C

--copy
When used with - - add- m ssi ng, causesinstalled files to be copied. The default isto make a
symbolic link.

- -cygnus
Causes the generated Makef i | e. i nsto follow Cygnusrules, instead of GNU or Gnits rules.
For more information, see Cygnus.

- f

file:///C)/pdfing/automake.html.htm (14 of 124)27. 1. 2004 18:45:04

automake

--force-m ssing
When used with - - add- m ssi ng, causes standard filesto be reinstalled even if they already
exist in the source tree. This involves removing the file from the source tree before creating the
new symlink (or, with - - copy, copying the new file).

--foreign
Set%he global strictnessto f or ei gn. For more information, see Strictness.
--gnits
Set the global strictnessto gni t s. For more information, see Gnits.
--gnhu
Set the global strictnessto gnu. For more information, see Gnits. Thisis the default strictness.
--help

Print a summary of the command line options and exit.
-1
- -1 gnor e-deps
This disables the dependency tracking feature in generated Makef i | es; see Dependencies.
--incl ude-deps
This enables the dependency tracking feature. Thisfeature is enabled by default. Thisoption is
provided for historical reasons only and probably should not be used.
--no-force
Ordinarily aut omake createsal Makefi | e. i nsmentionedinconfi gure. i n. Thisoption
causes it to only update those Makef i | e. i nswhich are out of date with respect to one of their
dependents.

Dueto a bug in itsimplementation, this option is currently ignored. It will be fixed in Automake
1.8.

-0 dir
- - out put - di r=dir
Put the generated Makef i | e. i n inthedirectory dir. Ordinarily each Makefil e.inis
created in the directory of the corresponding Makef i | e. am This option is deprecated and will
be removed in afuture release.
-V
--verbose
Cause Automake to print information about which files are being read or created.
--version
Print the version number of Automake and exit.
- W CATEGORY

- -war ni hgs=category
Output warnings falling in category. category can be one of:
gnu
warnings related to the GNU Coding Standards (see Top).

file:///C)/pdfing/automake.html.htm (15 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/standards.html#Top

automake

obsol et e

obsolete features or constructions
portability

portability issues (e.g., use of Make features which are known not portable)
synt ax

weird syntax, unused variables, typos
unsupport ed

unsupported or incompl ete features
al |

al the warnings
none

turn off al the warnings
error

treat warnings as errors

A category can be turned off by prefixing its name with no- . For instance - Who- synt ax will
hide the warnings about unused variables.

The categories output by default are synt ax and unsuppor t ed. Additionaly, gnu is enabled
In--gnu and--gnits strictness.

portabi |l ity warningsare currently disabled by default, but they will be enabled in - - gnu
and - - gni t s strictnessin afuture release.

The environment variable WARNI NGS can contain a comma separated list of categories to enable.
It will be taken into account before the command-line switches, thisway - Wione will also
ignore any warning category enabled by WARNI NGS. This variable is also used by other tools
like aut oconf ; unknown categories are ignored for this reason.

Node: configure, Next: Top level, Previous. Invoking Automake, Up: Top

Scanning configure.in

Automake scans the package'sconf i gur e. i n to determine certain information about the package.
Some aut oconf macros are required and some variables must be defined inconf i gure. i n.
Automake will also use information from conf i gur e. i n to further tailor its output.

Automake also supplies some Autoconf macros to make the maintenance easier. These macros can
automatically be put into your acl ocal . m} usingtheacl ocal program.

file://IC|/pdfing/automake.html.htm (16 of 124)27. 1. 2004 18:45:04

automake

« Requirements: Configuration requirements

. Optional: Other things Automake recognizes

« Invoking aclocal: Auto-generating aclocal.m4

. aclocal options: acloca command line arguments

« Macro search path: Modifying aclocal's search path

. Macros: Autoconf macros supplied with Automake

. Extending aclocal: Writing your own aclocal macros

Node: Requirements, Next: Optional, Previous. configure, Up: configure

Configuration requirements

The one real requirement of Automake isthat your confi gure.incal AM | NIl T_AUTOVAKE. This
macro does several things which are required for proper Automake operation (see Macros).

Here are the other macros which Automake requires but which are not run by AM | NI T_AUTOVAKE:

AC_CONFI G_FI LES

AC_QUTPUT
Automake uses these to determine which files to create (see Creating Output Files). A listed file
Is considered to be an Automake generated Makef i | e if there exists afile with the same name
and the . amextension appended. Typically, AC_ CONFI G _FI LES([f oo/ Makefil e]) will
cause Automake to generate f oo/ Makefil e. i nif f oo/ Makefi | e. amexists.

Thesefilesare dl removed by make di st cl ean.

Node: Optional, Next: Invoking aclocal, Previous. Requirements, Up: configure

Other things Automake recognizes

Every time Automakeisrun it calls Autoconf to trace conf i gur e. i n. Thisway it can recognize the
use of certain macros and tailor the generated Makef i | e. i n appropriately. Currently recognized
macros and their effects are:

AC_CONFI G_HEADERS
Automake will generate rules to rebuild these headers. Older versions of Automake required the
use of AM_CONFI G_HEADER (see Macros); thisis no longer the case today.

AC_CONFI G AUX_DI R

file://IC|/pdfing/automake.html.htm (17 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Output

automake

Automake will look for various helper scripts, such asnki nst al | di r s, in the directory
named in this macro invocation. (The full list of scriptsis: confi g. guess, confi g. sub,
depconp, el i sp-conp,conpi |l e,instal |l -sh,|tmain. sh,ndat e-sh, m ssi ng,
nki nstal Il dirs,py-conpile,texinfo.tex,andyl w ap.) Not al scripts are dways
searched for; some scripts will only be sought if the generated Makef i | e. i n requiresthem.

If AC_CONFI G_AUX DI Risnot given, the scripts are looked for in their st andar d locations.
For ndat e- sh, t exi nf 0. t ex, andyl wr ap, the standard location is the source directory
corresponding to the current Makef i | e. am For the rest, the standard location is the first one
of.,..,or../.. (relativeto the top source directory) that provides any one of the helper
scripts. See Finding “configure' Input.

Required filesfrom AC_CONFI G_AUX_ DI R are automatically distributed, even if thereis no
Makef i | e. aminthisdirectory.

AC _CANONI CAL HOST
Automake will ensurethat conf i g. guess and confi g. sub exist. Also, the Makefi | e
variableshost al i as andhost _tri pl et areintroduced. See Getting the Canonical System

Type.
AC_CANONI CAL_SYSTEM
Thisissimilar to AC_CANONI CAL_HOST, but also definesthe Makef i | e variables
bui |l d_alias andtarget alias. SeeGetting the Canonical System Type.
AC LI BSOURCE
AC LI BSOURCES
AC LI BOBJ
Automake will automatically distribute any file listed in AC_LI BSOURCE or
AC LI BSOURCES.

Note that the AC_LI BOBJ macro calls AC_LI BSOURCE. So if an Autoconf macro is
documentedto call AC LI BOBJI([file]),thenfil e.c will bedistributed automatically by
Automake. This encompasses many macros like AC_FUNC_ALLOCA, AC_FUNC NMEMCMP,

AC REPLACE_ FUNCS, and others.

By the way, direct assignmentsto LI BOBJ S are no longer supported. Y ou should always use
AC LI BOBJ for this purpose. See AC LI BOBJ vs. L1 BOBJS.

AC PROG RANLI B

Thisisrequired if any libraries are built in the package. See Particular Program Checks.
AC _PROG_CXX

Thisisrequired if any C++ sourceisincluded. See Particular Program Checks.
AC_PROG F77

file://IC|/pdfing/automake.html.htm (18 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Input
file:///C|/pdfing/autoconf.html#Canonicalizing
file:///C|/pdfing/autoconf.html#Canonicalizing
file:///C|/pdfing/autoconf.html#Canonicalizing
file:///C|/pdfing/autoconf.html#AC_LIBOBJ%20vs%20LIBOBJS
file:///C|/pdfing/autoconf.html#Particular%20Programs
file:///C|/pdfing/autoconf.html#Particular%20Programs

automake

Thisisrequired if any Fortran 77 source is included. This macro is distributed with Autoconf
version 2.13 and later. See Particular Program Checks.

AC F77 LI BRARY_LDFLAGS
Thisisrequired for programs and shared libraries that are a mixture of languages that include
Fortran 77 (see Mixing Fortran 77 With C and C++). See Autoconf macros supplied with
Automake.

AC PROG LI BTOCOL
Automake will turn on processing for | i bt ool (seeIntroduction).

AC PROG_YACC
If aYacc source fileis seen, then you must either use this macro or define the variable YACCin
confi gure.in. Theformerispreferred (see Particular Program Checks).

AC PROG LEX
If aLex sourcefileis seen, then this macro must be used. See Particular Program Checks.

AC SUBST
The first argument is automatically defined as avariable in each generated Makefi |l e. i n. See
Setting Output Variables.

If the Autoconf manual says that a macro calls AC_SUBST for var, or defined the output variable
var then var will be defined in each generated Makefi | e. i n. E.g. AC_PATH_XTRA defines

X _CFLAGS and X_LI BS, so you can usethevariablein any Makefi | e. amif

AC_PATH XTRAiscalled.

AM C PROTOTYPES
Thisis required when using automatic de-ANS|-fication; see ANSI.

AM GNU_GETTEXT
This macro isrequired for packages which use GNU gettext (see gettext). It is distributed with
gettext. If Automake sees this macro it ensures that the package meets some of gettext's
requirements.

AM MAI NTAI NER_MODE
Thismacro adds a- - enabl e- mai nt ai ner - node optionto conf i gur e. If thisis used,
aut omake will cause mai nt ai ner - onl y rulesto be turned off by default in the generated
Makef i | e. i ns. Thismacro defines the MAI NTAI NER _MODE conditional, which you can use
inyour own Makefi | e. am

Node: Invoking aclocal, Next: aclocal options, Previous: Optional, Up: configure

Auto-generating aclocal.m4

Automake includes a number of Autoconf macros which can be used in your package; some of them are
actually required by Automake in certain situations. These macros must be defined in your acl ocal .

file://IC|/pdfing/automake.html.htm (19 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Particular%20Programs
file:///C|/pdfing/libtool.html#Top
file:///C|/pdfing/autoconf.html#Particular%20Programs
file:///C|/pdfing/autoconf.html#Particular%20Programs
file:///C|/pdfing/autoconf.html#Setting%20Output%20Variables

automake

n4; otherwise they will not be seen by aut oconf .

Theacl ocal program will automatically generate acl ocal . m4 files based on the contents of
confi gure. i n. Thisprovides a convenient way to get Automake-provided macros, without having to
search around. Also, theacl| ocal mechanism allows other packages to supply their own macros.

At startup, acl ocal scansall the. mi filesit can find, looking for macro definitions (see Macro search

path). Thenit scansconf i gur e. i n. Any mention of one of the macros found in the first step causes
that macro, and any macros it in turn requires, to be put into acl ocal . 4.

The contentsof aci ncl ude. m4, if it exists, are also automatically included inacl ocal . m4. Thisis
useful for incorporating local macrosinto conf i gur e.

acl ocal triesto be smart about looking for new AC_DEFUNs in thefilesit scans. It also tries to copy
the full text of the scanned fileinto acl ocal . n¥, including both # and dnl comments. If you want to
make a comment which will be completely ignored by acl ocal , use ## asthe comment leader.

. aclocal options: Options supported by aclocal
. Macro search path: How aclocal finds.m4 files

Node: aclocal options, Next: Macro search path, Previous. Invoking aclocal, Up: configure

aclocal options
acl ocal acceptsthe following options:

--acdi r =dir
Look for the macro filesin dir instead of the installation directory. Thisistypically used for
debugging.

--help
Print a summary of the command line options and exit.

-1 dir
Add the directory dir to thelist of directories searched for . mi files.

- - out put =file
Cause the output to be put into file instead of acl ocal . 4.

--print-ac-dir
Prints the name of the directory which acl ocal will searchto find third-party . n4 files. When
thisoption is given, normal processing is suppressed. This option can be used by a package to
determine where to install amacro file.

--verbose

file://IC|/pdfing/automake.html.htm (20 of 124)27. 1. 2004 18:45:04

automake

Print the names of thefilesit examines.
--Version
Print the version number of Automake and exit.

Node: Macro search path, Next: Macros, Previous: aclocal options, Up: configure

Macro search path

By default, acl ocal searchesfor. m4 filesin the following directories, in this order:

acdir-APIVERS ON
Thisiswhere the. md macros distributed with automake itself are stored. APIVERS ON depends
on the automake release used; for automake 1.6.x, APIVERSON = 1. 6.

acdir
Thisdirectory isintended for third party . n¥ files, and is configured when aut onake itself is
built. Thisis @lat adi r @ acl ocal / , which typically expandsto ${ pr ef i x}/ shar e/
acl ocal / . Tofind the compiled-in value of acdir, usethe- - pri nt - ac- di r option (see
aclocal options).

As an example, suppose that automake-1.6.2 was configured with - - pr ef i x=/ usr /| ocal . Then,
the search path would be:

1. /usr/l ocal / share/ acl ocal -1. 6/
2. lusr/ | ocal / sharel/ acl ocal /

As explained in (see aclocal options), there are several options that can be used to change or extend this
search path.

Modifying the macro search path: - -acdi r

The most obvious option to modify the search path is- - acdi r =dir, which changes default directory
and drops the APIVERS ON directory. For example, if one specifies- - acdi r =/ opt/ pri vat e/,
then the search path becomes:

1. /opt/private/

Note that thisoption, - - acdi r , isintended for use by the internal automake test suite only; it is not
ordinarily needed by end-users.

Modifying the macro search path: -1 dir

file://IC|/pdfing/automake.html.htm (21 of 124)27. 1. 2004 18:45:04

automake

Any extradirectories specified using - | options (see aclocal options) are prepended to this search list.

Thus,acl ocal -1 /foo -1 /bar resultsinthefollowing search path:
1. /foo
2. [bar
3. acdir-APIVERSON
4. acdir

Modifying the macro search path: dirli st

There is athird mechanism for customizing the search path. If adi rl i st fileexistsin acdir, then that
fileis assumed to contain alist of directories, one per line, to be added to the search list. These
directories are searched after all other directories.

For example, suppose acdir/ di r | i st contains the following:

[testl
[test2

and that acl ocal wascaledwiththe-1 /foo -1 /bar options. Then, the search path would be

/ foo

/ bar
acdir-APIVERS ON
acdir

[testl

/test?2

SuasdwbdhdE

If the- - acdi r =dir option isused, then acl ocal will searchforthedi rli st fileindir. Inthe- -
acdi r=/opt/ privat e/ exampleabove, acl ocal wouldlook for/ opt/private/dirlist.
Again, however, the- - acdi r option isintended for use by the internal automake test suite only; - -
acdi r isnot ordinarily needed by end-users.

di rli st isuseful inthefollowing situation: suppose that aut omake version 1. 6. 2 isinstalled with
$prefix=/usr by the system vendor. Thus, the default search directories are

1. /usr/sharel/ acl ocal -1. 6/
2. lusr/ shar e/ acl ocal /

file:///C)/pdfing/automake.html.htm (22 of 124)27. 1. 2004 18:45:04

automake

However, suppose further that many packages have been manually installed on the system, with
$prefix=/usr/local, asistypical. In that case, many of these"extra' . ma filesarein/ usr/ 1 ocal /
shar e/ acl ocal . Theonly way to force/ usr/ bi n/ acl ocal tofindthese"extra' . mi filesisto
awayscall acl ocal -1 /usr/| ocal/share/acl ocal . Thisisinconvenient. Withdi rl i st
one may create thefile

[usr/share/acl ocal /dirlist

which contains only the single line

[usr/| ocal / share/ acl ocal

Now, the "default" search path on the affected system is

1. /usr/sharel/ acl ocal -1. 6/
2. lusr/ shar e/ acl ocal /
3. /usr/ | ocal / sharel/ acl ocal /

without the need for - | options; - | options can be reserved for project-specific needs (nmy - sour ce-
di r/ mi/), rather than using it to work around local system-dependent tool installation directories.

Similarly, di r I i st can be handy if you have installed alocal copy Automake on your account and
want acl ocal tolook for macrosinstalled at other places on the system.

Node: Macros, Next: Extending aclocal, Previous: Macro search path, Up: configure

Autoconf macros supplied with Automake

Automake ships with several Autoconf macros that you can use from your conf i gur e. i n. When you
use one of them it will beincluded by acl ocal inacl ocal . n4.

« Public macros. Macros that you can use.
. Private macros. Macros that you should not use.

Node: Public macros, Next: Private macros, Previous: Macros, Up: Macros

Public macros

AM CONFI G_HEADER

file://IC|/pdfing/automake.html.htm (23 of 124)27. 1. 2004 18:45:04

automake

Automake will generate rules to automatically regenerate the config header. This obsolete macro
iIsasynonym of AC_CONFI G_HEADERS today (see Optional).

AM ENABLE MULTI LI B
Thisisused when a"multilib" library is being built. The first optional argument is the name of
the Makef i | e being generated; it defaultsto Makef i | e. The second option argument is used
to find the top source directory; it defaults to the empty string (generally this should not be used
unless you are familiar with the internals). See Multilibs.

AM C PROTOTYPES
Check to seeif function prototypes are understood by the compiler. If so, define PROTOT YPES
and set the output variables U and ANSI 2KNR to the empty string. Otherwise, set Uto _ and
ANSI 2KNRto . / ansi 2knr . Automake uses these values to implement automatic de-ANSI-
fication.

AM HEADER TI OCGW NSZ_NEEDS SYS | OCTL
If the use of TI OCGN NSZ requires<sys/ i oct | . h>, then define
GW NSZ | N_SYS | OCTL. Otherwise TI OCGW NSZ can befound in <t er m o0s. h>.

AM | NI T_AUTOVAKE([OPTI ONS])

AM | NI T_AUTOVAKE(PACKAGE, VERSI ON, [NO DEFI NE])
Runs many macros required for proper operation of the generated M akefiles.

This macro has two forms, the first of whichis preferred. In thisform, AM | NIl T_AUTOVAKE is
called with a single argument -- a space-separated list of Automake options which should be
applied to every Makef i | e. aminthetree. The effect isasif each option werelisted in
AUTOVAKE_OPTI ONS.

The second, deprecated, form of AM | NI T_AUTOMAKE has two required arguments: the
package and the version number. This form is obsol ete because the package and version can be
obtained from Autoconf's AC_| NI T macro (which itself has an old and a new form).

If your confi gure.in has:

AC I NI T(src/foo.c)
AM I NI T_AUTOMAKE(munbl e, 1.5)

you can modernize it asfollows:

AC I NI T(munmbl e, 1.5)
AC CONFI G_SRCDI R(src/foo.c)
AM | NI T_AUTOVAKE

Note that if you're upgrading your conf i gur e. i n from an earlier version of Automake, itis

file:///C)/pdfing/automake.html.htm (24 of 124)27. 1. 2004 18:45:04

automake

not always correct to ssmply move the package and version arguments from

AM | NI T_AUTOVRKE directly to AC | NI T, asin the example above. The first argument to
AC | NI T should be the name of your package (e.g. GNU Aut onake), not the tarball name (e.
g. aut omake) that you used to passto AM | NI T_AUTOVAKE. Autoconf tries to derive atarball
name from the package name, which should work for most but not all package names. (If it
doesn't work for yours, you can use the four-argument form of AC | NI T -- supported in
Autoconf versions greater than 2.52g -- to provide the tarball name explicitly).

By default this macro AC_DEFI NE's PACKAGE and VERSI ON. This can be avoided by passing
theno- def i ne option, asin:

AM I NI T_AUTOVAKE([gnits 1.5 no-define dist-bzip2])

or by passing athird non-empty argument to the obsolete form.

AM PATH LI SPDI R
Searches for the program emacs, and, if found, sets the output variable! i spdi r to thefull
path to Emacs site-lisp directory.

Note that this test assumes the enacs found to be aversion that supports Emacs Lisp (such as
GNU Emacs or XEmacs). Other emacsen can cause this test to hang (some, like old versions of
MicroEmacs, start up in interactive mode, requiring C- x C- ¢ to exit, which is hardly obvious
for a non-emacs user). In most cases, however, you should be able to use C- ¢ to kill thetest. In
order to avoid problems, you can set EMACS to "no" in the environment, or usethe- - wi t h-

| i spdir optiontoconfi gur e to explicitly set the correct path (if you're sure you have an
emacs that supports Emacs Lisp.

AM PROG _AS
Use this macro when you have assembly code in your project. Thiswill choose the assembler for
you (by default the C compiler) and set CCAS, and will also set CCASFLAGS if required.

AM PROG CC C O
Thisislike AC_PROG _CC _C O, but it generates its results in the manner required by automake.
Y ou must use thisinstead of AC_PROG_CC_C_Owhen you need this functionality.

AM PROG CC STDC
If the C compiler isnot in ANSI C mode by default, try to add an option to output variable CCto
make it so. This macro tries various options that select ANSI C on some system or another. It
considers the compiler to bein ANSI C modeif it handles function prototypes correctly.

If you use this macro, you should check after calling it whether the C compiler has been set to
accept ANSI C,; if not, the shell variableam cv_pr og_cc_st dc isset tono. If you wrote
your source code in ANSI C, you can make an un-ANSIfied copy of it by using theansi 2knr
option (see ANSI).

file:///C)/pdfing/automake.html.htm (25 of 124)27. 1. 2004 18:45:04

automake

Thismacro isarelic from the time Autoconf didn't offer such afeature. AM_ PROG CC _STDC's
logic has now been merged into Autoconf's AC_PROG_CC macro, therefore you should use the
latter instead. Chances are you are aready using AC_PROG_CC, so you can simply remove the
AM PROG _CC STDCcall and turn all occurrencesof $am cv_prog_cc_st dc into
$ac_cv_prog _cc_stdc. AM PROG CC STDCwill be marked as obsolete (in the Autoconf
sense) in Automake 1.8.

AM PROG_LEX
Like AC_PROG_LEX (see Particular Program Checks), but usesthe m ssi ng script on systems
that do not have | ex. HP- UX 10 isone such system.

AM PROG_GCJ
This macro findsthe gcj program or causes an error. It sets GCJ and GCIFLAGS. gcj isthe
Java front-end to the GNU Compiler Collection.

AM SYS PGCSI X_TERM CS
Check to see if POSIX termios headers and functions are available on the system. If so, set the
shell variableam cv_sys _posi x_term os toyes. If not, set the variable to no.

AM W TH_DVALLQCC
Add support for the dmalloc package. If the user configureswith - - wi t h- drmal | oc, then

defineW TH_DVALLOCand add - | dnal | oc to LI BS.

AM W TH_REGEX
Adds--w t h-regex totheconf i gur e command line. If specified (the default), then the
r egex regular expression library isused, r egex. o isputinto LI BOBJS, and W TH_RECGEX s
defined. If - - wi t hout - r egex isgiven, thenther x regular expression library is used, and
rx.oisputintoLl BOBJS.

Node: Private macros, Previous. Public macros, Up: Macros

Private macros

The following macros are private macros you should not call directly. They are called by the other
public macros when appropriate. Do not rely on them, as they might be changed in afuture version.
Consider them as implementation details; or better, do not consider them at all: skip this section!

_AM DEPENDENCI ES

AM SET_DEPDI R

AM DEP_TRACK

AM OUTPUT _DEPENDENCY _COVIVANDS
These macros are used to implement Automake's automatic dependency tracking scheme. They
are called automatically by automake when required, and there should be no need to invoke them
manually.

file://IC|/pdfing/automake.html.htm (26 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Particular%20Programs
ftp://ftp.letters.com/src/dmalloc/dmalloc.tar.gz

automake

AM MAKE_ | NCLUDE
This macro is used to discover how the user's make handlesi ncl ude statements. Thismacro is
automatically invoked when needed; there should be no need to invoke it manually.

AM PROG | NSTALL_STRI P
Thisisusedtofind aversionof i nst al | whichcanbeusedtostri p aprogram at installation
time. This macro is automatically included when required.

AM SANI TY_CHECK
This checks to make sure that afile created in the build directory is newer than afilein the source
directory. This can fail on systems where the clock is set incorrectly. This macro is automatically
run from AM | NI T_AUTOVAKE.

Node: Extending aclocal, Previous: Macros, Up: configure

Writing your own aclocal macros

Theacl ocal program doesn't have any built-in knowledge of any macros, soit is easy to extend it
with your own macros.

This can be used by libraries which want to supply their own Autoconf macros for use by other
programs. For instance the get t ext library suppliesamacro AM_GNU_GETTEXT which should be
used by any package using get t ext . When thelibrary isinstalled, it installs this macro so that

acl ocal will find it.

A macro file's name should end in . n. Such files should be installed in $(dat adi r) / acl ocal .
Thisisas simple as writing:

acl ocal dir = $(datadir)/acl ocal
acl ocal DATA = nymacro. m4 nyot her macro. m}

A file of macros should be a series of properly quoted AC_DEFUN's (see Macro Definitions). The
acl ocal programs aso understands AC_REQUI RE (see Prerequisite Macros), so it is safe to put each

macro in a separate file. Each file should have no side effects but macro definitions. Especially, any call
to AC_PREREQ should be done inside the defined macro, not at the beginning of thefile.

Starting with Automake 1.8, acl ocal will warn about all underquoted callsto AC_DEFUN. Weredlize
thiswill annoy alot of people, because acl ocal wasnot so strict in the past and many third party
macros are underquoted; and we have to apologize for this temporary inconvenience. The reason we
have to be stricter isthat a future implementation of acl ocal will have to temporary include al these
third party . mi files, maybe several times, even those which are not actually needed. Doing so should
aleviate many problem of the current implementation, however it requires a stricter style from the

file:///C)/pdfing/automake.html.htm (27 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Macro%20Definitions
file:///C|/pdfing/autoconf.html#Prerequisite%20Macros

automake

macro authors. Hopefully it is easy to revise the existing macros. For instance

bad style

AC _PREREQ 2. 57)

AC_DEFUN(AX_FOOBAR,

[AC_REQUI RE([AX_SOVETHI NG) dnl
AX_FOO

AX_BAR

1)

should be rewritten as

AC_DEFUN([AX_FOOBAR] ,

[AC_PREREQ(2. 57) dnl

AC_REQUI RE([AX_SOVETHI NG) dnl
AX_FQO

AX_BAR

1)

Wrapping the AC_PREREQ call inside the macro ensures that Autoconf 2.57 will not be required if
AX_FOOBAR s not actually used. Most importantly, quoting the first argument of AC_DEFUN allows
the macro to be redefined or included twice (otherwise this first argument would be expansed during the
second definition).

If you have been directed here by theacl ocal diagnostic but are not the maintainer of the implicated
macro, you will want to contact the maintainer of that macro. Please make sure you have the last version
of the macro and that the problem already hasn't been reported before doing so: people tend to work
faster when they aren't flooded by mails.

Node: Top level, Next: Alternative, Previous: configure, Up: Top

The top-level Makefil e. am

Recursing subdirectories

In packages with subdirectories, the top level Makef i | e. ammust tell Automake which subdirectories
areto be built. Thisis done viathe SUBDI RS variable.

file://IC|/pdfing/automake.html.htm (28 of 124)27. 1. 2004 18:45:04

automake

The SUBDI RS variable holds alist of subdirectories in which building of various sorts can occur. Many
targets (e.g. al |) in the generated Makef i | e will run both locally and in all specified subdirectories.
Note that the directories listed in SUBDI RS are not required to contain Makef i | e. ans; only

Makef i | es(after configuration). This allows inclusion of libraries from packages which do not use
Automake (such asget t ext).

In packages that use subdirectories, the top-level Makef i | e. amis often very short. For instance, here
isthe Makef i | e. amfrom the GNU Hello distribution:

EXTRA DI ST = BUGS ChangelLog. O READMVE- al pha
SUBDI RS = doc intl po src tests

When Automake invokes mak e in a subdirectory, it uses the value of the MAKE variable. It passes the
value of the variable AM_ MAKEFLAGS to the mak e invocation; this can be set in Makef i | e. amif
there are flags you must always passto nmake.

The directories mentioned in SUBDI RS must be direct children of the current directory. For instance,
you cannot put sr ¢/ subdi r into SUBDI RS. Instead you should put SUBDI RS = subdi r into
src/ Makef i | e. am Automake can be used to construct packages of arbitrary depth thisway.

By default, Automake generates Makef i | es which work depth-first (post f i x). However, itis
possible to change this ordering. Y ou can do this by putting . into SUBDI RS. For instance, putting .
first will cause apr ef i x ordering of directories. All cl ean targets are run in reverse order of build
targets.

Conditional subdirectories

It is possible to define the SUBDI RS variable conditionadly if, likein the case of GNU | net ut i | s,
you want to only build a subset of the entire package.

To illustrate how this works, let's assume we have two directoriessr ¢/ and opt/ . src/ should
always be built, but we want to decidein. / conf i gur e whether opt / will be built or not. (For this
example we will assumethat opt / should be built when the variable $want _opt wassettoyes.)

Running make should thusrecurseinto sr ¢/ aways, and then maybeinopt/ .
However make di st should always recurseinto both sr ¢/ and opt / . Because opt / should be

distributed even if it is not needed in the current configuration. Thismeansopt / Makef i | e should be
created unconditionally. 3

file://IC)/pdfing/automake.html.htm (29 of 124)27. 1. 2004 18:45:04

automake

There are two ways to setup a project like this. Y ou can use Automake conditionals (see Conditionals)
or use Autoconf AC_SUBST variables (see Setting Output Variables). Using Automake conditionalsis
the preferred solution.

Conditional subdirectories with AM_CONDI Tl ONAL

conf i gur e should output the Makef i | e for each directory and define a condition into which opt /
should be built.

AM CONDI TI ONAL([COND_COPT], [test "$want opt" = yes])
AC CONFI G FI LES([Makefile src/ Makefile opt/ Makefile])

Then SUBDI RS can be defined in the top-level Makef i | e. amasfollows.

I f COND_OPT
MAYBE OPT = opt
endi f
SUBDI RS = src $(MAYBE OPT)

Asyou can see, running make will rightly recurseinto sr ¢/ and maybe opt /.

Asyou can't see, running make di st will recurseinto both src/ and opt/ directories because
make di st,unlikemake al |, doesn't usethe SUBDI RS variable. It usesthe DI ST_SUBDI RS
variable.

In this case Automake will define DI ST _SUBDI RS = src opt automatically because it knows that
MAYBE_OPT can contain opt in some condition.

Conditional subdirectories with AC_SUBST

Another ideaisto define MAYBE _OPT from. / conf i gur e using AC_SUBST:

if test "$want_opt" = yes; then
MAYBE_OPT=opt

el se
MAYBE OPT=

file:///C)/pdfing/automake.html.htm (30 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Setting%20Output%20Variables

automake

fi
AC_SUBST([MAYBE_OPT])
AC CONFI G FI LES([Makefile src/ Makefile opt/ Makefile])

In this case the top-level Makef i | e. amshould look as follows.

SUBDI RS = src $(MAYBE_OPT)
DI ST _SUBDI RS = src opt

The drawback is that since Automake cannot guess what the possible values of MAYBE OPT are, itis
necessary to define DI ST_SUBDI RS.

How DI ST_SUBDI RS is used

As shown in the above examples, DI ST _SUBDI RS is used by targets that need to recursein all
directories, even those which have been conditionally left out of the build.

Precisely, DI ST_SUBDI RSisused by make di st, make di stcl ean,andnmake nai nt ai ner -
cl ean. All other recursive targets use SUBDI RS.

Automake will define DI ST_SUBDI RS automatically from the possibles values of SUBDI RS in al
conditions.

If SUBDI RS contains AC_SUBST variables, DI ST_SUBDI RS will not be defined correctly because
Automake doesn't know the possible values of these variables. In thiscase DI ST _SUBDI RS needs to be
defined manually.

Node: Alternative, Next: Rebuilding, Previous: Top level, Up: Top

An Alternative Approach to Subdirectories

If you've ever read Peter Miller's excellent paper, Recursive Make Considered Harmful, the preceding

section on the use of subdirectories will probably come as unwelcome advice. For those who haven't
read the paper, Miller's main thesisis that recursive mak e invocations are both slow and error-prone.

Automake provides sufficient cross-directory support 4 to enable you to write asingle Makef i | e. am
for acomplex multi-directory package.

file://IC|/pdfing/automake.html.htm (31 of 124)27. 1. 2004 18:45:04

http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html

automake

By default an installable file specified in a subdirectory will have its directory name stripped before
installation. For instance, in this example, the header file will beinstalled as$(i ncl udedi r)/
stdio. h:

i ncl ude_HEADERS = inc/stdio.h

However, the nobase_ prefix can be used to circumvent this path stripping. In this example, the header
filewill beinstalled as$(i ncl udedi r)/ sys/ types. h:

nobase i ncl ude HEADERS = sys/types. h

nobase_ should be specified first when used in conjunction with either di st _ or nodi st _ (see
Dist). For instance:

nobase_di st _pkgdat a_DATA = i nages/vortex. pgm

Node: Rebuilding, Next: Programs, Previous. Alternative, Up: Top

Rebuilding Makefiles

Automake generates rules to automatically rebuild Makef i | es, conf i gur e, and other derived files
like Makefile.in.

If you are using AM_NMAI NTAI NER_MODE in conf i gur e. i n, then these automatic rebuilding rules
are only enabled in maintainer mode.

Sometimes you need to run acl ocal with an argument like- | totell it whereto find . m4 files. Since
sometimes make will automatically runacl ocal , you need away to specify these arguments. Y ou can
do this by defining ACLOCAL _ AMFLAGS; this holds arguments which are passed verbatim to

acl ocal . Thisvariableisonly useful in the top-level Makefi | e. am

Node: Programs, Next: Other objects, Previous: Rebuilding, Up: Top

Building Programs and Libraries

file://IC|/pdfing/automake.html.htm (32 of 124)27. 1. 2004 18:45:04

automake

A large part of Automake's functionality is dedicated to making it easy to build programs and libraries.

« A Program: Building a program

. A Library: Building alibrary

. A Shared Library: Building a Libtool library

. Program and Library Variables. Variables controlling program and library builds
. LIBOBJS: Specia handling for LIBOBJS and ALLOCA

. Program variables: Variables used when building a program
« Yacc and Lex: Yacc and Lex support

« C++ Support:

. Assembly Support:

. Fortran 77 Support:

. Java Support:

. Support for Other L anguages.

. ANSI: Automatic de-ANSI-fication

. Dependencies. Automatic dependency tracking

. EXEEXT: Support for executable extensions

Node: A Program, Next: A Library, Previous. Programs, Up: Programs

Building a program

In order to build a program, you need to tell Automake which sources are part of it, and which libraries
it should be linked with.

This section also covers conditional compilation of sources or programs. Most of the comments about
these also apply to libraries (see A Library) and libtool libraries (see A Shared Library).

« Program Sources: Defining program sources

« Linking: Linking with libraries or extra objects

. Conditional Sources: Handling conditional sources

« Conditional Programs: Building program conditionally

Node: Program Sources, Next: Linking, Previous: A Program, Up: A Program

Defining program sources

file://IC|/pdfing/automake.html.htm (33 of 124)27. 1. 2004 18:45:04

automake

In adirectory containing source that gets built into a program (as opposed to a library or a script), the
PROGRANS primary is used. Programs can beinstaled in bi ndi r, sbi ndi r, | i bexecdi r,

pkgl i bdi r, or not at al (noi nst). They can also be built only for rake check, in which casethe
prefix ischeck.

For instance:

bi n_PROGRAMS = hell o

In this simple case, the resulting Makef i | e. i n will contain code to generate a program named
hel | o.

Associated with each program are severa assisting variables which are named after the program. These
variables are al optional, and have reasonable defaults. Each variable, its use, and default is spelled out
below; we use the "hello" example throughout.

Thevariable hel | o SOURCES is used to specify which source files get built into an executable:

hel | o SOURCES = hello.c version.c getopt.c getoptl.c getopt.h
system h

This causes each mentioned . ¢ file to be compiled into the corresponding . 0. Then all are linked to
produce hel | o.

If hel | o_SOURCES is not specified, then it defaultsto the singlefilehel | 0. c; that is, the default is
to compile asingle C file whose base name is the name of the program itself. (Thisis aterrible default
but we are stuck with it for historical reasons.)

Multiple programs can be built in a single directory. Multiple programs can share a single sourcefile,
which must be listed in each SOURCES definition.

Header fileslisted in a_ SOURCES definition will be included in the distribution but otherwise ignored.
In caseit isn't obvious, you should not include the header file generated by conf i gureina

_ SOURCES variable; thisfile should not be distributed. Lex (. |) and Yacc (. y) files can also be listed;
see Yacc and Lex.

Node: Linking, Next: Conditional Sources, Previous. Program Sources, Up: A Program

Linking the program

file://IC|/pdfing/automake.html.htm (34 of 124)27. 1. 2004 18:45:04

automake

If you need to link against libraries that are not found by conf i gur e, you can use LDADD to do so.
Thisvariable is used to specify additional objects or librariesto link with; it isinappropriate for
specifying specific linker flags, you should use AM_LDFLAGS for this purpose.

Sometimes, multiple programs are built in one directory but do not share the same link-time
requirements. In this case, you can use the prog_LDADD variable (where prog is the name of the
program as it appears in some _PROGRANS variable, and usually written in lowercase) to override the
global LDADD. If this variable exists for a given program, then that program is not linked using L DADD.

For instance, in GNU cpio, pax, cpi 0 and nt arelinked against thelibrary | i bcpi 0. a. However,
r mt isbuilt in the same directory, and has no such link requirement. Also, nt and r nt are only built on
certain architectures. Hereiswhat cpio'ssr ¢/ Makef i | e. amlooks like (abridged):

bi n_PROGRAMS = cpi 0o pax @U@
| i bexec PROGRAMS = @QRMI@
EXTRA PROGRAMS = nt rnt

LDADD = ../lib/libcpio.a @NTLLI BS@
rnt_LDADD =

cpi o_SOURCES = ...
pax_SOURCES = ...
nt _SOURCES = ...
rm _SOURCES = ...

prog_LDADD isinappropriate for passing program-specific linker flags (except for -1, - L, - dl open
and - dl pr eopen). So, usethe prog_LDFLAGS variable for this purpose.

It is aso occasionally useful to have a program depend on some other target which is not actually part of
that program. This can be done using the prog DEPENDENCI ES variable. Each program depends on
the contents of such avariable, but no further interpretation is done.

If prog_DEPENDENCI ES is not supplied, it is computed by Automake. The automatically-assigned
value is the contents of prog_LDADD, with most configure substitutions, - | , - L, - dl open and -

dl pr eopen options removed. The configure substitutions that are left in are only @.1 BOBJ S@and
@ALLOCA@ these are left because it is known that they will not cause an invalid value for
prog_DEPENDENCI ES to be generated.

Node: Conditional Sources, Next: Conditional Programs, Previous: Linking, Up: A Program

file:///C)/pdfing/automake.html.htm (35 of 124)27. 1. 2004 18:45:04

automake

Conditional compilation of sources

Y ou can't put a configure substitution (e.g., @00@ into a_ SOURCES variable. The reason for thisisa
bit hard to explain, but suffice to say that it ssimply won't work. Automake will give an error if you try to
do this.

Fortunately there are two other ways to achieve the same result. Oneis to use configure substitutionsin
_LDADD variables, the other is to use an Automake conditional.

Conditional compilation using _LDADD substitutions

Automake must know all the source files that could possibly go into a program, even if not all the files
are built in every circumstance. Any files which are only conditionally built should be listed in the
appropriate EXTRA _ variable. For instance, if hel | o-1i nux. c or hel | o- generi c. c were
conditionally included in hel | o, the Makef i | e. amwould contain:

bi n_ PROGRAMS = hell o

hel | o _SOURCES = hel | o- common. c

EXTRA hell o_SOURCES = hello-linux.c hello-generic.c
hel | o LDADD = @HELLO SYSTEM@

hel | o DEPENDENCI ES = @HELLO SYSTEM@

Y ou can then setup the GHELLO_SYSTEM®@substitution from conf i gure. i n:

case $host in
|i nux) HELLO SYSTEME' hel | o-1i nux. $(OBJEXT)" :;
*) HELLO SYSTEME' hel | 0- generic. $(OBJEXT)' :;
esac
AC_SUBST([HELLO SYSTEM)

In this case, HELLO_SYSTEMshould be replaced by hel | o- | i nux. o or hel | o- bsd. o0, and added
tohel | o DEPENDENCI ES and hel | o_LDADD in order to be built and linked in.

Conditional compilation using Automake conditionals

An often ssimpler way to compile source files conditionally is to use Automake conditionals. For
instance, you could use this Makef i | e. amconstruct to build the same hel | o example:

file:///C)/pdfing/automake.html.htm (36 of 124)27. 1. 2004 18:45:04

automake

bi n_PROGRAMS = hell o

i f LI NUX

hel | o SOURCES = hel lo-1inux.c hell o-comon. c
el se

hel | o SOURCES = hel | o-generic.c hell o-comon.c
endi f

In this case, your conf i gur e. i n should setup the LI NUX conditional using AM_CONDI T1 ONAL (see
Conditionas).

When using conditionals like this you don't need to use the EXTRA _ variable, because Automake will
examine the contents of each variable to construct the complete list of sourcefiles.

If your program uses alot of files, you will probably prefer a conditional +=.

bi n_ PROGRAMS = hell o
hel | o _SOURCES = hel | o- common. c

i f LI NUX

hel | o SOURCES += hell o-1inux.c
el se

hel | o SOURCES += hell o-generic.c
endi f

Node: Conditional Programs, Previous. Conditional Sources, Up: A Program

Conditional compilation of programs

Sometimesit is useful to determine the programs that are to be built at configure time. For instance,
GNU cpi o only buildsnt and r nt under special circumstances. The means to achieve conditional
compilation of programs are the same you can use to compile source files conditionally: substitutions or
conditionals.

Conditional programs using conf i gur e substitutions

In this case, you must notify Automake of all the programs that can possibly be built, but at the same
time cause the generated Makef i | e. i n to use the programs specified by conf i gur e. Thisisdone
by having conf i gur e substitute values into each PROGRAMS definition, while listing all optionally
built programsin EXTRA PROGRAMS.

file://IC|/pdfing/automake.html.htm (37 of 124)27. 1. 2004 18:45:04

automake

bi n_PROGRAMS = cpi 0 pax $(M)
| i bexec_PROGRAMS = $(RMI)
EXTRA PROGRAMS = nt rnt

Asexplained in EXEEXT, Automake will rewrite bi n_ PROGRANS, | i bexec PROGRAMS, and

EXTRA PROGRAMS, appending $(EXEEXT) to each binary. Obviously it cannot rewrite values
obtained at run-time through conf i gur e substitutions, therefore you should take care of appending
$(EXEEXT) yourself,asin AC_ SUBST([MI], ['m ${EXEEXT}']).

Conditional programs using Automake conditionals

Y ou can also use Automake conditionals (see Conditionals) to select programsto be built. In this case
you don't have to worry about $(EXEEXT) or EXTRA PROGRANMS.

bi n_ PROGRAMS = cpi 0 pax
i f WANT_MT

bi n_PROGRAMS += nt
endi f
i f WANT_RMT

| i bexec PROGRAMS = rm
endi f

Node: A Library, Next: A Shared Library, Previous: A Program, Up: Programs

Building a library

Building alibrary is much like building a program. In this case, the name of the primary is
LI BRARI ES. Librariescan beinstaledin| i bdi r or pkgl i bdi r.

See A Shared Library, for information on how to build shared libraries using libtool and the
LTLI BRARI ES primary.

Each LI BRARI ES variableisalist of the libraries to be built. For instance to create alibrary named
| i bcpi 0. a, but not install it, you would write:

noi nst_LIBRARIES = |i bcpio.a

file://IC|/pdfing/automake.html.htm (38 of 124)27. 1. 2004 18:45:04

automake

The sources that go into alibrary are determined exactly as they are for programs, viathe SOURCES
variables. Note that the library name is canonicalized (see Canonicalization), so the SOURCES variable

correspondingtol i bl ob. aisl i bl ob_a SOURCES, not | i bl ob. a_ SOURCES.

Extra objects can be added to alibrary using the library LI BADD variable. This should be used for
objects determined by conf i gur e. Again from cpi o:

| i bcpio_a_LI BADD = $(LIBOBJS) $(ALLOCA)

In addition, sources for extra objects that will not exist until configure-time must be added to the
BUI LT_SOURCES variable (see Sources).

Node: A Shared Library, Next: Program and Library Variables, Previous: A Library, Up: Programs

Building a Shared Library

Building shared libraries portably is arelatively complex matter. For this reason, GNU Libtool (see
I ntroduction) was created to help build shared libraries in a platform-independent way.

. Libtool Concept: Introducing Libtool

. Libtool Libraries: Declaring Libtool Libraries

. Conditional Libtool Libraries: Building Libtool Libraries Conditionally
« Conditional Libtool Sources. Choosing Library Sources Conditionally

. Libtool Convenience Libraries: Building Convenience Libtool Libraries
. Libtool Modules: Building Libtool Modules

« Libtool Flags: Using LIBADD and LDFLAGS

. LTLIBOBJ Using $(LTLIBOBJ)

. Libtool Issues. Common Issues Related to Libtool's Use

Node: Libtool Concept, Next: Libtool Libraries, Previous: A Shared Library, Up: A Shared Library

The Libtool Concept

Libtool abstracts shared and static libraries into a unified concept henceforth called libtool libraries.
Libtool libraries arefilesusing the . | a suffix, and can designate a static library, a shared library, or
maybe both. Their exact nature cannot be determined until . / conf i gur e isrun: not all platforms
support al kinds of libraries, and users can explicitly select which libraries should be built. (However

file://IC|/pdfing/automake.html.htm (39 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/libtool.html#Top

automake

the package's maintainers can tune the default, See The AC_PROG LI BTOOL macro.)

Because object files for shared and static libraries must be compiled differently, libtool is aso used
during compilation. Object files built by libtool are called libtool objects: these arefilesusing the. | 0
suffix. Libtool libraries are built from these libtool objects.

Y ou should not assume anything about the structureof . | a or . | o filesand how libtool constructs
them: thisis libtool's concern, and the last thing one wantsisto learn about libtool's guts. However the
existence of these files matters, because they are used as targets and dependenciesin Makef i | eswhen
building libtool libraries. There are situations where you may have to refer to these, for instance when
expressing dependencies for building source files conditionally (see Conditional Libtool Sources).

People considering writing a plug-in system, with dynamically loaded modules, should look into
| i bl tdl : libtool's dlopening library (see Using libltdl). This offers a portable dlopening facility to load

libtool libraries dynamically, and can also achieve static linking where unavoidable.

Before we discuss how to use libtool with Automake in details, it should be noted that the libtool manual
also has a section about how to use Automake with libtool (see Using Automake with Libtool).

Node: Libtool Libraries, Next: Conditional Libtool Libraries, Previous: Libtool Concept, Up: A Shared
Library

Building Libtool Libraries

Automake uses libtool to build libraries declared with the LTLI BRARI ES primary. Each
_LTLI BRARI ES variableisalist of libtool librariesto build. For instance, to create alibtool library
named| i bgettext. |l a,andinstal itinl i bdi r, write:

lib LTLIBRARIES = |ibgettext.la
| i bgettext |a SOURCES = gettext.c gettext.h ...

Automake predefines the variable pkgl i bdi r, soyoucanusepkgl i b_LTLI BRARI ES to install
librariesin $(| i bdi r) / @GPACKAGE@ .

Node: Conditional Libtool Libraries, Next: Conditional Libtool Sources, Previous: Libtool Libraries,
Up: A Shared Library

Building Libtool Libraries Conditionally

file://IC|/pdfing/automake.html.htm (40 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/libtool.html#AC_PROG_LIBTOOL
file:///C|/pdfing/libtool.html#Using%20libltdl
file:///C|/pdfing/libtool.html#Using%20Automake

automake

Like conditional programs (see Conditional Programs), there are two main ways to build conditional
libraries: using Automake conditionals or using Autoconf AC_SUBSTItutions.

The important implementation detail you have to be aware of is that the place where alibrary will be
installed matters to libtool: it needsto be indicated at link-time using the - r pat h option.

For libraries whose destination directory is known when Automake runs, Automake will automatically
supply the appropriate - r pat h option to libtool. Thisisthe case for libraries listed explicitly in some
installable LTLI BRARI ES variablessuchasl i b_LTLI BRARI ES.

However, for libraries determined at configure time (and thus mentioned in EXTRA LTLI BRARI ES),
Automake does not know the final installation directory. For such libraries you must add the - r pat h
option to the appropriate LDFLAGS variable by hand.

The examples below illustrate the differences between these two methods.

Hereis an example where $(WANTEDL| BS) isan AC_SUBSTed variableset at . / conf i gur e-time

toeither | i bf co. | a,l i bbar. | a, both, or none. Although $(WANTEDLI| BS) appearsin the

| i b_LTLI BRARI ES, Automake cannot guessitrelatestol i bf oo. l aorl i bbar. | a by thetimeit
createsthe link rule for these two libraries. Therefore the - r pat h argument must be explicitly supplied.

EXTRA LTLIBRARIES = |ibfoo.la libbar.la
i b_LTLI BRARI ES = $(WANTEDLI BS)

| i bf oo | a SOURCES = foo.c ...

| i bfoo |a LDFLAGS = -rpath "$(libdir)"’

| i bbar | a SOURCES = bar.c ...

| i bbar |a LDFLAGS = -rpath "$(libdir)"’

Hereis how the same Makef i | e. amwould look using Automake conditionals named WANT _ LI BFOO
and WANT _LI BBAR. Now Automake is able to compute the - r pat h setting itself, because it's clear
that both librarieswill end up in $(1 i bdi r) if they areinstalled.

lib LTLI BRARI ES =

i f WANT_LI BFOO

lib LTLIBRARIES += |ibfoo.la
endi f

i f WANT LI BBAR

lib LTLIBRARIES += libbar.la
endi f

| i bf oo | a_ SOURCES = foo.c ...

file://IC)/pdfing/automake.html.htm (41 of 124)27. 1. 2004 18:45:04

automake

| i bbar | a SOURCES = bar.c ...

Node: Conditional Libtool Sources, Next: Libtool Convenience Libraries, Previous: Conditional Libtool

Libraries, Up: A Shared Library

Libtool Libraries with Conditional Sources

Conditional compilation of sourcesin alibrary can be achieved in the same way as conditional
compilation of sourcesin aprogram (see Conditional Sources). The only differenceisthat LI BADD

should be used instead of L DADD and that it should mention libtool objects (. | o files).

So, to mimic the hel | o example from Conditional Sources, we could build al i bhel | o. | a library
using either hel | o- | i nux. c or hel | o- generi c. c with thefollowing Makefi | e. am

lib LTLIBRARIES = libhello.la

| i bhel l o | a_ SOURCES = hel | o-common. ¢

EXTRA |ibhello | a SOURCES = hello-linux.c hello-generic.c
| i bhello_|a LI BADD = $(HELLO SYSTEM

| i bhel | o | a_ DEPENDENCI ES = $(HELLO SYSTEM

And make sure $(HELLO SYSTEM issettoeitherhel |l o-1i nux.l oorhell o-generic.lo
in./configure.

Or we could simply use an Automake conditional as follows.

lib LTLIBRARIES = libhello.la

| i bhell o_| a_SOURCES = hel | o- conmon. ¢

i f LI NUX

| i bhell o_| a_SOURCES += hello-linux.c
el se

| i bhell o_| a_SOURCES += hell o-generic.c
endi f

Node: Libtool Convenience Libraries, Next: Libtool Modules, Previous: Conditional Libtool Sources,
Up: A Shared Library

file://IC|/pdfing/automake.html.htm (42 of 124)27. 1. 2004 18:45:04

automake

Libtool Convenience Libraries

Sometimes you want to build libtool libraries which should not be installed. These are called libtool
convenience libraries and are typically used to encapsulate many sublibraries, later gathered into one big
installed library.

Libtool convenience libraries are declared by noi nst _LTLI BRARI ES, check LTLI BRARI ES, or
even EXTRA LTLI BRARI ES. Unlikeinstalled libtool libraries they do not need an - r pat h flag at
link time (actually thisisthe only difference).

Convenience librarieslisted innoi nst _LTLI BRARI ES are always built. Those listed in

check LTLI BRARI ES are built only upon make check. Finaly, librarieslisted in

EXTRA _LTLI BRARI ES are never built explicitly: Automake outputs rules to build them, but if the
library does not appear as a Makefile dependency anywhere it won't be built (thisiswhy

EXTRA _LTLI BRARI ES isused for conditional compilation).

Hereis a sample setup merging libtool convenience libraries from subdirectories into one main
| i bt op. | a library.

-- Top-level Makefile.am --

SUBDI RS = subl sub2 ...

lib LTLIBRARIES = |ibtop.la

| i bt op_| a_SOURCES =

| ibtop la LIBADD =\
subl/1ibsubl.la \
sub2/1ibsub2.la \

-- subl/ Makefile.am --
noi nst _LTLI BRARIES = |ibsubl.la
| i bsubl | a SOURCES

-- sub2/ Makefile.am --

show ng nested convenience |ibraries

SUBDI RS = sub2.1 sub2.2 ...

noi nst _LTLI BRARIES = |ibsub2.1a

| i bsub2 | a SOURCES =

| i bsub2 | a LI BADD =\
sub21/1ibsub2l.la \
sub22/11i bsub22.1a \

file://IC)/pdfing/automake.html.htm (43 of 124)27. 1. 2004 18:45:04

automake

Node: Libtool Modules, Next: Libtool Flags, Previous: Libtool Convenience Libraries, Up: A Shared
Library

Libtool Modules

These are libtool libraries meant to be diopened. They are indicated to libtool by passing - nodul e at
link-time.

pkglib_LTLI BRARIES = nynodul e. | a
mynodul e | a_ SOURCES = doit.c
mynodul e LDFLAGS = - nodul e

Ordinarily, Automake requires that a Library's name startswith | i b. However, when building a
dynamically loadable module you might wish to use a "nonstandard" name.

Node: Libtool Flags, Next: LTLIBOBJ, Previous. Libtool Modules, Up: A Shared Library

_LIBADD and _LDFLAGS

As shown in previous sections, the library LI BADD variable should be used to list extralibtool objects
(. 1 o files) or libtool libraries (. | a) to add to library.

Thelibrary LDFLAGS variableisthe place to list additional libtool flags, such as- ver si on-i nf o, -
stati c, andalot more. See See Using libltdl.

Node: LTLIBOBJ, Next: Libtool Issues, Previous: Libtool Flags, Up: A Shared Library

LTLI BOBJS

Where an ordinary library might include $(LI BOBJS) , alibtool library must use $(LTLI BOBJS) .
Thisis required because the object files that libtool operates on do not necessarily endin . o.

Nowadays, the computation of LTLI BOBJS from LI BOBJ S is performed automatically by Autoconf
(see AC LI BOBJ vs. LI BOBJS).

file://IC|/pdfing/automake.html.htm (44 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/libtool.html#Link%20mode
file:///C|/pdfing/autoconf.html#AC_LIBOBJ%20vs%20LIBOBJS

automake

Node: Libtool Issues, Previous: LTLIBOBJ, Up: A Shared Library

Common Issues Related to Libtool's Use

required file "./ltmain.sh' not found

Libtool comeswith atool caled | i bt ool i ze that will install libtool's supporting files into a package.
Running this command will install | t mai n. sh. You should execute it beforeacl ocal and
aut onake.

People upgrading old packages to newer autotools are likely to face this issue because older Automake
versionsusedtocal | i bt ool i ze. Therefore old build scriptsdo not call | i bt ool i ze.

Since Automake 1.6, it has been decided that running | i bt ool i ze was none of Automake's business.
Instead, that functionality has been moved into the aut or econf command (see Using aut or econf).
If you do not want to remember what to run and when, just learn the aut or econf command.
Hopefully, replacing existing boot st r ap. sh or aut ogen. sh scripts by acall to aut or econf
should also free you from any similar incompatible change in the future.

Objects created with both |ibtool and w t hout

Sometimes, the same source file is used both to build alibtool library and to build another non-libtool
target (be it a program or another library).

Let's consider the following Makefi | e. am

bi n_PROGRAMS = prog
prog SOURCES = prog.c foo.c ...
lib_LTLI BRARIES = |ibfoo.la

| i bf oo | a_ SOURCES = foo.c ...

(Inthistrivial case theissue could be avoided by linking | i bf oo. | a with pr og instead of listing
f 00. c inprog_SOURCES. But let's assume we really want to keep pr og and | i bf 0o. | a separate.)

Technically, it means that we should build f oo. $(OBJEXT) for prog,andf oo. | o forl i bf oo.
| a. The problem isthat in the course of creating f 0o. | o, libtool may erase (or replace) f oo.
$(OBJEXT) - and this cannot be avoided.

Therefore, when Automake detects this situation it will complain with a message such as

file:///C)/pdfing/automake.html.htm (45 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#autoreconf%20Invocation

automake

obj ect "foo.$(OBIEXT)' created both with |ibtool and wi thout

A workaround for thisissue is to ensure that these two objects get different basenames. As explained in
renamed objects, this happens automatically when per-targets flags are used.

bi n_PROGRAMS = prog
prog SOURCES = prog.c foo.c ...
prog CFLAGS = $(AM CFLAGS)

lib LTLIBRARIES = |ibfoo.la
| i bf oo_| a SOURCES = foo.c ...

Adding pr og_CFLAGS = $(AM CFLAGS) isamost ano-op, because whenthe pr og_CFLAGS is
defined, it isused instead of AM_CFLAGS. However as aside effect it will cause pr og. ¢ andf 0o. c
to be compiled as pr og- pr og. $(OBJEXT) and pr og- f 00. $(OBJEXT) which solvestheissue.

Node: Program and Library Variables, Next: LIBOBJS, Previous. A Shared Library, Up: Programs

Program and Library Variables

Associated with each program are a collection of variables which can be used to modify how that
program is built. Thereisasimilar list of such variables for each library. The canonical name of the
program (or library) is used as a base for naming these variables.

In the list below, we use the name "maude” to refer to the program or library. In your Makefi | e. am
you would replace this with the canonical name of your program. Thislist also refersto "maude” as a
program, but in general the same rules apply for both static and dynamic libraries; the documentation
below notes situations where programs and libraries differ.

maude SOURCES
Thisvariable, if it exists, lists al the source files which are compiled to build the program. These
files are added to the distribution by default. When building the program, Automake will cause
each source file to be compiled to asingle . o file (or . | o when using libtool). Normally these
object files are named after the source file, but other factors can change this. If afile in the
_ SOURCES variable has an unrecognized extension, Automake will do one of two things with it.
If asuffix rule exists for turning files with the unrecognized extension into . o files, then
automake will treat thisfile asit will any other source file (see Support for Other L anguages).

Otherwise, the file will be ignored as though it were a header file.

file://IC|/pdfing/automake.html.htm (46 of 124)27. 1. 2004 18:45:04

automake

The prefixesdi st _ and nodi st _ can be used to control whether fileslisted ina_SOURCES
variable are distributed. di st _ isredundant, as sources are distributed by default, but it can be
specified for clarity if desired.

It ispossibleto have both di st and nodi st _ variants of agiven SOURCES variable at
once; this lets you easily distribute some files and not others, for instance:

nodi st _rmaude SOURCES = nodi st.c
di st _maude SOURCES = dist-nme.c

By default the output file (on Unix systems, the . o file) will be put into the current build
directory. However, if the option subdi r - obj ect s isin effect in the current directory then
the . o filewill be put into the subdirectory named after the source file. For instance, with
subdi r - obj ect s enabled, sub/ di r/file.c will becompiledtosub/ dir/file.o.
Some people prefer this mode of operation. Y ou can specify subdi r - obj ect s in
AUTOMAKE_OPTI ONS (see Options).

EXTRA naude_SOURCES
Automake needs to know the list of files you intend to compile statically. For one thing, thisis
the only way Automake has of knowing what sort of language support agiven Makefil e.in
requires. 2 This means that, for example, you can't put a configure substitution like
@ry_sour ces@ntoa_SOURCES variable. If you intend to conditionally compile source files
and use conf i gur e to substitute the appropriate object names into, e.g., LDADD (see below),
then you should list the corresponding source filesin the EXTRA _ variable.

Thisvariable also supportsdi st _ and nodi st _ prefixes, eg.,
nodi st EXTRA nmaude SOURCES.

maude AR
A static library is created by default by invoking $(AR) cr u followed by the name of the
library and then the objects being put into the library. Y ou can override this by setting the _ AR
variable. Thisis usually used with C++; some C++ compilers require a special invocationin
order to instantiate all the templates which should go into alibrary. For instance, the SGI C++
compiler likesthis variable set like so:

i braude_a_AR = $(CXX) -ar -0

maude LI BADD
Extra objects can be added to alibrary using the LI BADD variable. For instance this should be

file:///C)/pdfing/automake.html.htm (47 of 124)27. 1. 2004 18:45:04

automake

used for objects determined by conf i gur e (see A Library).

maude_LDADD
Extra objects can be added to a program by listing them in the _L DADD variable. For instance
this should be used for objects determined by conf i gur e (see Linking).

_LDADDand LI BADD are inappropriate for passing program-specific linker flags (except for -
| ,-L,-dl openand-dl preopen). Usethe LDFLAGS variable for this purpose.

For instance, if your conf i gure. i nusesAC _PATH XTRA, you could link your program
against the X librarieslike so:

maude_LDADD = $(X_PRE_LIBS) $(X_LIBS) $(X _EXTRA LI BS)

maude LDFLAGS
Thisvariable is used to pass extra flags to the link step of a program or a shared library.
maude_DEPENDENCI ES
It isalso occasionally useful to have a program depend on some other target which is not actually
part of that program. This can be done using the _ DEPENDENCI ES variable. Each program
depends on the contents of such avariable, but no further interpretation is done.

If DEPENDENCI ES isnot supplied, it is computed by Automake. The automatically-assigned
valueisthe contents of LDADD or LI BADD, with most configure substitutions, - | , - L, -

dl open and - dl pr eopen options removed. The configure substitutions that are left in are
only $(L1 BOBJS) and $(ALLOCA) ; these are |eft because it is known that they will not cause
an invalid value for _ DEPENDENCI ES to be generated.

maude_ LI NK
Y ou can override the linker on a per-program basis. By default the linker is chosen according to
the languages used by the program. For instance, a program that includes C++ source code would
use the C++ compiler to link. The LI NK variable must hold the name of a command which can
be passed all the . o file names as arguments. Note that the name of the underlying program is
not passed to LI NK; typically one uses$@

maude LINK = $(CCLD) -magic -0 $@

maude CCASFLAGS
maude CFLAGS
maude_CPPFLAGS

file:///C)/pdfing/automake.html.htm (48 of 124)27. 1. 2004 18:45:04

automake

maude CXXFLAGS

maude FFLAGS

maude GCIFLAGS

maude LFLAGS

maude_ OBJCFLAGS

maude RFLAGS

maude YFLAGS
Automake allows you to set compilation flags on a per-program (or per-library) basis. A single
source file can be included in several programs, and it will potentially be compiled with different
flags for each program. This works for any language directly supported by Automake. These per-
target compilation flagsare CCASFLAGS, CFLAGS, CPPFLAGS, CXXFLAGS, FFLAGS,
_GCIFLAGS, LFLAGS, OBJCFLAGS, RFLAGS, and YFLAGS.

When using a per-target compilation flag, Automake will choose a different name for the
intermediate object files. Ordinarily afilelike sanpl e. ¢ will be compiled to produce sanpl e.
0. However, if the program's _ CFLAGS variable is set, then the object file will be named, for
instance, maude- sanpl e. 0. (See aso renamed objects.)

In compilations with per-target flags, the ordinary AM_ form of the flags variable is not
automatically included in the compilation (however, the user form of the variable isincluded). So
for instance, if you want the hypothetical maude compilations to also use the value of
AM_CFLAGS, you would need to write:

maude CFLAGS = ... your flags ... $(AM CFLAGS)

maude_DEPENDENCI ES
It isalso occasionally useful to have a program depend on some other target which is not actually
part of that program. This can be done using the DEPENDENCI ES variable. Each program
depends on the contents of such avariable, but no further interpretation is done.

If DEPENDENCI ESisnot supplied, it is computed by Automake. The automatically-assigned
valueisthe contents of LDADD or LI BADD, with most configure substitutions, - | , - L, -

dl open and - dl pr eopen options removed. The configure substitutions that are left in are
only Q.1 BOBJ S@and @ALLOCA@ these are left because it is known that they will not cause an
invalid value for _ DEPENDENCI ES to be generated.

maude SHORTNAME
On some platforms the allowable file names are very short. In order to support these systems and
per-program compilation flags at the same time, Automake allows you to set a " short name"
which will influence how intermediate object files are named. For instance, if you set

file:///C)/pdfing/automake.html.htm (49 of 124)27. 1. 2004 18:45:04

automake

maude_SHORTNANE to m then in the above per-program compilation flag example the object
filewould be named m sanpl e. o rather than maude- sanpl e. 0. Thisfacility israrely
needed in practice, and we recommend avoiding it until you find it is required.

Node: LIBOBJS, Next: Program variables, Previous. Program and Library Variables, Up: Programs

Special handling for LIBOBJS and ALLOCA

Automake explicitly recognizesthe use of $(LI BOBJS) and $(ALLOCA) , and uses thisinformation,
plusthelist of LI BOBJS filesderived from conf i gur e. i n to automatically include the appropriate
source filesin the distribution (see Dist). These source files are also automatically handled in the

dependency-tracking scheme; see See Dependencies.

$(LI BOBJIS) and $(ALLOCA) are specialy recognizedinany LDADDor LI BADD variable.

Node: Program variables, Next: Yacc and Lex, Previous. LIBOBJS, Up: Programs

Variables used when building a program

Occasionally it is useful to know which Makef i | e variables Automake uses for compilations; for
instance you might need to do your own compilation in some special cases.

Some variables are inherited from Autoconf; these are CC, CFLAGS, CPPFLAGS, DEFS, LDFLAGS,
and LI BS.

There are some additional variables which Automake itself defines:

AM _CPPFLAGS
The contents of this variable are passed to every compilation which invokes the C preprocessor;
itisalist of arguments to the preprocessor. For instance, - | and - D options should be listed
here.

Automake already provides some- | options automatically. In particular it generates - |
$(srcdir),-1.,anda- | pointing to the directory holding conf i g. h (if you've used
AC_CONFI G_HEADERS or AM_CONFI G_HEADER). Y ou can disable the default - | options
using the nost di nc option.

AM CPPFLAGS isignored in preference to a per-executable (or per-library) CPPFLAGS
variable if it is defined.

file://IC|/pdfing/automake.html.htm (50 of 124)27. 1. 2004 18:45:04

automake

| NCLUDES
This does the same job as AM_CPPFLAGS. It is an older name for the same functionality. This
variable is deprecated; we suggest using AM CPPFLAGS instead.

AM CFLAGS
Thisisthe variable which the Makef i | e. amauthor can use to passin additional C compiler
flags. It is more fully documented el sewhere. In some situations, thisis not used, in preference to
the per-executable (or per-library) _CFLAGS.

COWPI LE
Thisisthe command used to actually compile a C sourcefile. The filename is appended to form
the complete command line.

AM_LDFLAGS
Thisisthe variable which the Makef i | e. amauthor can use to passin additional linker flags. In
some situations, thisis not used, in preference to the per-executable (or per-library) LDFLAGS.

LI NK
Thisisthe command used to actually link a C program. It already includes- 0 $@and the usual
variable references (for instance, CFLAGS); it takes as "arguments' the names of the object files
and librariesto link in.

Node: Yacc and Lex, Next: C++ Support, Previous. Program variables, Up: Programs

Yacc and Lex support

Automake has somewhat idiosyncratic support for Y acc and Lex.

Automake assumes that the . ¢ file generated by yacc (or | ex) should be named using the basename of
theinput file. That is, for ayacc sourcefilef 0o. y, Automake will cause the intermediate file to be
named f 00. ¢ (asopposedtoy. t ab. ¢, which ismore traditional).

The extension of ayacc source fileis used to determine the extension of the resulting C or C++ file.
Fileswith the extension . y will beturned into . c files; likewise, . yy will become. cc; . y++, c++;

and. yxx, . CXX.

Likewise, lex source files can be used to generate Cor C++; theextensions. | ,. I | ,. | ++,and. | xx
are recognized.

Y ou should never explicitly mention the intermediate (C or C++) filein any SOURCES variable; only
list the sourcefile.

The intermediate files generated by yacc (or | ex) will be included in any distribution that is made.
That way the user doesn't need to haveyacc or | ex.

file://IC|/pdfing/automake.html.htm (51 of 124)27. 1. 2004 18:45:04

automake

If ayacc sourcefileisseen, then your conf i gur e. i n must define the variable YACC. Thisis most
easily done by invoking the macro AC_PROG_YACC (see Particular Program Checks).

Whenyacc isinvoked, it is passed YFLAGS and AM_YFLAGS. The former is a user variable and the
latter isintended for the Makef i | e. amauthor.

AM YFLAGS is usually used to passthe - d option to yacc. Automake knows what this means and will
automatically adjust its rules to update and distribute the header file built by yacc - d. What Automake
cannot guess, though, is where this header will be used: it is up to you to ensure the header gets built
beforeit isfirst used. Typicaly thisis necessary in order for dependency tracking to work when the
header is included by another file. The common solution is listing the header filein BUI LT SOURCES
(see Sources) asfollows.

BUI LT _SOURCES = parser.h

AM YFLAGS = -d

bi n_ PROGRAMS = f oo

foo SOURCES = ... parser.y ...

If al ex sourcefileisseen, then your confi gur e. i n must define the variable LEX. Y ou can use
AC PROG_LEXto do this (see Particular Program Checks), but using AM_PROG_LEX macro (see

Macros) is recommended.

When | ex isinvoked, it ispassed LFLAGS and AM_LFLAGS. The former isauser variable and the
latter isintended for the Makef i | e. amauthor.

Automake makes it possible to include multipleyacc (or | ex) sourcefilesin asingle program. When
there is more than one distinct yacc (or | ex) sourcefilein adirectory, Automake uses a small program
caledyl wrap torunyacc (or | ex) inasubdirectory. Thisis necessary because yacc's output
filenameisfixed, and a parallel make could conceivably invoke more than one instance of yacc
simultaneously. Theyl wr ap program is distributed with Automake. It should appear in the directory
specified by AC_CONFI G_AUX DI R (see Finding “configure' Input), or the current directory if that

macroisnot usedinconfi gure.in.

For yacc, ssimply managing locking is insufficient. The output of yacc always uses the same symbol
names internally, so it isn't possible to link two yacc parsersinto the same executable.

We recommend using the following renaming hack used in gdb:

#def i ne yymaxdept h ¢c_maxdepth

file:///C)/pdfing/automake.html.htm (52 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Particular%20Programs
file:///C|/pdfing/autoconf.html#Particular%20Programs
file:///C|/pdfing/autoconf.html#Input

automake

#def i ne yyparse c_parse
#def i ne yyl ex c_lex
#def i ne yyerror c_error
#def i ne yylval c¢_Ival
#def i ne yychar c¢_char

#def i ne yydebug c_debug
#def i ne yypact c_pact
#def i ne yyrl crl
#def i ne yyr2 c r2
#def i ne yydef c_def
#def i ne yychk c_chk
#def i ne yypgo C_pgo

#def i ne yyact c_act
#def i ne yyexca Cc_exca
#define yyerrflag c_errflag
#defi ne yynerrs c_nerrs

#def i ne YYpSs c_ps
#def i ne yypv C_pv

#def i ne YyyS C_S
#def i ne YY_YYS C_YysS
#def i ne yystate c_state
#def i ne yyt np c_tnp
#def i ne yyv C_V
#def i ne YY_YYV C_YyyVv
#def i ne yyval c_val
#def i ne yylloc c_Iloc
#defi ne yyreds c_reds
#defi ne yyt oks c_toks
#defi ne yyl hs c_yyl hs
#defi ne yylen c_yylen

#define yydefred c_yydefred
#defi ne yydgoto c_yydgot o
#defi ne yysi ndex c_yysi ndex
#define yyrindex c_yyrindex
#defi ne yygi ndex c_yygi ndex
#defi ne yytable c_yytable
#defi ne yycheck c_yycheck
#defi ne yynane c_yynane
#define yyrule c_yyrule

For each define, replace the ¢ prefix with whatever you like. These defines work for bi son, byacc,
and traditional yaccs. If you find a parser generator that uses a symbol not covered here, please report

file:///C)/pdfing/automake.html.htm (53 of 124)27. 1. 2004 18:45:04

automake

the new name so it can be added to the list.

Node: C++ Support, Next: Assembly Support, Previous: Y acc and Lex, Up: Programs

C++ Support
Automake includes full support for C++.

Any package including C++ code must define the output variable CXXinconf i gur e. i n; the simplest
way to do thisisto use the AC_PROG_CXX macro (see Particular Program Checks).

A few additional variables are defined when a C++ source file is seen:

CXX
The name of the C++ compiler.
CXXFLAGS
Any flags to passto the C++ compiler.
AM CXXFLAGS
The maintainer's variant of CXXFLAGS.
CXXCOWPI LE
The command used to actually compile a C++ source file. The file name is appended to form the
complete command line.
CXXLI NK
The command used to actually link a C++ program.

Node: Assembly Support, Next: Fortran 77 Support, Previous. C++ Support, Up: Programs

Assembly Support
Automake includes some support for assembly code.

The variable CCAS holds the name of the compiler used to build assembly code. This compiler must
work abit like a C compiler; in particular it must accept - ¢ and - 0. The value of CCASFLAGS is
passed to the compilation.

You are required to set CCAS and CCASFLAGS viaconf i gur e. i n. The autoconf macro
AM PROG_AS will do thisfor you. Unlessthey are already set, it Ssimply sets CCAS to the C compiler
and CCASFLAGS to the C compiler flags.

file://IC|/pdfing/automake.html.htm (54 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Particular%20Programs

automake

Only the suffixes. s and . S arerecognized by aut onake as being files containing assembly code.

Node: Fortran 77 Support, Next: Java Support, Previous:. Assembly Support, Up: Programs

Fortran 77 Support
Automake includes full support for Fortran 77.
Any package including Fortran 77 code must define the output variable F77 inconf i gur e. i n; the

simplest way to do thisisto use the AC_PROG _F77 macro (see Particular Program Checks). See
Fortran 77 and Autoconf.

A few additional variables are defined when a Fortran 77 source fileis seen:

F77
The name of the Fortran 77 compiler.
FFLAGS
Any flags to passto the Fortran 77 compiler.
AM FFLAGS
The maintainer's variant of FFLAGS.
RFLAGS
Any flags to pass to the Ratfor compiler.
AM RFLAGS
The maintainer's variant of RFLAGS.
F77COVPI LE
The command used to actually compile a Fortran 77 source file. The file name is appended to
form the complete command line.
FLI NK
The command used to actually link a pure Fortran 77 program or shared library.

Automake can handle preprocessing Fortran 77 and Ratfor source files in addition to compiling them€.
Automake also contains some support for creating programs and shared libraries that are a mixture of
Fortran 77 and other languages (see Mixing Fortran 77 With C and C++).

These issues are covered in the following sections.

. Preprocessing Fortran 77:
. Compiling Fortran 77 Files:
. Mixing Fortran 77 With C and C++:

file://IC|/pdfing/automake.html.htm (55 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Particular%20Programs

automake

. Fortran 77 and Autoconf:

Node: Preprocessing Fortran 77, Next: Compiling Fortran 77 Files, Previous. Fortran 77 Support,
Up: Fortran 77 Support

Preprocessing Fortran 77

N. f ismade automatically from N. F or N. r . Thisrule runs just the preprocessor to convert a
preprocessable Fortran 77 or Ratfor source file into a strict Fortran 77 source file. The precise command
used isasfollows:

$(F77) -F $(DEFS) $(I1 NCLUDES) $(AM CPPFLAGS) $(CPPFLAGS)
$(AM_FFLAGS) $(FFLAGS)

$(F77) -F $(AM FFLAGS) $(FFLAGS) $(AM RFLAGS) $(RFLAGS)

Node: Compiling Fortran 77 Files, Next: Mixing Fortran 77 With C and C++, Previous: Preprocessing
Fortran 77, Up: Fortran 77 Support

Compiling Fortran 77 Files

N. o ismade automatically from N. f, N. F or N. r by running the Fortran 77 compiler. The precise
command used is as follows:

$(F77) -c $(AM FFLAGS) $(FFLAGS)

$(F77) -c $(DEFS) $(I NCLUDES) $(AM CPPFLAGS) $(CPPFLAGS)
$(AM_FFLAGS) $(FFLAGS)

$(F77) -c $(AM FFLAGS) $(FFLAGS) $(AM RFLAGS) $(RFLAGS)

Node: Mixing Fortran 77 With C and C++, Next: Fortran 77 and Autoconf, Previous: Compiling Fortran
77 Files, Up: Fortran 77 Support

file://IC|/pdfing/automake.html.htm (56 of 124)27. 1. 2004 18:45:04

automake

Mixing Fortran 77 With C and C++

Automake currently provides limited support for creating programs and shared libraries that are a
mixture of Fortran 77 and C and/or C++. However, there are many other issues related to mixing Fortran
77 with other languages that are not (currently) handled by Automake, but that are handled by other

packages!.
Automake can help in two ways:

1. Automatic selection of the linker depending on which combinations of source code.
2. Automatic selection of the appropriate linker flags (e.g. - L and - |) to pass to the automatically
selected linker in order to link in the appropriate Fortran 77 intrinsic and run-time libraries.

These extra Fortran 77 linker flags are supplied in the output variable FLI BS by the
AC F77_LI BRARY_LDFLAGS Autoconf macro supplied with newer versions of Autoconf
(Autoconf version 2.13 and later). See Fortran 77 Compiler Characteristics.

If Automake detects that a program or shared library (as mentioned in some PROGRAMS or

_LTLI BRARI ES primary) contains source code that is a mixture of Fortran 77 and C and/or C++, then
it requires that the macro AC_F77_LI BRARY_LDFLAGS becalledinconfi gure. i n, and that either
$(FLI BS) or @LI BS@appear in the appropriate _LDADD (for programs) or _ LI BADD (for shared
libraries) variables. It isthe responsibility of the person writing the Makef i | e. amto make sure that
$(FLI BS) or @LI BS@appearsin the appropriate _ LDADD or _ L1 BADD variable.

For example, consider the following Makef i | e. am

bi n_ PROGRAMS = f oo

foo SOURCES = main.cc foo.f

f oo_LDADD = |ibfoo.la @LIBS@

pkglib LTLIBRARIES = libfoo.la

| i bfoo |a SOURCES = bar.f baz.c zardoz.cc
li bfoo_ |a LIBADD = $(FLIBS)

In this case, Automake will insist that AC_ F77 L1 BRARY _LDFLAGS ismentioned inconfi gur e.
I n. Also, if @LI BS@hadn't been mentioned inf oo LDADDand | i bf oo_| a_LI BADD, then
Automake would have issued awarning.

. How the Linker is Chosen:

file://IC|/pdfing/automake.html.htm (57 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Fortran%2077%20Compiler%20Characteristics

automake

Node: How the Linker is Chosen, Previous. Mixing Fortran 77 With C and C++, Up: Mixing Fortran 77

With C and C++

How the Linker is Chosen

The following diagram demonstrates under what conditions a particular linker is chosen by Automake.

For example, if Fortran 77, C and C++ source code were to be compiled into a program, then the C++
linker will be used. In this case, if the C or Fortran 77 linkers required any special libraries that weren't
included by the C++ linker, then they must be manually added to an _LDADD or _ LI BADD variable by

the user writing the Makef i | e. am

\
source \
code \ C
_________________ .
|
C | X
|
.
|
C++ |
|
.
|
Fortran |
|
.
|
C + C++ |
|
.
|
C + Fortran |
|
.
|
C++ + Fortran |
|
.
|
C+ C++ + Fortran |

file://IC|/pdfing/automake.html.htm (58 of 124)27. 1. 2004 18:45:04

Li nker
C++ Fortran
--------- Fommme o oo+
| |
| |
| |
--------- Fommme o oo+
| |
X | |
| |
--------- Fommme o oo+
| |
| X |
| |
--------- Fommme o oo+
| |
X | |
| |
--------- Fommme o oo+
| |
| X |
| |
--------- Fommme o oo+
| |
X | |
| |
--------- Fommme o oo+
| |
X | |

automake

Node: Fortran 77 and Autoconf, Previous: Mixing Fortran 77 With C and C++, Up: Fortran 77 Support

Fortran 77 and Autoconf

The current Automake support for Fortran 77 requires a recent enough version of Autoconf that also
includes support for Fortran 77. Full Fortran 77 support was added to Autoconf 2.13, so you will want to
use that version of Autoconf or later.

Node: Java Support, Next: Support for Other Languages, Previous. Fortran 77 Support, Up: Programs

Java Support

Automake includes support for compiled Java, using gcj , the Java front end to the GNU Compiler
Collection.

Any package including Java code to be compiled must define the output variable GCJ inconf i gur e.
I n; the variable GCJFLAGS must also be defined somehow (either inconfi gure. i nor Makefil e.
am). The simplest way to do thisisto use the AM_PROG_GCJ macro.

By default, programs including Java source files are linked with gcj .

As aways, the contents of AM_GCJFLAGS are passed to every compilation invoking gcj (initsrole as
an ahead-of-time compiler - when invoking it to create . cl ass files, AM_JAVACFLAGS isused
instead). If it is necessary to passoptionsto gcj from Makef i | e. am thisvariable, and not the user
variable GCIJFLAGS, should be used.

gcj canbeusedtocompile. j ava,. cl ass,. zi p,or. | ar files.

When linking, gcj requires that the main class be specified using the - - mai n= option. The easiest way
to do thisisto usethe LDFLAGS variable for the program.

Node: Support for Other Languages, Next: ANSI, Previous. Java Support, Up: Programs

Support for Other Languages

file://IC|/pdfing/automake.html.htm (59 of 124)27. 1. 2004 18:45:04

automake

Automake currently only includes full support for C, C++ (see C++ Support), Fortran 77 (see Fortran 77
Support), and Java (see Java Support). Thereis only rudimentary support for other languages, support
for which will be improved based on user demand.

Some limited support for adding your own languages is available via the suffix rule handling; see
Suffixes.

Node: ANSI, Next: Dependencies, Previous: Support for Other Languages, Up: Programs

Automatic de-ANSlI-fication

Although the GNU standards allow the use of ANSI C, this can have the effect of limiting portability of
a package to some older compilers (notably the SunOS C compiler).

Automake allows you to work around this problem on such machines by de-ANSI-fying each source file
before the actual compilation takes place.

If the Makef i | e. amvariable AUTOVRAKE _OPTI ONS (see Options) contains the option ansi 2knr
then code to handle de-ANSI-fication is inserted into the generated Makef i | e. i n.

This causes each C source file in the directory to be treated as ANSI C. If an ANSI C compiler is
available, itisused. If no ANSI C compiler isavailable, theansi 2knr program is used to convert the
source filesinto K&R C, which is then compiled.

Theansi 2knr program is simple-minded. It assumes the source code will be formatted in a particular
way; seetheansi 2knr man page for details.

Support for de-ANSI-fication requires the source filesansi 2knr . ¢ and ansi 2knr . 1 to beinthe
same package as the ANSI C source; these files are distributed with Automake. Also, the package
confi gure. i nmustcal the macro AM C PROTOTYPES (see Macros).

Automake also handles finding the ansi 2knr support filesin some other directory in the current
package. Thisis done by prepending the relative path to the appropriate directory to the ansi 2knr
option. For instance, suppose the package has ANSI C codeinthesr c and| i b subdirectories. The
filesansi 2knr . c andansi 2knr . 1 appear inl i b. Then this could appear insr c/ Makefi | e.
am

AUTOVAKE _OPTIONS = ../l i b/ ansi 2knr

file://IC|/pdfing/automake.html.htm (60 of 124)27. 1. 2004 18:45:04

automake

If no directory prefix is given, the files are assumed to be in the current directory.

Note that automatic de-ANSI-fication will not work when the package is being built for a different host
architecture. That is because automake currently has no way to build ansi 2knr for the build machine.

Using LI BOBJ S with source de-ANSI-fication used to require hand-crafted codein conf i gur e to
append $U to basenamesin LI BOBJS. Thisis no longer true today. Starting with version 2.54,
Autoconf takes care of rewriting LI BOBJS and LTLI BOBJS. (see AC LI BOBJ vs. LI BOBJS)

Node: Dependencies, Next: EXEEXT, Previous. ANSI, Up: Programs

Automatic dependency tracking

As adeveloper it is often painful to continually update the Makef i | e. i n whenever the include-file
dependencies change in a project. Automake supplies away to automatically track dependency changes.

Automake always uses complete dependencies for a compilation, including system headers. Automake's
model isthat dependency computation should be a side effect of the build. To this end, dependencies are
computed by running all compilations through a special wrapper program called depconp. depconp
understands how to coax many different C and C++ compilers into generating dependency information
in the format it requires. aut onake - a will install depconp into your source tree for you. If
depconp can't figure out how to properly invoke your compiler, dependency tracking will ssmply be
disabled for your build.

Experience with earlier versions of Automake 8 taught usthat it is not reliable to generate dependencies
only on the maintainer's system, as configurations vary too much. So instead Automake implements
dependency tracking at build time.

Automatic dependency tracking can be suppressed by putting no- dependenci es inthevariable
AUTOVAKE_OPTI ONS, or passing no- dependenci es asan argument to AM | NI T_AUTOVAKE
(this should be the preferred way). Or, you can invoke aut onake with the- i option. Dependency
tracking is enabled by default.

The person building your package also can choose to disable dependency tracking by configuring with
- - di sabl e- dependency-tracki ng.

Node: EXEEXT, Previous. Dependencies, Up: Programs

file://IC|/pdfing/automake.html.htm (61 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#AC_LIBOBJ%20vs%20LIBOBJS

automake

Support for executable extensions

On some platforms, such as Windows, executabl es are expected to have an extension such as. exe. On
these platforms, some compilers (GCC among them) will automatically generate f oo. exe when asked
to generatef 00.

Automake provides mostly-transparent support for this. Unfortunately mostly doesn't yet mean fully.
Until the English dictionary is revised, you will have to assist Automake if your package must support
those platforms.

One thing you must be aware of is that, internally, Automake rewrites something like this:

bi n_ PROGRANS | iver

to this:

bi n_PROGRAMS = | i ver $(EXEEXT)

The targets Automake generates are likewise given the $(EXEEXT) extension. EXEEXT

However, Automake cannot apply this rewriting to conf i gur e substitutions. This means that if you
are conditionally building a program using such a substitution, then your conf i gur e. i n must take
care to add $(EXEEXT) when constructing the output variable.

With Autoconf 2.13 and earlier, you must explicitly use AC_EXEEXT to get this support. With Autoconf
2.50, AC_EXEEXT isrun automatically if you configure a compiler (say, through AC_PROG_CC).

Sometimes maintainers like to write an explicit link rule for their program. Without executable extension
support, thisis easy--you simply write a target with the same name as the program. However, when
executable extension support is enabled, you must instead add the $(EXEEXT) suffix.

Unfortunately, due to the change in Autoconf 2.50, this means you must always add this extension.
However, thisis a problem for maintainers who know their package will never run on a platform that has
executable extensions. For those maintainers, the no- exeext option (see Options) will disable this
feature. Thisworksin afairly ugly way; if no- exeext is seen, then the presence of atarget named

f oo in Makefi | e. amwill override an automake-generated target of the form f 00$(EXEEXT) .
Without the no- exeext option, this use will give an error.

file:///C)/pdfing/automake.html.htm (62 of 124)27. 1. 2004 18:45:04

automake

Node: Other objects, Next: Other GNU Tools, Previous. Programs, Up: Top

Other Derived Objects

Automake can handle derived objects which are not C programs. Sometimes the support for actually
building such objects must be explicitly supplied, but Automake will still automatically handle
installation and distribution.

. Scripts. Executable scripts

. Headers: Header files

. Data: Architecture-independent datafiles
. Sources. Derived sources

Node: Scripts, Next: Headers, Previous: Other objects, Up: Other objects

Executable Scripts

It is possible to define and install programs which are scripts. Such programs are listed using the

SCRI PTS primary name. Automake doesn't define any dependencies for scripts; the Makef i | e. am
should include the appropriate rules.

Automake does not assume that scripts are derived objects; such objects must be deleted by hand (see
Clean).

The aut onake program itself isaPerl script that is generated at configure time from aut onmake. i n.
Hereis how thisis handled:

bi n_SCRI PTS = aut onake

Since aut onmake appearsin the AC_OUTPUT macro, atarget for it is automatically generated, and it is
also automatically cleaned (despite the fact it's a script).

Script objects can beinstalled in bi ndi r, sbi ndi r, | i bexecdi r, or pkgdat adi r.

Scripts that need not being installed can be listed in noi nst _ SCRI PTS, and among them, those which
are needed only by make check shouldgoincheck SCRI PTS.

file://IC|/pdfing/automake.html.htm (63 of 124)27. 1. 2004 18:45:04

automake

Node: Headers, Next: Data, Previous: Scripts, Up: Other objects

Header files

Header files are specified by the HEADERS family of variables. Generally header files are not installed,
so the noi nst _ HEADERS variable will be the most used. 2

All header files must be listed somewhere; missing ones will not appear in the distribution. Oftenitis
clearest to list uninstalled headers with the rest of the sources for a program. See A Program. Headers
listed in a_ SOURCES variable need not be listed in any HEADERS variable.

Headerscan beinstalledini ncl udedi r, ol di ncl udedi r, or pkgi ncl udedi r.

Node: Data, Next: Sources, Previous. Headers, Up: Other objects

Architecture-independent data files
Automake supports the installation of miscellaneous data files using the DATA family of variables.

Such data can beinstalled in the directoriesdat adi r, sysconf di r,shar edst at edi r,
| ocal st at edi r, or pkgdat adi r.

By default, data files are not included in adistribution. Of course, you can usethedi st _ prefix to
change this on a per-variable basis.

Hereis how Automake declaresits auxiliary datafiles:

di st _pkgdat a_DATA = cl ean-kr.am clean.am. ..

Node: Sources, Previous: Data, Up: Other objects

Built sources

Because Automake's automatic dependency tracking works as a side-effect of compilation (see
Dependencies) there is a bootstrap issue: atarget should not be compiled before its dependencies are

made, but these dependencies are unknown until the target is first compiled.

file://IC|/pdfing/automake.html.htm (64 of 124)27. 1. 2004 18:45:04

automake

Ordinarily thisis not a problem, because dependencies are distributed sources. they preexist and do not
need to be built. Suppose that f 0o. ¢ includesf oo. h. When it first compilesf 0o. o, make only
knowsthat f 00. 0 dependsonf 00. c. Asaside-effect of this compilation depconp recordsthef oo.
h dependency so that following invocations of make will honor it. In these conditions, it's clear thereis
no problem: either f 00. 0 doesn't exist and has to be built (regardless of the dependencies), either
accurate dependencies exist and they can be used to decide whether f 00. 0 should be rebuilt.

It'sadifferent story if f 00. h doesn't exist by the first make run. For instance there might be arule to
buildf 0o. h. Thistimefi | e. o'sbuild will fail because the compiler can't find f 0o. h. make failed
to trigger the rule to build f 0o. h first by lack of dependency information.

The BUI LT _SOURCES variable is aworkaround for this problem. A sourcefilelisted in

BUI LT _SOURCESismadeonnmake all ormake check (or evenmake i nstal |) before other
targets are processed. However, such a source file is not compiled unless explicitly requested by
mentioning it in some other _ SOURCES variable.

So, to conclude our introductory example, we could use BUI LT_SOURCES = f 00. htoensuref 00.
h gets built before any other target (including f 0o. 0) during make al | or nake check.

BUI LT_SOURCES is actually a bit of a misnomer, as any file which must be created early in the build
process can be listed in this variable. Moreover, all built sources do not necessarily haveto belisted in
BUI LT _SOURCES. For instance agenerated . ¢ file doesn't need to appear in BUI LT _SOURCES
(unlessit isincluded by another source), because it's a known dependency of the associated object.

It might be important to emphasize that BUI LT _SOURCES is honored only by nake al | , make
check and make i nstal | . Thismeansyou cannot build a specific target (e.g., make foo)ina
clean treeif it depends on a built source. However it will succeed if you haverun make al | earlier,
because accurate dependencies are already available.

The next section illustrates and discusses the handling of built sources on atoy example.

. Built sources example: Several ways to handle built sources.

Node: Built sources example, Previous: Sources, Up: Sources

Built sources example

Suppose that f 00. ¢ includes bi ndi r . h, which isinstallation-dependent and not distributed: it needs
to be built. Here bi ndi r . h defines the preprocessor macro bi ndi r to the value of the make variable
bi ndi r (inherited from conf i gur e).

file:///C)/pdfing/automake.html.htm (65 of 124)27. 1. 2004 18:45:04

automake

We suggest several implementations below. It's not meant to be an exhaustive listing of all waysto
handle built sources, but it will give you afew ideas if you encounter thisissue.

First try

Thisfirst implementation will illustrate the bootstrap issue mentioned in the previous section (see
Sources).

Hereisatentative Makefi | e. am

This won't work.
bi n_ PROGRAMS = f oo
foo SOURCES = foo.c
nodi st _foo SOURCES = bindir.h
CLEANFI LES = bindir.h
bi ndir.h: Mkefile
echo '#define bindir "$(bindir)"" >%$@

This setup doesn't work, because Automake doesn't know that f 00. ¢ includes bi ndi r . h. Remember,
automatic dependency tracking works as a side-effect of compilation, so the dependenciesof f 00. 0
will be known only after f 00. 0 has been compiled (see Dependencies). The symptom is as follows.

% make

source='foo.c' object=foo.0" I|ibtool=no \

depfil e=".deps/foo. Po' tnpdepfil e='.deps/foo. TPo" \
depnode=gcc /bin/sh ./depconp \

gcc -l. -1. -g - -¢c test -f 'foo.c' || echo './' foo.c
foo.c:2: bindir.h: No such file or directory

make: *** [foo.0] Error 1

Using BUI LT _SOURCES

A solutionisto require bi ndi r . h to be built before anything else. Thisiswhat BUI LT SOURCES is
meant for (see Sources).

bi n_PROGRAMS = foo

foo SOURCES = foo.c

BU LT _SOURCES = bindir.h
CLEANFI LES = bindir.h

file:///C)/pdfing/automake.html.htm (66 of 124)27. 1. 2004 18:45:04

automake

bi ndir.h: Mkefile
echo '#define bindir "$(bindir)"' >%$@

See how bi ndi r. h get built first:

% make

echo '#define bindir "/usr/local/bin"" >bindir.h

make all-am

make[1]: Entering directory " /hone/adl/tnp'

source='foo.c' object="foo.0" |ibtool=no \

depfil e=".deps/foo.Po' tnpdepfil e='".deps/foo. TPo" \
depnode=gcc /bin/sh ./depconp \

gcc -1. -1. -g - -c test -f 'foo.c' || echo './' foo.c
gcc -g - -0 foo foo.0

make[1]: Leaving directory " /honme/adl/tnp'

However, as said earlier, BUI LT SOURCES appliesonly totheal | ,check, andi nst al | targets. It
till failsif you try to run make f oo explicitly:

% make cl ean

test -z "bindir.h" || rm-f bindir.h

test -z "foo" || rm-f foo

rm-f *.0 core *.core

% : > .deps/foo.Po # Suppress previously recorded dependenci es
% make f oo

source='fo00.c' object="foo.0" I|ibtool=no\

depfil e=".deps/foo.Po' tnpdepfile=".deps/foo.TPo" \
depnode=gcc /bin/sh ./depconp \

gcc -1. -1. -g - -c ‘test -f "foo.c' || echo './' foo.c
foo.c:2: bindir.h: No such file or directory

make: *** [foo.0] Error 1

Recording dependencies manually

Usually people are happy enough with BUI LT _SOURCES because they never run targets such as nake
f oo beforemake al | , asinthe previous example. However if this matters to you, you can avoid
BUI LT_SOURCES and record such dependencies explicitly inthe Makef i | e. am

bi n_ PROGRAMS = foo
foo SOURCES = foo.c

file:///C)/pdfing/automake.html.htm (67 of 124)27. 1. 2004 18:45:04

automake

foo. $(OBJEXT): bindir.h
CLEANFI LES = bindir.h
bi ndir.h: Mkefile
echo '#define bindir "$(bindir)" >%$@

Y ou don't have to list all the dependencies of f 0o. o explicitly, only those which might need to be built.
If a dependency already exists, it will not hinder the first compilation and will be recorded by the normal
dependency tracking code. (Note that after this first compilation the dependency tracking code will also
have recorded the dependency between f 00. 0 and bi ndi r . h; so our explicit dependency isreally
useful to thefirst build only.)

Adding explicit dependencies like this can be a bit dangerous if you are not careful enough. Thisis due
to the way Automake tries not to overwrite your rules (it assumes you know better than it). f 0o.
$(OBIEXT) : bi ndi r. h supersedes any rule Automake may want to output to build f o0o.

$(OBJEXT) . It happens to work in this case because Automake doesn't have to output any f 0o0.

$(OBIEXT) : target: it relies on asuffix ruleinstead (i.e., . ¢. $(OBIJEXT) :). Always check the
generated Makef i | e. i nif you do this.

Build bi ndi r. h from confi gure
It's possible to define this preprocessor macro from conf i gur e, either inconf i g. h (see Defining

Directories), or by processing abi ndi r. h. i n fileusing AC_CONFI G_FI LES (see Configuration
Actions).

At this point it should be clear that building bi ndi r . h from conf i gur e work well for this example.
bi ndi r. h will exist before you build any target, hence will not cause any dependency issue.

The Makefile can be shrunk as follows. We do not even have to mention bi ndi r . h.

bi n_ PROGRAMS = f oo
foo_SOURCES = foo.c

However, it's not always possible to build sources from conf i gur e, especialy when these sources are
generated by atool that needs to be built first...

Build bi ndi r. ¢, not bi ndi r. h.

Another attractive ideaisto define bi ndi r asavariable or function exported from bi ndi r . o, and
build bi ndi r. c instead of bi ndi r . h.

file:///C)/pdfing/automake.html.htm (68 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Defining%20Directories
file:///C|/pdfing/autoconf.html#Defining%20Directories
file:///C|/pdfing/autoconf.html#Configuration%20Actions
file:///C|/pdfing/autoconf.html#Configuration%20Actions

automake

noi nst _PROGRAMS = f oo
foo SOURCES = foo.c bindir.h
nodi st _foo SOURCES = bindir.c
CLEANFI LES = bindir.c
bindir.c: Mkefile
echo 'const char bindir[] = "$(bindir)";" >$

bi ndi r. h contains just the variable's declaration and doesn't need to be built, so it won't cause any
trouble. bi ndi r. o isaways dependent on bi ndi r. ¢, sobi ndi r. c will get built first.

Which is best?

There is no panacea, of course. Each solution has its merits and drawbacks.

Y ou cannot use BUI LT _SOURCES if the ability to run make f oo on aclean treeisimportant to you.
Y ou won't add explicit dependencies if you are leery of overriding an Automake target by mistake.

Building filesfrom . / conf i gur e isnot aways possible, neither is converting . h filesinto. c files.

Node: Other GNU Tools, Next: Documentation, Previous. Other objects, Up: Top

Other GNU Tools

Since Automake is primarily intended to generate Makef i | e. i nsfor usein GNU programs, it tries
hard to interoperate with other GNU tools.

. EmacsLisp: EmacsLisp
. Qettext: Gettext

. Libtoal: Libtool

. Java Java

« Python: Python

Node: Emacs Lisp, Next: gettext, Previous: Other GNU Tools, Up: Other GNU Tools

Emacs Lisp

file://IC|/pdfing/automake.html.htm (69 of 124)27. 1. 2004 18:45:04

automake

Automake provides some support for Emacs Lisp. The LI SP primary isused to hold alist of . el files.
Possible prefixesfor thisprimary arel i sp_ and noi nst _. Notethatif | i sp_LI SP isdefined, then
confi gure.inmustrun AM PATH LI SPDI R (see Macros).

By default Automake will byte-compile all Emacs Lisp source files using the Emacs found by

AM PATH LI SPDI R. If you wish to avoid byte-compiling, smply define the variable ELCFI LES to
be empty. Byte-compiled Emacs Lisp files are not portable among all versions of Emacs, so it makes
sense to turn this off if you expect sites to have more than one version of Emacs installed. Furthermore,
many packages don't actually benefit from byte-compilation. Still, we recommend that you leave it
enabled by default. It is probably better for sites with strange setups to cope for themsel ves than to make
the installation less nice for everybody else.

Lisp sources are not distributed by default. Y ou can prefix the LI SP primary withdi st _, asin
di st _lisp LISPordist_noinst LI SP,toindicate that these files should be distributed.

Node: gettext, Next: Libtool, Previous. Emacs Lisp, Up: Other GNU Tools

Gettext

If AM_ GNU _GETTEXT isseeninconf i gur e. i n, then Automake turns on support for GNU gettext, a
message catalog system for internationalization (see GNU Gettext).

Theget t ext support in Automake requires the addition of two subdirectories to the package, i nt |
and po. Automake insures that these directories exist and are mentioned in SUBDI RS.

Node: Libtool, Next: Java, Previous: gettext, Up: Other GNU Tools

Libtool

Automake provides support for GNU Libtool (see Introduction) with the LTLI BRARI ES primary. See
A Shared Library.

Node: Java, Next: Python, Previous: Libtool, Up: Other GNU Tools

Java

Automake provides some minimal support for Java compilation with the JAVA primary.

file://IC|/pdfing/automake.html.htm (70 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/gettext.html#GNU%20Gettext
file:///C|/pdfing/libtool.html#Top

automake

Any . j ava fileslisted in a_JAVA variable will be compiled with JAVAC at build time. By default, .
cl ass filesare not included in the distribution.

Currently Automake enforces the restriction that only one _ JAVA primary can be used in agiven
Makef i | e. am Thereason for thisrestriction isthat, in general, it isn't possible to know which .

cl ass fileswere generated from which . j ava files- so it would be impossible to know which files to
install where. For instance, a. | ava file can define multiple classes; theresulting . cl ass file names
cannot be predicted without parsing the . j ava file.

There are afew variables which are used when compiling Java sources:

JAVAC
The name of the Java compiler. This defaultstoj avac.
JAVACFLAGS
The flags to pass to the compiler. Thisis considered to be a user variable (see User Variables).

AM_JAVACFLAGS
More flags to pass to the Java compiler. This, and not JAVACFLAGS, should be used when it is
necessary to put Java compiler flagsinto Makefi | e. am

JAVARQOT
The value of thisvariableis passed to the - d optiontoj avac. It defaultsto
$(top_builddir).

CLASSPATH_ENV
Thisvariableisan sh expression which is used to set the CLASSPATH environment variable on
thej avac command line. (In the future we will probably handle class path setting differently.)

Node: Python, Previous: Java, Up: Other GNU Tools

Python
Automake provides support for Python compilation with the PYTHON primary.

Any fileslisted ina_PYTHON variable will be byte-compiled with py- conpi | e at install time. py-
conpi | e actually creates both standard (. pyc) and byte-compiled (. pyo) versions of the sourcefiles.
Note that because byte-compilation occurs at install time, any fileslisted innoi nst _PYTHON will not
be compiled. Python source files are included in the distribution by default.

Automake ships with an Autoconf macro called AM_PATH_PYTHON which will determine some Python-
related directory variables (see below). If you have called AM_PATH PYTHONfromconfi gure.in,
then you may use the following variables to list you Python source filesin your variables:

pyt hon_PYTHON, pkgpyt hon_PYTHON, pyexecdi r _PYTHON, pkgpyexecdi r _PYTHON,

file:///C)/pdfing/automake.html.htm (71 of 124)27. 1. 2004 18:45:04

automake

depending where you want your filesinstalled.

AM _PATH_PYTHON takes a single optional argument. This argument, if present, is the minimum
version of Python which can be used for this package. If the version of Python found on the system is
older than the required version, then AM_PATH_PYTHON will cause an error.

AM PATH _PYTHON creates severa output variables based on thePython installation found during
configuration.

PYTHON
The name of the Python executable.
PYTHON VERSI ON
The Python version number, in the form major.minor (e.g. 1. 5). Thisis currently the value of
sys.version[: 3].
PYTHON PREFI X
The string ${ pr ef i x} . Thisterm may be used in future work which needs the contents of
Python'ssys. pr ef i x, but general consensusisto always use the value from configure.
PYTHON EXEC PREFI X
The string ${ exec_pr ef i x} . Thisterm may be used in future work which needs the contents
of Python'ssys. exec_prefi x, but general consensus isto always use the value from
configure.
PYTHON_PLATFORM
The canonical name used by Python to describe the operating system, as given by sys.
pl at f or m Thisvalue is sometimes needed when building Python extensions.
pyt hondi r
The directory name for the si t e- packages subdirectory of the standard Python install tree.
pkgpyt hondi r
Thisisisthe directory under pyt hondi r which is named after the package. That is, it is
$(pyt hondi r) / $(PACKAGE) . It is provided as a convenience.
pyexecdir
Thisisthe directory where Python extension modules (shared libraries) should be installed.
pkgpyexecdi r
Thisis aconvenience variable which is defined as $(pyexecdi r) / $(PACKAGE) .

All these directory variables have values that start with either ${ pr ef i x} or ${ exec_prefi x}
unexpanded. Thisworksfinein Makef i | es, but it makes these variables hard to usein conf i gur e.
Thisis mandated by the GNU coding standards, so that the user can run make prefi x=/f o0

I nst al | . The Autoconf manual has a section with more details on this topic (see Installation Directory

Variables).

Node: Documentation, Next: Install, Previous: Other GNU Tools, Up: Top

file://IC|/pdfing/automake.html.htm (72 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Installation%20Directory%20Variables
file:///C|/pdfing/autoconf.html#Installation%20Directory%20Variables

automake

Building documentation

Currently Automake provides support for Texinfo and man pages.

. Texinfo: Texinfo
. Man pages: Man pages

Node: Texinfo, Next: Man pages, Previous: Documentation, Up: Documentation

Texinfo

If the current directory contains Texinfo source, you must declare it with the TEXI NFCS primary.
Generally Texinfo files are converted into info, and thusthe i nf o_ TEXI NFOS variable is most
commonly used here. Any Texinfo source filemust endinthe. t exi,. txi,or.texi nf o extension.
Werecommend . t exi for new manuals.

Automake generatesrulesto build . i nf o, . dvi , . ps,and. pdf filesfrom your Texinfo sources.
The. i nf o filesarebuilt by make al | andinstalled by make i nstal | (unlessyou useno-

I nstal | i nf o, seebelow). The other files can be built on request by neke dvi , nake ps, and
make pdf.

If the. t exi file@ ncl udesver si on. t exi , then that file will be automatically generated. The file
ver si on. t exi definesfour Texinfo flag you can reference using @ al ue{ EDI Tl ON} , @ al ue
{ VERSI ON} , @ al ue{ UPDATED} , and @ al ue{ UPDATED- MONTH;} .

EDI TI ON
VERSI ON
Both of these flags hold the version number of your program. They are kept separate for clarity.
UPDATED
This holds the date the primary . t exi file waslast modified.
UPDATED- MONTH
This holds the name of the month in which the primary . t exi file was last modified.

Thever si on. t exi support requiresthe ndat e- sh program; this program is supplied with
Automake and automatically included when aut omake isinvoked with the - - add- m ssi ng option.

If you have multiple Texinfo files, and you want to usethever si on. t exi feature, then you have to
have a separate version file for each Texinfo file. Automake will treat any include in a Texinfo file that
matchesver s*. t exi just asan automatically generated version file.

file://IC|/pdfing/automake.html.htm (73 of 124)27. 1. 2004 18:45:04

automake

When an info fileis rebuilt, the program named by the MAKEI NFOvariable is used to invokeit. If the
makei nf o program isfound on the system then it will be used by default; otherwisem ssi ng will be
used instead. The flags in the variables MAKEI NFOFLAGS and AM_MAKEI NFOFLAGS will be passed
to the makei nf o invocation; the first of these isintended for use by the user (see User Variables) and

the second by the Makef i | e. amwriter.

Sometimes an info file actually depends on more than one . t exi file. For instance, in GNU Hello,
hel | 0. t exi includesthefilegpl . t exi . You cantell Automake about these dependencies using the
texi_ TEXI NFCS variable. Hereis how GNU Hello doesiit:

I nfo_TEXI NFOS = hel | 0. t exi
hel | o_TEXI NFOS = gpl . texi

By default, Automake requiresthefilet exi nf 0. t ex to appear in the same directory as the Texinfo
source. However, if you used AC_CONFI G_AUX DI Rinconfi gure. i n (seeFinding configure

Input), thent exi nf 0. t ex islooked for there. Automake suppliest exi nf 0. t ex if - - add-
m ssi ng isgiven.

If your package has Texinfo filesin many directories, you can use the variable TEXI NFO_TEX to tell
Automake where to find the canonical t exi nf 0. t ex for your package. The value of thisvariable
should be the relative path from the current Makef i | e. amtot exi nf 0. t ex:

TEXI NFO TEX = ../doc/texinfo.tex

The option no- t exi nf 0. t ex can be used to eliminate the requirement for t exi nf o. t ex. Use of
the variable TEXI NFO_TEX is preferable, however, because that allowsthedvi , ps, and pdf targets
to still work.

Automake generatesan i nst al | - i nf o target; some people apparently use this. By default, info pages
areinstalled by make i nst al | . Thiscan be prevented viatheno-i nst al | i nf o option.

Node: Man pages, Previous: Texinfo, Up: Documentation

Man pages
A package can also include man pages (but see the GNU standards on this matter, Man Pages.) Man
pages are declared using the MANS primary. Generally the man_MANS variable is used. Man pages are

automatically installed in the correct subdirectory of mandi r , based on the file extension.

file://IC|/pdfing/automake.html.htm (74 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Input
file:///C|/pdfing/autoconf.html#Input
file:///C|/pdfing/standards.html#Man%20Pages

automake

File extensions such as. 1c are handled by looking for the valid part of the extension and using that to
determine the correct subdirectory of mandi r . Valid section names are the digits O through 9, and the
letters| and n.

Sometimes devel opers prefer to name a man page something likef 00. man in the source, and then
rename it to have the correct suffix, e.g. f 00. 1, when installing the file. Automake also supports this
mode. For avalid section named SECTION, there is a corresponding directory named

manSECTIONdI r, and a corresponding _ MANS variable. Fileslisted in such avariable areinstalled in
the indicated section. If the file already has avalid suffix, then it isinstalled as-is; otherwise the file
suffix is changed to match the section.

For instance, consider this example:

manl MANS = renane. man t hesane.1 al sot hesane. 1c

Inthiscase, r enane. man will berenamed tor enane. 1 when installed, but the other fileswill keep
their names.

By default, man pages areinstalled by make i nst al | . However, since the GNU project does not
require man pages, many maintainers do not expend effort to keep the man pages up to date. In these
cases, theno- i nst al | man option will prevent the man pages from being installed by default. The
user can still explicitly install them vianmake i nstal | - man.

Here is how the man pages are handled in GNU cpi o (which includes both Texinfo documentation and
man pages):

man_MANS = cpio.1 nt.1
EXTRA_DI ST = $(man_MANS)

Man pages are not currently considered to be source, because it is not uncommon for man pages to be
automatically generated. Therefore they are not automatically included in the distribution. However, this
can be changed by use of thedi st _ prefix.

Thenobase_ prefix is meaningless for man pages and is disallowed.

Node: Install, Next: Clean, Previous. Documentation, Up: Top

file://IC)/pdfing/automake.html.htm (75 of 124)27. 1. 2004 18:45:04

automake
What Gets Installed
Basics of installation

Naturally, Automake handles the details of actually installing your program once it has been built. All
files named by the various primaries are automatically installed in the appropriate places when the user
runsmake install.

A filenamed in aprimary isinstalled by copying the built file into the appropriate directory. The base
name of the file is used when installing.

bi n_PROGRAMS = hel | o subdir/ goodbye

In this example, both hel | 0 and goodbye will beinstalled in $(bi ndi r) .

Sometimesiit is useful to avoid the basename step at install time. For instance, you might have a number
of header filesin subdirectories of the source tree which are laid out precisely how you want to install
them. In this situation you can use the nobase__ prefix to suppress the base name step. For example:

nobase i ncl ude HEADERS = stdio.h sys/types.h

Will install st di 0. hin$(i ncludedir) andtypes. hin$(i ncl udedir)/sys.

The two parts of install

Automake generates separatei nst al | - dat a andi nst al | - exec targets, in casetheinstaler is
installing on multiple machines which share directory structure--these targets alow the machine-
independent partsto beinstalled only once. i nst al | - exec installs platform-dependent files, and

I nst al | - dat a installs platform-independent files. Thei nst al | target depends on both of these
targets. While Automake tries to automatically segregate objects into the correct category, the
Makef i | e. amauthor is, in the end, responsible for making sure thisis done correctly.

Variables using the standard directory prefixesdat a, i nf o, man, i ncl ude, ol di ncl ude,
pkgdat a, or pkgi ncl ude (e.g. dat a_DATA) areinstalled by i nst al | - dat a.

Variables using the standard directory prefixesbi n, sbi n, | i bexec, sysconf,| ocal st at e,
| 'i b, or pkgli b (e.g. bi n_PROGRAMS) areinstalled by i nst al | - exec.

Any variable using a user-defined directory prefix with exec in the name (e.g.

file:///C)/pdfing/automake.html.htm (76 of 124)27. 1. 2004 18:45:04

automake

nmyexecbi n_PROGRAMS isinstalled by i nst al | - exec. All other user-defined prefixes are installed
byi nstall -dat a.

Extending installation

It is possible to extend this mechanism by definingani nst al | - exec-1 ocal orinstall -dat a-
| ocal target. If these targets exist, they will berun at make i nstal | time. These rules can do
almost anything; careis required.

Automake also supports two install hooks, i nst al | - exec- hook andi nst al | - dat a- hook.
These hooks are run after all other install rules of the appropriate type, exec or data, have completed. So,
for instance, it is possible to perform post-installation modifications using an install hook.

Staged installs

Automake generates support for the DESTDI Rvariable in al install rules. DESTDI Ris used during the
make i nstall steptorelocateinstall objectsinto astaging area. Each object and path is prefixed
with the value of DESTDI R before being copied into the install area. Here is an example of typical
DESTDIR usage:

make DESTDI R=/t np/staging install

This placesinstall objectsin adirectory tree built under / t np/ st agi ng. If / gnu/ bi n/ f oo and/
gnu/ shar e/ acl ocal / f oo. n4 areto beinstalled, the above command would install / t np/
st agi ng/ gnu/ bi n/foo and/ t np/ st agi ng/ gnu/ shar e/ acl ocal / f oo. n4.

Thisfeature is commonly used to build install images and packages. For more information, see Makefile
Conventions.

Support for DESTDI Risimplemented by coding it directly into the install rules. If your Makefi | e. am
usesalocal install rule (e.g.,i nstal | - exec-1 ocal) or aninstall hook, then you must write that
code to respect DESTDI R.

Rules for the user

Automake also generatesan uni nst al | target,ani nstal | di rs target,andani nstal |l -strip
target.

Automake supportsuni nstal | -1 ocal anduni nst al | - hook. Thereis no notion of separate
uninstalls for "exec" and "data", as these features would not provide additional functionality.

file://IC)/pdfing/automake.html.htm (77 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/standards.html#Makefile%20Conventions
file:///C|/pdfing/standards.html#Makefile%20Conventions

automake

Notethat uni nst al | isnot meant as areplacement for areal packaging tool.

Node: Clean, Next: Dist, Previous:. Install, Up: Top

What Gets Cleaned

The GNU Makefile Standards specify a number of different clean rules. See See Standard Targets for
Users.

Generally thefiles that can be cleaned are determined automatically by Automake. Of course, Automake
also recognizes some variables that can be defined to specify additional filesto clean. These variables
are MOSTLYCLEANFI LES, CLEANFI LES, DI STCLEANFI LES, and MAI NTAI NERCLEANFI LES.

Asthe GNU Standards aren't always explicit as to which files should be removed by which target, we've
adopted a heuristic which we believe was first formulated by Francois Pinard:

. If make built it, and it is commonly something that one would want to rebuild (for instance, a. o
file), then nost | ycl ean should deleteit.

. Otherwise, if make built it, then cl ean should delete it.

. If confi gure builtit, thendi st cl ean should deleteit.

. If the maintainer built it (for instance, a. i nf o file), then mai nt ai ner - cl ean should delete
it. However mai nt ai ner - ¢l ean should not delete anything that needs to exist in order to
run./configure &% make.

We recommend that you follow this same set of heuristicsin your Makef il e. am

Node: Dist, Next: Tests, Previous: Clean, Up: Top

What Goes in a Distribution

Basics of distribution

Thedi st target in the generated Makef i | e. i n can be used to generate agzip'dt ar file and other
flavors of archive for distribution. The filesis named based on the PACKAGE and VERSI ON variables
defined by AM | NI T_AUTOMAKE (see Macros); more precisaly thegzip'dt ar fileisnamed package-
version. t ar . gz. You can use the make variable GZI P_ENV to control how gzip is run. The default
setting is- - best .

file://IC|/pdfing/automake.html.htm (78 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/standards.html#Standard%20Targets
file:///C|/pdfing/standards.html#Standard%20Targets

automake

For the most part, the files to distribute are automatically found by Automake: all source files are
automatically included in adistribution, asare all Makefi | e. ansand Makefi | e. i ns. Automake
also has a built-in list of commonly used files which are automatically included if they are found in the
current directory (either physically, or asthe target of aMakef i | e. amrule). Thislist is printed by
aut onake - - hel p. Also, fileswhich areread by conf i gur e (i.e. the source files corresponding to
the files specified in various Autoconf macros such as AC_CONFI G_FI LES and siblings) are
automatically distributed. Helper scriptsinstalled with aut omake - - add- m ssi ng areaso
distributed.

Still, sometimes there are files which must be distributed, but which are not covered in the automatic
rules. These files should be listed in the EXTRA DI ST variable. Y ou can mention files from
subdirectoriesin EXTRA DI ST.

Y ou can also mention adirectory in EXTRA DI ST; in this case the entire directory will be recursively
copied into the distribution. Please note that this will also copy everything in the directory, including
CVS/RCS version control files. We recommend against using this feature.

If you define SUBDI RS, Automake will recursively include the subdirectories in the distribution. If
SUBDI RS is defined conditionally (see Conditionals), Automake will normally include all directories
that could possibly appear in SUBDI RS in the distribution. If you need to specify the set of directories
conditionally, you can set the variable DI ST_SUBDI RS to the exact list of subdirectoriesto includein
the distribution (see Top level).

Fine-grained distribution control

Sometimes you need tighter control over what does not go into the distribution; for instance you might
have source files which are generated and which you do not want to distribute. In this case Automake
givesfine-grained control using thedi st and nodi st prefixes. Any primary or _ SOURCES variable
can be prefixed with di st _ to add the listed files to the distribution. Similarly, nodi st _ can be used
to omit the files from the distribution.

As an example, here is how you would cause some data to be distributed while leaving some source
code out of the distribution:

di st _data DATA = distribute-this
bi n_ PROGRAMS = f oo
nodi st _foo SOURCES = do-not-distribute.c

The dist hook

file://IC)/pdfing/automake.html.htm (79 of 124)27. 1. 2004 18:45:04

automake

Occasionally it is useful to be able to change the distribution before it is packaged up. If thedi st -
hook target exists, it isrun after the distribution directory isfilled, but before the actual tar (or shar) file
Is created. One way to usethisisfor distributing filesin subdirectories for which anew Makefi |l e. am
isoverkill:

di st - hook:
nmkdir $(distdir)/random
cp -p $(srcdir)/random al $(srcdir)/randonf a2 $(distdir)/
random

Another way to to use thisis for removing unnecessary files that get recursively included by specifying a
directory in EXTRA_DIST:

EXTRA DI ST = doc

di st - hook:
rm-rf “find $(distdir)/doc -name CVS

Checking the distribution

Automake also generatesadi st check target which can be of help to ensure that a given distribution
will actually work. di st check makes adistribution, then tries to do a VPATH build, run the test suite,
and finally make another tarfile to ensure the distribution is self-contained.

Building the package involves running . / conf i gur e. If you need to supply additional flagsto
confi gur e, definetheminthe DI STCHECK CONFI GURE _FLAGS variable, either in your top-level
Makef i | e. am or on the command line when invoking make.

If thetarget di st check- hook isdefined inyour Makef i | e. am then it will be invoked by

di st check after the new distribution has been unpacked, but before the unpacked copy is configured
and built. Your di st check- hook can do amost anything, though as always caution is advised.
Generally this hook is used to check for potential distribution errors not caught by the standard
mechanism.

Speaking about potential distribution errors, di st check will aso ensure that thedi st cl ean target
actually removes al built files. Thisis done by running make di st cl eancheck at the end of the
VPATH build. By default, di st cl eancheck will rundi st cl ean and then make sure the build tree
has been emptied by running $(di st cl eancheck |i stfil es) . Usualy thischeck will find
generated files that you forgot to add to the DI STCLEANFI LES variable (see Clean).

file:///C)/pdfing/automake.html.htm (80 of 124)27. 1. 2004 18:45:04

automake

Thedi st cl eancheck behavior should be OK for most packages, otherwise you have the possibility
to override the definition of either thedi st cl eancheck target, or the

$(di stcl eancheck |istfil es) variable. Forinstanceto disabledi st cl eancheck
completely, add the following rule to your top-level Makefi | e. am

di st cl eancheck:

Q@

If youwant di st cl eancheck toignore built files which have not been cleaned because they are also
part of the distribution, add the following definition instead:

di stcl eancheck listfiles =\
find -type f -exec sh -c "test -f $(srcdir)/{} || echo {}' ;'

The above definition is not the default because it's usually an error if your Makefiles cause some
distributed files to be rebuilt when the user build the package. (Think about the user missing the tool
required to build thefile; or if the required tool is built by your package, consider the cross-compilation
case whereit can't berun.) ThereisaFAQ entry about this (see distcleancheck), make sure you read it

before playing with di st cl eancheck |istfil es.

di st check aso checksthat theuni nst al | target works properly, both for ordinary and DESTDI R
builds. It does thisby invoking make uni nst al I , and then it checksthe install tree to seeif any files
are left over. This check will make sure that you correctly coded your uni nst al | -related targets.

By default, the checking isdone by thedi st uni nst al | check target, and thelist of filesin the
install treeis generated by $(di st uni nstal | check_Iistfil es) (thisisavariable whose value
isashell command to run that prints the list of files to stdout).

Either of these can be overridden to modify the behavior of di st check. For instance, to disable this
check completely, you would write:

di stuni nstal | check:

Q@

The types of distributions

Automake generatesa. t ar . gz file when asked to create a distribution and other archives formats,
Options. Thetarget di st - gzi p generatesthe. t ar . gz file only.

file:///C)/pdfing/automake.html.htm (81 of 124)27. 1. 2004 18:45:04

automake

Node: Tests, Next: Options, Previous: Dist, Up: Top

Support for test suites
Automake supports two forms of test suites.

Simple Tests

If the variable TESTS is defined, its value istaken to be alist of programsto run in order to do the
testing. The programs can either be derived objects or source objects; the generated rule will look both
insrcdi r and. . Programs needing data files should look for themin sr cdi r (whichisboth an
environment variable and a make variable) so they work when building in a separate directory (see Build

Directories), and in particular for thedi st check target (see Dist).

The number of failureswill be printed at the end of the run. If agiven test program exits with a status of
77, thenitsresult isignored in the final count. This feature allows non-portable tests to be ignored in
environments where they don't make sense.

Thevariable TESTS ENVI RONMENT can be used to set environment variables for the test run; the
environment variable sr cdi r issetintherule. If al your test programs are scripts, you can also set
TESTS_ENVI RONVENT to an invocation of the shell (e.g. $(SHELL) - x); this can be useful for
debugging the tests.

Y ou may define the variable XFAI L_TESTS to alist of tests (usually a subset of TESTS) that are
expected to fail. Thiswill reverse the result of those tests.

Automake ensures that each program listed in TESTS is built before any tests are run; you can list both
source and derived programsin TESTS. For instance, you might want to run a C program as atest. To
do thisyou would list itsnamein TESTS and aso in check PROGRAMS, and then specify it asyou
would any other program.

DejaGnu Tests
If dej agnu appearsin AUTOMVAKE OPTI ONS, then adej agnu-based test suite is assumed. The
variable DEJATOOL isalist of names which are passed, one at atime, asthe- - t ool argument to

runt est invocations; it defaults to the name of the package.

The variable RUNTESTDEFAULTFLAGS holdsthe- -t ool and - - srcdi r flagsthat are passed to
deglagnu by default; this can be overridden if necessary.

file://IC|/pdfing/automake.html.htm (82 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Build%20Directories
file:///C|/pdfing/autoconf.html#Build%20Directories
ftp://ftp.gnu.org/gnu/dejagnu/

automake

The variables EXPECT and RUNTEST can also be overridden to provide project-specific values. For
instance, you will need to do thisif you are testing a compiler toolchain, because the default values do
not take into account host and target names.

The contents of the variable RUNTESTFLAGS are passed to ther unt est invocation. Thisis
considered a"user variable" (see User Variables). If you need to set r unt est flagsin Makefil e. am

you can use AM_RUNTESTFLAGS instead.

Automake will generate rulesto createalocal si t e. exp file, defining various variables detected by . /
confi gur e. Thisfileisautomaticaly read by DejaGnu. It is OK for the user of a package to edit this
filein order to tune the test suite. However this is not the place where the test suite author should define
new variables:. this should be done elsewhere in the real test suite code. Especialy, si t e. exp should
not be distributed.

For more information regarding DegjaGnu test suites, see See Top.
In either case, the testing isdone vianmake check.
Install Tests

Thei nst al | check target is available to the user as away to run any tests after the package has been
installed. Y ou can add teststo thisby writing ani nst al | check- 1 ocal target.

Node: Options, Next: Miscellaneous, Previous: Tests, Up: Top

Changing Automake's Behavior

Various features of Automake can be controlled by optionsin the Makef i | e. am Such options are
applied on aper-Makef i | e basiswhen listed in aspecial Makef i | e variable named

AUTOVAKE _OPTI ONS. They are applied globally to al processed Makef i | es when listed in the first
argument of AM | NI T_AUTOMAKE inconf i gur e. i n. Currently understood options are:

gnits
gnu
foreign
cygnus

Set the strictness as appropriate. The gni t s option asoimpliesr eadne- al pha and check-
news.

file://IC|/pdfing/automake.html.htm (83 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/dejagnu.html#Top

automake

ansi 2knr
path/ ansi 2knr
Turn on automatic de-ANSI-fication. See ANSI. If preceded by a path, the generated

Makef il e. i nwill look inthe specified directory to find theansi 2knr program. The path
should be arelative path to another directory in the same distribution (Automake currently does
not check this).

check- news
Causemake di st tofail unlessthe current version number appearsin the first few lines of the
NEWS file.

dej agnu
Cause dej agnu-specific rulesto be generated. See Tests.

di st - bzi p2
Generate adi st - bzi p2 target, creating a bzip2 tar archive of the distribution. di st will
create it in addition to the other formats. bzip2 archives are frequently smaller than gzipped
archives.

di st -shar
Generate adi st - shar target, creating a shar archive of the distribution. di st will createitin
addition to the other formats.

dist-zip
Generate adi st - zi p target, creating a zip archive of the distribution. di st will createitin
addition to the other formats.

dist-tarZz
Generateadi st - t ar Z target, creating a compressed tar archive of the distribution. di st will
create it in addition to the other formats.

no- defi ne
This options is meaningful only when passed as an argument to AM | NI T_AUTOMAKE. It will
prevent the PACKAGE and VERSI ON variablesto be AC_DEFI NEd.

no- dependenci es
Thisissimilar tousing - - i ncl ude- deps on the command line, but is useful for those
situations where you don't have the necessary bits to make automatic dependency tracking work
See Dependencies. In this case the effect isto effectively disable automatic dependency tracking.

no- exeext
If your Makef i | e. amdefinesatarget f 00, it will override atarget named f 00$(EXEEXT) .
Thisis necessary when EXEEXT isfound to be empty. However, by default automake will
generate an error for thisuse. Theno- exeext option will disable thiserror. Thisisintended for
use only where it is known in advance that the package will not be ported to Windows, or any
other operating system using extensions on executables.

no-installinfo
The generated Makef i | e. i n will not cause info pages to be built or installed by default.
However,i nfo andi nst al | -1 nf o targetswill still be available. This option is disallowed at
GNU strictness and above.

no-instal |l man

file:///C)/pdfing/automake.html.htm (84 of 124)27. 1. 2004 18:45:04

automake

The generated Makef i | e. i n will not cause man pagesto be installed by default. However, an
I nst al | - man target will still be available for optional installation. Thisoption is disallowed at
GN\U strictness and above.

nost di nc
This option can be used to disable the standard - | options which are ordinarily automatically
provided by Automake.

no-texi nfo.tex
Don't requiret exi nf 0. t ex, even if there are texinfo filesin this directory.

readnme- al pha
If this release is an alpha release, and the file README- al pha exists, then it will be added to the
distribution. If this option is given, version numbers are expected to follow one of two forms. The
first form is MAJOR. MINOR. ALPHA, where each element is a number; the final period and
number should be left off for non-alphareleases. The second form is MAJOR. MINORALPHA,
where ALPHA is aletter; it should be omitted for non-alpha releases.

std-options
Makethei nst al | check target check that installed scripts and programs support the - - hel p
and - - ver si on options. This also provides a basic check that the program's run-time
dependencies are satisfied after installation.

In afew situations, programs (or scripts) have to be exempted from this test. For instancef al se
(from GNU sh-utils) is never successful, even for - - hel p or - - ver si on. You can list such
programsin the variable AM | NSTALLCHECK _STD_OPTI ONS_EXEMPT. Programs (not
scripts) listed in this variable should be suffixed by $(EXEEXT) for the sake of Win32 or OS/2.
For instance suppose we build f al se asaprogrambut t r ue. sh asascript, and that neither of
them support - - hel p or - - ver si on:

AUTOMAKE_OPTI ONS = std-options

bi n_ PROGRAMS = false ...

bi n_SCRI PTS = true.sh ...

AM | NSTALLCHECK STD OPTI ONS_EXEMPT = f al se$(EXEEXT)
true. sh

subdi r-obj ects
If this option is specified, then objects are placed into the subdirectory of the build directory
corresponding to the subdirectory of the source file. For instance if the source fileissubdi r/
file.cxx,thenthe output filewould besubdir/fil e. o.

version
A version number (e.g. 0. 30) can be specified. If Automake is not newer than the version
specified, creation of the Makef i | e. i n will be suppressed.

- Weategory or - - war ni ngs=category
These options behave exactly like their command-line counterpart (see Invoking Automake).

file:///C)/pdfing/automake.html.htm (85 of 124)27. 1. 2004 18:45:04

automake

This alows you to enable or disable some warning categories on a per-file basis. Y ou can also
setup some warnings for your entire project; for instancetry AM | NI T_AUTOVAKE([-
Wal |]) inyour confi gure.in.

Unrecognized options are diagnosed by aut onmake.

If you want an option to apply to al the filesin the tree, you can usethe AM | NI T_AUTOMAKE macro
inconfi gure.in.SeeMacros.

Node: Miscellaneous, Next: Include, Previous: Options, Up: Top

Miscellaneous Rules

There are afew rules and variables that didn't fit anywhere else.

. Tags: Interfacing to etags and mkid
. Suffixes: Handling new file extensions
« Multilibs: Support for multilibs.

Node: Tags, Next: Suffixes, Previous: Miscellaneous, Up: Miscellaneous

Interfacing to et ags

Automake will generate rules to generate TAGS files for use with GNU Emacs under some
circumstances,

If any C, C++ or Fortran 77 source code or headers are present, then t ags and TAGS targets will be
generated for the directory.

At the topmost directory of a multi-directory package, at ags target file will be generated which, when
run, will generate a TAGS file that includes by reference all TAGS files from subdirectories.

Thet ags target will also be generated if the variable ETAGS _ARGS is defined. Thisvariableis
intended for use in directories which contain taggable source that et ags does not understand. The user
can use the ETAGSFLAGS to pass additional flagsto et ags; AM_ ETAGSFLAGS is also available for
usein Makefil e. am

Here is how Automake generates tags for its source, and for nodes in its Texinfo file:

file://IC|/pdfing/automake.html.htm (86 of 124)27. 1. 2004 18:45:04

automake

ETAGS_ARGS = autonmeke.in --1ang=none \
--regex="/"@ode[\t]+\([",]+\)/\1/" autonake.texi

If you add filenamesto ETAGS _ARGS, you will probably also want to set TAGS DEPENDENCI ES.
The contents of this variable are added directly to the dependencies for thet ags target.

Automake also generatesact ags target which can be used to build vi -stylet ags files. The variable
CTAGS isthe name of the program to invoke (by default ct ags); CTAGSFLAGS can be used by the
user to pass additional flags, and AM_CTAGSFLAGS can be used by the Makef i | e. am

Automake will also generate an | D target which will run nki d on the source. Thisis only supported on
adirectory-by-directory basis.

Automake also supports the GNU Global Tags program. The GTAGS target runs Global Tags
automatically and puts the result in the top build directory. The variable GTAGS ARGS holds arguments
which are passed to gt ags.

Node: Suffixes, Next: Multilibs, Previous. Tags, Up: Miscellaneous

Handling new file extensions

It is sometimes useful to introduce a new implicit rule to handle afile type that Automake does not know
about.

For instance, suppose you had a compiler which could compile. f oo filesto . o files. Y ou would
simply define an suffix rule for your language:

. foo. o:
foocc -c -0 $@ $<

Then you could directly usea. f oo fileina_SOURCES variable and expect the correct results:

doi t
doit.foo

bi n_PROGRANG
doi t _SOURCES

This was the simpler and more common case. In other cases, you will have to help Automake to figure
which extensions you are defining your suffix rule for. This usually happens when your extensions does

file://IC|/pdfing/automake.html.htm (87 of 124)27. 1. 2004 18:45:04

http://www.gnu.org/software/global/

automake

not start with adot. Then, all you haveto do isto put alist of new suffixesin the SUFFI XES variable
befor e you define your implicit rule.

For instance the following definition prevents Automake to misinterpret . i dl C. cpp: asan attempt to
transform . i dl Cinto. cpp.

SUFFI XES = .idl C cpp
.1.dl C. cpp:
what ever

Asyou may have noted, the SUFFI XES variable behaves like the . SUFFI XES special target of make.
Y ou should not touch . SUFFI XES yourself, but use SUFFI XES instead and let Automake generate the
suffix list for . SUFFI XES. Any given SUFFI XES go at the start of the generated suffixes list, followed
by Automake generated suffixes not already in thelist.

Node: Multilibs, Previous: Suffixes, Up: Miscellaneous

Support for Multilibs

Automake has support for an obscure feature called multilibs. A multilib isalibrary which is built for
multiple different ABIs at asingle time; each timethe library is built with a different target flag
combination. Thisis only useful when the library is intended to be cross-compiled, and it is almost
exclusively used for compiler support libraries.

The multilib support is still experimental. Only useit if you are familiar with multilibs and can debug
problems you might encounter.

Node: Include, Next: Conditionals, Previous: Miscellaneous, Up: Top

Include

Automake supportsani ncl ude directive which can be used to include other Makef i | e fragments
when aut onmake isrun. Note that these fragments are read and interpreted by aut omake, not by
make. Aswith conditionals, make hasno ideathat i ncl ude isin use.

Therearetwo formsof i ncl ude:

include $(srcdir)/file

file://IC|/pdfing/automake.html.htm (88 of 124)27. 1. 2004 18:45:04

automake

Include a fragment which is found relative to the current source directory.
include $(top_srcdir)/file
Include a fragment which isfound relative to the top source directory.

Note that if afragment isincluded inside a conditional, then the condition applies to the entire contents
of that fragment.

Makefile fragments included this way are always distributed because there are needed to rebuild
Makefile.in.

Node: Conditionals, Next: Gnits, Previous. Include, Up: Top

Conditionals
Automake supports a simple type of conditionals.

Before using a conditional, you must define it by using AM_CONDI Tl ONAL intheconfi gure.in
file (see Macros).

AM_CONDITIONAL (conditional, condition) Macro

The conditional name, conditional, should be a simple string starting with aletter and containing
only letters, digits, and underscores. It must be different from TRUE and FALSE which are
reserved by Automake.

The shell condition (suitable for usein ashell i f statement) is evaluated when conf i gur e is
run. Note that you must arrange for every AM_CONDI Tl ONAL to be invoked every time
confi gureisrun-if AM_CONDI TI ONAL isrun conditionally (e.g.,inashell i f statement),
then the result will confuse automake.

Conditionals typically depend upon options which the user providesto theconf i gur e script. Hereis
an example of how to write a conditional which istrue if the user usesthe - - enabl e- debug option.

AC ARG ENABLE(debug,
[--enabl e-debug Turn on debuggi ng],
[case "${enableval }" in
yes) debug=true ;;
no) debug=false ;;
*) AC_MSG ERROR(bad val ue ${enabl eval} for --enabl e-debug) ;;
esac], [debug=f al se])

file:///C)/pdfing/automake.html.htm (89 of 124)27. 1. 2004 18:45:04

automake

AM CONDI Tl ONAL(DEBUG, test x$debug = xtrue)

Here is an example of how to use that conditional in Makefi | e. am

i f DEBUG

DBG = debug

el se

DBG =

endi f

noi nst _PROGRAMS = $(DBG)

Thistrivial example could also be handled using EXTRA_PROGRAMS (see Conditional Programs).

You may only test asinglevariableinani f statement, possibly negated using! . The el se statement
may be omitted. Conditionals may be nested to any depth. Y ou may specify an argument to el se in
which case it must be the negation of the condition used for the current i f . Similarly you may specify
the condition which is closed by an end:

| f DEBUG
DBG = debug
el se ! DEBUG
DBG =

endi f ! DEBUG

Unbalanced conditions are errors.

Note that conditionalsin Automake are not the same as conditionals in GNU Make. Automake
conditionals are checked at configure time by the conf i gur e script, and affect the trandation from
Makefil e.intoMakefil e. They arebased on options passed to conf i gur e and on results that
conf i gur e has discovered about the host system. GNU Make conditionals are checked at make time,
and are based on variables passed to the make program or defined in the Makef i | e.

Automake conditionals will work with any make program.

Node: Gnits, Next: Cygnus, Previous. Conditionals, Up: Top

The effect of --gnuand --gnits

file://IC|/pdfing/automake.html.htm (90 of 124)27. 1. 2004 18:45:04

automake

The - - gnu option (or gnu in the AUTOVAKE _OPTI ONS variable) causes aut omake to check the
following:

. Thefiles| NSTALL, NEW5, README, AUTHORS, and Changelog, plus one of COPYIl NG
LI B, COPYI NG. LESSER or COPYI NG, are required at the topmost directory of the package.
. Theoptionsno-i nstal | man and no-i nst al | i nf o are prohibited.

Note that this option will be extended in the future to do even more checking; it is advisable to be
familiar with the precise requirements of the GNU standards. Also, - - gnu can require certain non-
standard GNU programs to exist for use by various maintainer-only targets; for instance in the future
pat hchk might be required for reke di st .

The - - gni t s option does everything that - - gnu does, and checks the following as well:

. make install check will check to make surethat the- - hel p and - - ver si on really print
a usage message and a version string, respectively. Thisisthe st d- opt i ons option (see
Options).

. make di st will check to make sure the NEWS file has been updated to the current version.

. VERSI ONis checked to make sure its format complies with Gnits standards.

. If VERSI ONindicates that thisis an alpharelease, and the file READVE- al pha appearsin the
topmost directory of a package, then it isincluded in the distribution. Thisisdonein--gni ts
mode, and no other, because this mode is the only one where version number formats are
constrained, and hence the only mode where Automake can automatically determine whether
README- al pha should be included.

. Thefile THANKS isrequired.

Node: Cygnus, Next: Extending, Previous: Gnits, Up: Top

The effect of - - cygnus

Some packages, notably GNU GCC and GNU gdb, have a build environment originally written at
Cygnus Support (subsequently renamed Cygnus Solutions, and then later purchased by Red Hat).
Packages with this ancestry are sometimes referred to as "Cygnus' trees.

A Cygnustree has dlightly different rulesfor how aMakef i | e. i nisto be constructed. Passing - -
cygnus to aut omake will cause any generated Makef i | e. i n to comply with Cygnusrules.

Here are the precise effects of - - cygnus:

. Infofiles are always created in the build directory, and not in the source directory.

file:///C)/pdfing/automake.html.htm (91 of 124)27. 1. 2004 18:45:04

automake

. texinfo.texisnotrequiredif a Texinfo sourcefileis specified. The assumption is that the
file will be supplied, but in a place that Automake cannot find. This assumption is an artifact of
how Cygnus packages are typically bundled.

. make di st isnot supported, and the rulesfor it are not generated. Cygnus-style trees use their
own distribution mechanism.

. Certaintools will be searched for in the build tree as well asin the user's PATH. Thesetools are
runt est,expect, makei nf o andt exi 2dvi .

. --foreignisimplied.

. Theoptionsno-i nstal |l i nfoandno-dependenci es areimplied.

. The macros AM_MAI NTAI NER_MODE and AM_ CYGW N32 are required.

« Thecheck target doesn't dependonal | .

GNU maintainers are advised to use gnu strictness in preference to the special Cygnus mode. Some day,
perhaps, the differences between Cygnus trees and GNU trees will disappear (for instance, as GCC is
made more standards compliant). At that time the special Cygnus mode will be removed.

Node: Extending, Next: Distributing, Previous: Cygnus, Up: Top

When Automake Isn't Enough

Automake's implicit copying semantics means that many problems can be worked around by simply
adding some make targets and rulesto Makef i | e. i n. Automake will ignore these additions.

There are some caveats to doing this. Although you can overload atarget already used by Automake, it
is often inadvisable, particularly in the topmost directory of a package with subdirectories. However,
various useful targets havea- | ocal version you can specify inyour Makefi | e. i n. Automake will
supplement the standard target with these user-supplied targets.

The targets that support alocal versionareal | , i nf o, dvi , ps, pdf ,check,i nstal | -dat a,

I nstal | -exec,uninstall,installdirs,install check andthevariouscl ean targets
(nost | ycl ean, cl ean, di st cl ean, and mai nt ai ner - cl ean). Note that there are no

uni nstal | -exec-I| ocal oruni nstal | -dat a-I| ocal targets; just useuni nstal | -1 ocal .
It doesn't make sense to uninstall just data or just executables.

For instance, hereis oneway to install afilein/ et c:

I nstal |l -dat a-1 ocal :
$(1 NSTALL_DATA) $(srcdir)/afile $(DESTDIR)/etc/afile

Some targets also have away to run another target, called a hook, after their work is done. The hook is

file:///C)/pdfing/automake.html.htm (92 of 124)27. 1. 2004 18:45:04

automake

named after the principal target, with - hook appended. The targets allowing hooks arei nst al | -
data,i nstal | -exec,uninstal | ,di st,anddi st check.

For instance, hereis how to create a hard link to an installed program:

I nstal | -exec-hook:
| n $(DESTDI R) $(bi ndi r)/ progr ants(EXEEXT) \
$(DESTDI R) $(bi ndi r)/ progl i nk$(EXEEXT)

Although cheaper and more portable than symbolic links, hard links will not work everywhere (for
instance OS/2 does not have | n). Ideally you should fall back tocp - p when| n does not work. An
easy way, if symbolic links are acceptable to you, isto add AC_ PROG LN Stoconfigure.in (see
Particular Program Checks) and use $(LN_S) in Makefil e. am

For instance, here is how you could install aversioned copy of aprogram using $(LN_S) :

I nstal | -exec-hook:
cd $(DESTDIR) $(bindir) && \
mv -f prog$(EXEEXT) prog-$(VERSI ON) $(EXEEXT) && \
$(LN_S) prog-$(VERSI ON) $(EXEEXT) pr og$(EXEEXT)

Note that we rename the program so that a new version will erase the symbolic link, not the real binary.
Also we cd into the destination directory in order to create relative links.

Node: Distributing, Next: API versioning, Previous. Extending, Up: Top

Distributing Makefil e. i ns

Automake places no restrictions on the distribution of the resulting Makefi | e. i ns. We still encourage
software authors to distribute their work under terms like those of the GPL, but doing so is not required
to use Automake.

Some of the files that can be automatically installed viathe - - add- m ssi ng switch do fall under the
GPL. However, these also have a specia exception allowing you to distribute them with your package,
regardless of the licensing you choose.

Node: API versioning, Next: FAQ, Previous. Distributing, Up: Top

file://IC|/pdfing/automake.html.htm (93 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/autoconf.html#Particular%20Programs

automake

Automake API versioning

New Automake releases usually include bug fixes and new features. Unfortunately they may also
introduce new bugs and incompatibilities. This makes four reasons why a package may require a
particular Automake version.

Things get worse when maintaining alarge tree of packages, each one requiring a different version of
Automake. In the past, this meant that any developer (and sometime users) had to install several versions
of Automake in different places, and switch $PATH appropriately for each package.

Starting with version 1.6, Automake installs versioned binaries. This means you can install several
versions of Automake in the same $pr ef i x, and can select an arbitrary Automake version by running
aut onake- 1. 6 or aut omake- 1. 7 without juggling with $PATH. Furthermore, Makefi | e's
generated by Automake 1.6 will use aut omake- 1. 6 explicitly in their rebuild rules.

Notethat 1. 6 inaut omake- 1. 6 is Automake's API version, not Automake's version. If abug fix
release is made, for instance Automake 1.6.1, the API version will remain 1.6. Thismeansthat a
package which work with Automake 1.6 should also work with 1.6.1; after all, thisis what people expect
from bug fix releases.

Note that if your package relies on afeature or abug fix introduced in arelease, you can pass this
version as an option to Automake to ensure older releases will not be used. For instance, use thisin your
configure.in:

AM I NI T_AUTOVAKE(1. 6.1) dnl Require Autonake 1.6.1 or
better.

or, inaparticular Makefi |l e. am

AUTOMAKE OPTIONS = 1.6.1 # Require Autonake 1.6.1 or better.

Automake will print an error message if its version is older than the requested version.
What is in the API

Automake's programming interface is not easy to define. Basically it should include at least all
documented variables and targets that a Makef i | e. amauthor can use, any behavior associated with
them (e.g. the places where - hook's are run), the command line interface of aut onake and

acl ocal , ...

file:///C)/pdfing/automake.html.htm (94 of 124)27. 1. 2004 18:45:04

automake

What is not in the API

Every undocumented variable, target, or command line option, is not part of the API. Y ou should avoid
using them, as they could change from one version to the other (even in bug fix releases, if this helpsto
fix abug).

If it turns out you need to use such a undocumented feature, contact automake@gnu.org and try to get it
documented and exercised by the test-suite.

Node: FAQ, Next: Macro and Variable Index, Previous: APl versioning, Up: Top

Frequently Asked Questions about Automake
This chapter covers some questions that often come up on the mailing lists.

. CVS: CVSand generated files

. maintainer-mode: missing and AM_MAINTAINER_MODE
« Wildcards: Why doesn't Automake support wildcards?

. distcleancheck: Filesleft in build directory after distclean

. renamed objects: Why are object files sometimes renamed?

Node: CVS, Next: maintainer-mode, Previous. FAQ, Up: FAQ

CVS and generated files

Background: distributed generated files

Packages made with Autoconf and Automake ship with some generated fileslike conf i gur e or
Makefi | e. i n. Thesefiles were generated on the developer's host and are distributed so that end-users
do not have to install the maintainer tools required to rebuild them. Other generated files like Lex
scanners, Y acc parsers, or Info documentation, are usually distributed on similar grounds.

Automake outputs rulesin Makef i | esto rebuild these files. For instance make will runaut oconf to
rebuild conf i gur e whenever conf i gur e. i n ischanged. This makes development safer by
ensuring aconf i gur e isnever out-of-date with respect to conf i gure. i n.

As generated files shipped in packages are up-to-date, and becauset ar preserves timestamps, these

file://IC|/pdfing/automake.html.htm (95 of 124)27. 1. 2004 18:45:04

mailto:automake@gnu.org

automake

rebuild rules are not triggered when a user unpacks and builds a package.

Background: CVS and timestamps

Unless you use CV S keywords (in which case files must be updated at commit time), CV S preserves
timestamps duringcvs commit andcvs i nport -d operations.

When you check out afileusingcvs checkout itstimestamp isset to that of the revision whichis
being checked out.

However, during cvs updat e, fileswill have the date of the update, not the original timestamp of this
revision. Thisis meant to make sure that mak e notices sources files have been updated.

This timestamp shift is troublesome when both sources and generated files are kept under CVS. Because
CV S processesfilesin alphabetical order, conf i gur e. i n will appear older than conf i gur e after a
cvs updat e that updates both files, evenif conf i gur e was newer than conf i gur e. i n when it
was checked in. Calling make will then trigger a spurious rebuild of conf i gur e.

Living with CVS in Autoconfiscated projects

There are basically two clans amongst maintainers: those who keep al distributed files under CVS,
including generated files, and those who keep generated files out of CVS.

All files in CVS

. The CVSrepository contains all distributed files so you know exactly what is distributed, and
you can checkout any prior version entirely.

. Maintainers can see how generated files evolve (for instance you can see what happens to your
Makefi | e. i nswhen you upgrade Automake and make sure they look OK).

. Usersdo not need the autotools to build a checkout of the project, it works just like areleased
tarball.

. Ifusersusecvs updat e to update their copy, instead of cvs checkout to fetch afresh one,
timestamps will be inaccurate. Some rebuild rules will be triggered and attempt to run developer
toolssuch asaut oconf or aut onake.

Actually, callsto such tools are all wrapped into acall to them ssi ng script discussed later (see
maintainer-mode). m ssi ng will take care of fixing the timestamps when these tools are not

installed, so that the build can continue.

. Indistributed development, developers are likely to have different version of the maintainer tools
installed. In this case rebuilds triggered by timestamp lossage will lead to spurious changes to

file://IC)/pdfing/automake.html.htm (96 of 124)27. 1. 2004 18:45:04

automake

generated files. There are several solutionsto this:
o All developers should use the same versions, so that the rebuilt files are identical to files
in CVS. (This starts to be difficult when each project you work on uses different versions.)
o Or people use a script to fix the timestamp after a checkout (the GCC folks have such a
script).
o Orconfigure.inusesAM MAI NTAI NER_MODE, which will disable all these rebuild
rules by default. Thisis further discussed in maintainer-mode.

. Although we focused on spurious rebuilds, the converse can also happen. CVS's timestamp
handling can aso let you think an out-of-date file is up-to-date.

For instance, suppose a developer has modified Makef i | e. amand rebuilt Makefi | e. i n, and
then decide to do alast-minute changeto Makef i | e. amright before checking in both files
(without rebuilding Makef i | e. i n to account for the change).

Thislast changeto Makef i | e. ammake the copy of Makefi | e. i n out-of-date. Since CVS
processes files alphabetically, when another developer cvs updat e hisor her tree,

Makef il e. i n will happen to be newer than Makef i | e. am This other developer will not see
Makefi | e. i nisout-of-date.

Generated files out of CVS

One way to get CVS and make working peacefully isto never store generated filesin CVS, i.e., do not
CV S-control fileswhich are Makef i | e targets (or derived filesin Make terminology).

Thisway developers are not annoyed by changes to generated files. It does not matter if they all have
different versions (assuming they are compatible, of course). And finally, timestamps are not |lost,
changes to sources files can't be missed asinthe Makef i | e. anmiMakefi | e. i n example discussed
earlier.

The drawback is that the CV S repository is not an exact copy of what is distributed and that users now
need to install various development tools (maybe even specific versions) before they can build a
checkout. But, after all, CVS'sjob is versioning, not distribution.

Allowing developersto use different versions of their tools can aso hide bugs during distributed
development. Indeed, devel opers will be using (hence testing) their own generated files, instead of the
generated files that will be released actually. The devel oper who prepares the tarball might be using a
version of the tool that produces bogus output (for instance a non-portable C file), something other
developers could have noticed if they weren't using their own versions of thistool.

Third-party files

file:///C)/pdfing/automake.html.htm (97 of 124)27. 1. 2004 18:45:04

automake

Another class of files not discussed here (because they do not cause timestamp issues) are files which
are shipped with a package, but maintained elsewhere. For instance toolslikeget t ext i ze and
aut opoi nt (from Gettext) or | i bt ool i ze (from Libtool), will install or update filesin your
package.

These files, whether they are kept under CV S or not, raise similar concerns about version mismatch
between devel opers' tools. The Gettext manual has a section about this, see CV'S Issues.

Node: maintainer-mode, Next: wildcards, Previous: CVS, Up: FAQ
m ssi ng and AM_MAI NTAI NER_MODE
m ssi ng

Them ssi ng script isawrapper around several maintainer tools, designed to warn usersif a
maintainer tool is required but missing. Typical maintainer tools are aut oconf , aut onake, bi son,
etc. Because file generated by these tools are shipped with the other sources of a package, these tools
shouldn't be required during a user build and they are not checked for inconf i gur e.

However, if for some reason arebuild rule istriggered and involves a missing tool, m ssi ng will
notice it and warn the user. Besides the warning, when atool is missing, m ssi ng will attempt to fix
timestamps in away which allow the build to continue. For instance m ssi ng will touch conf i gur e
if aut oconf isnot instaled. When all distributed files are kept under CV'S, this feature of m ssi ng
allows user with no maintainer toolsto build a package off CVS, bypassing any timestamp
inconsistency implied by cvs updat e.

If the required tool isinstalled, m ssi ng will run it and won't attempt to continue after failures. Thisis
correct during development: developers love fixing failures. However, users with wrong versions of
maintainer tools may get an error when the rebuild rule is spuriously triggered, halting the build. This
failure to let the build continue is one of the arguments of the AM_MAI NTAI NER _MODE advocates.

AM MAI NTAI NER MODE

AM_MAI NTAI NER _MODE disables the so called "rebuild rules' by default. If you have

AM_MAI NTAI NER_MODE inconfi gure. ac,andrun./confi gure && make, then make will
never attempt to rebuilt conf i gur e, Makefi | e. i ns, Lex or Yacc outputs, etc. |.e., this disables
build rules for files which are usually distributed and that users should normally not have to update.

If yourun./configure --enabl e-mai ntai ner-node, then these rebuild ruleswill be active.

file:///C)/pdfing/automake.html.htm (98 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/gettext.html#CVS%20Issues

automake

People use AM_MAI NTAI NER _MODE either because they do want their users (or themselves) annoyed
by timestamps lossage (see CV S), or because they simply can't stand the rebuild rules and prefer running

maintainer tools explicitly.

AM_MAI NTAI NER _MODE also allows you to disable some custom build rules conditionally. Some
developers use this feature to disable rules that need exotic tools that users may not have available.

Several years ago Francgois Pinard pointed out several arguments against AM_MAI NTAI NER _MODE.
Most of them relate to insecurity. By removing dependencies you get non-dependable builds: change to
sources files can have no effect on generated files and this can be very confusing when unnoticed. He
adds that security shouldn't be reserved to maintainers (what - - enabl e- nai nt ai ner - node
suggests), on the contrary. If one user hasto modify aMakef i | e. am then either Makefil e. i n
should be updated or awarning should be output (thisis what Automake usesm ssi ng for) but the last
thing you want is that nothing happens and the user doesn't notice it (this is what happens when rebuild
rules are disabled by AM_MAI NTAI NER_MCDE).

Jm Meyering, the inventor of the AM_MAI NTAI NER _MODE macro was swayed by Francois's
arguments, and got rid of AM_MAI NTAI NER_MODE in all of his packages.

Still many people continue to use AM_MAI NTAI NER _MODE, because it helps them working on projects
where all files are kept under CV'S, and because m ssi ng isn't enough if you have the wrong version of
the tools.

Node: wildcards, Next: distcleancheck, Previous: maintainer-mode, Up: FAQ

Why doesn't Automake support wildcards?

Developers are lazy. They often would like to use wildcardsin Makef i | e. ans, so they don't need to
remember they have to update Makef i | e. ans every time they add, delete, or rename afile.

There are severa objectionsto this:

. When using CVS (or similar) developers need to remember they havetoruncvs add or cvs
r manyway. Updating Makef i | e. amaccordingly quickly becomes areflex.

Conversely, if your application doesn't compile because you forgot to add afilein Makefi | e.
am it will help you remember tocvs add it.

. Using wildcards makes easy to distribute files by mistake. For instance some code a developer is
experimenting with (atest case, say) but which should not be part of the distribution.

file:///C)/pdfing/automake.html.htm (99 of 124)27. 1. 2004 18:45:04

automake

. Using wildcardsit's easy to omit some files by mistake. For instance one devel oper creates a new
file, usesit a many places, but forget to commit it. Another developer then checkout the
incompl ete project and is able to run "'make dist' successfully, even though afile is missing.

. Listing files, you control *exactly* what you distribute. If some file that should be distributed is
missing from your tree, make di st will complain. Besides, you don't distribute more than what
you listed.

. Finalyit'srealy hardtof or get adding afileto Makefi | e. am because if you don't add it, it
doesn't get compiled nor installed, so you can't even test it.

Still, these are philosophical objections, and as such you may disagree, or find enough value in
wildcards to dismiss al of them. Before you start writing a patch against Automake to teach it about
wildcards, let's see the main technical issue: portability.

Although $(wi | dcard ...) workswith GNU nake, it isnot portable to other nake
implementations.

The only way Automake could support $(wi | dcard ...) isby expending$(w | dcard ...)
when aut omake isrun. Resulting Makef i | e. i nswould be portable since they would list al files
andnotuse$(wi | dcard .. .).However that means devel opers need to remember they must run
aut omake each time they add, delete, or renamefiles.

Compared to editing Makef i | e. am thisisrealy little win. Sure, it's easier and faster to type

aut onake; nake thantotypeemacs Makefil e.am make. But nobody bothered enough to
write a patch add support for this syntax. Some people use scripts to generated file listsin Makef i | e.
amor in separate Makef i | e fragments.

Even if you don't care about portability, and are tempted to use $(wi | dcard . ..) anyway because
you target only GNU Make, you should know there are many places where Automake need to know
exactly which files should be processed. As Automake doesn't know how to expand

$(wi Il dcard ...),youcannot useitintheseplaces. $(w | dcard ...) isablack box
comparable to AC_SUBSTed variables as far Automake is concerned.

You can get warnings about $(wi | dcard ...) constructsusing the- Whor t abi | i ty flag.

Node: distcleancheck, Next: renamed objects, Previous. wildcards, Up: FAQ

Files left in build directory after distclean

Thisisadiagnostic you might encounter while running make di st check.

file:///C)/pdfing/automake.html.htm (100 of 124)27. 1. 2004 18:45:04

automake

Asexplained in Dist, make di st check attempts to build and check your package for errorslike this
one.

make di st check will perform a VPATH build of your package, and then call make di st cl ean.
Filesleft in the build directory after make di st cl ean hasrun are listed after this error.

This diagnostic really coverstwo kinds of errors:

. filesthat are forgotten by distclean;
. distributed files that are erroneously rebuilt.

The former left-over files are not distributed, so the fix isto mark them for cleaning (see Clean), thisis
obvious and doesn't deserve more explanations.

The latter bug is not always easy to understand and fix, so let's proceed with an example. Suppose our
package contains a program for which we want to build a man page using hel p2man. GNU

hel p2man produces simple manual pages from the - - hel p and - - ver si on output of other
commands (see Overview). Because we don't to force want our usersto install hel p2man, we decide to

distribute the generated man page using the following setup.

This Makefile.amis bogus.
bi n_PROGRAMS = f o0
foo_SOURCES = foo.c

di st _man_MANS = foo.1

foo.1: foo$(EXEEXT)
hel p2man - - out put =f 00. 1 ./ f 00$(EXEEXT)

Thiswill effectively distribute the man page. However, make di st check will fail with:

ERROR files left in build directory after distclean:
./foo.1

Why wasf 00. 1 rebuilt? Because although distributed, f 00. 1 depends on a non-distributed built file:
f 00$(EXEEXT) . f 00$(EXEEXT) isbuilt by the user, so it will always appear to be newer than the
distributed f 00. 1.

make di st check caught an inconsistency in our package. Our intent was to distribute f 0o. 1 so
users do not need installing hel p2man, however since this our rule causes thisfile to be always rebuilt,
users do need hel p2man. Either we should ensure that f 00. 1 isnot rebuilt by users, or thereisno

file:///C)/pdfing/automake.html.htm (101 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/help2man.html#Top

automake

point in distributing f 0o. 1.

More generally, the rule is that distributed files should never depend on non-distributed built files. If you
distribute something generated, distribute its sources.

One way to fix the above example, while still distributing f 0o. 1 isto not depend on f 00$(EXEEXT) .
For instance, assumingf oo --versi onandf oo --hel p donotchangeunlessf 0o. ¢ or
confi gur e. ac change, we could write the following Makef i | e. am

bi n_ PROGRAMS = f oo
foo_ SOURCES = foo.c
di st _man_MANS = foo.1

foo.1l: foo.c $(top_srcdir)/configure.ac
$(MAKE) $(AM MAKEFLAGS) f 00$(EXEEXT)
hel p2man - - out put =f 0o0. 1 ./ f 00$(EXEEXT)

Thisway, f 00. 1 will not get rebuilt every timef 00$(EXEEXT) changes. The make call makes sure
f 00$(EXEEXT) isup-to-date before hel p2man. Another way to ensure this would be to use separate
directories for binaries and man pages, and set SUBDI RS so that binaries are built before man pages.

We could also decide not to distribute f 0o. 1. Inthiscaseit'sfineto havef 0o. 1 dependent upon f oo
$(EXEEXT) , since both will have to be rebuilt. However it would be impossible to build the package in
a cross-compilation, because building f 00. 1 involves an execution of f 00$(EXEEXT) .

Another context where such errors are common is when distributed files are built by tools which are
built by the package. The patternis similar:

distributed-file: built-tools distributed-sources
bui | d- command

should be changed to

distributed-file: distributed-sources
$(MAKE) $(AM MAKEFLAGS) built-tools
bui | d- command

or you could choose not to distributedi st ri but ed-fi | e, if cross-compilation does not matter.

file:///C)/pdfing/automake.html.htm (102 of 124)27. 1. 2004 18:45:04

automake

The points made through these exampl es are worth a summary:

. Distributed files should never depend upon non-distributed built files.
. Distributed files should be distributed will al their dependencies.
. If afileisintended be rebuilt by users, there is no point in distributing it.

For desperate cases, it's always possible to disable this check by setting

di st cl eancheck_Iistfil es asdocumented in Dist. Make sure you do understand the reason
why make di st check complains before you do this. di st cl eancheck |istfil esisawayto
hide errors, not to fix them. Y ou can always do better.

Node: renamed objects, Previous: distcleancheck, Up: FAQ

Why are object files sometimes renamed?

This happens when per-target compilation flags are used. Object files need to be renamed just in case
they would clash with object files compiled from the same sources, but with different flags. Consider the
following example.

bi n_PROGRAMS = true fal se
true_SOURCES = generic.c

true_ CPPFLAGS = - DEXI T_CODE=0
fal se_ SOURCES = generic.c

fal se_ CPPFLAGS = - DEXI T_CODE=1

Obvioudly the two programs are built from the same source, but it would be bad if they shared the same
object, because gener i ¢. o cannot be built with both - DEXI T_CODE=0 *and* - DEXI T_CCODE=1.
Therefore aut onake outputs rules to build two different objects: t r ue- generi c. o andf al se-
generi c. o.

aut onake doesn't actually look whether sources files are shared to decide if it must rename objects. It
will just rename all objects of atarget as soon asit sees per-target compilation flags are used.

It's OK to share object files when per-target compilation flags are not used. For instancet r ue and
f al se will bothusever si on. o inthefollowing example.

AM CPPFLAGS = - DVERSI ON=1. 0
bi n_PROGRAMS = true false

file://IC|/pdfing/automake.html.htm (103 of 124)27. 1. 2004 18:45:04

automake

true SOURCES = true.c version.c
fal se SOURCES = fal se.c version.c

Note that the renaming of objects is also affected by the SHORTNANE variable (see Program and

Library Variables).

Node: Macro and Variable Index, Next: Genera Index, Previous: FAQ, Up: Top

Macro and Variable Index

. _LDADD: Linking

. _LDFLAGS: Linking

. _LI BADD: A Library

. _SOURCES: Program Sources

. _TEXI NFCS: Texinfo

. AC_CANONI CAL_HOST: Optional

. AC_CANONI CAL_SYSTEM Optiona
. AC_CONFI G_AUX DI R: Optional

. AC_CONFI G_FI LES: Requirements
. AC_CONFI G_HEADERS: Optional

. AC DEFUN: Extending aclocal

« AC F77_LI BRARY_LDFLAGS: Optiona
. AC LI BOBJ: LTLIBOBJ, Optional

. AC _LI BSOURCE: Optional

. AC LI BSOURCES: Optiona

. AC QUTPUT: Requirements

. AC_PREREQ Extending aclocal

. AC_PROG_CXX: Optional

. AC_PROG_F77: Optional

. AC_PROG_LEX: Optional

. AC PROG LI BTOOL: Optional

. AC_PROG_RANLI B: Optional

. AC_PROG_YACC: Optional

. AC_SUBST: Optional

. ACLOCAL_ AMFLAGS: Rebuilding

. AM C PROTOTYPES: ANSI, Public macros, Optional
. AM CFLAGS: Program variables

file://IC|/pdfing/automake.html.htm (104 of 124)27. 1. 2004 18:45:04

automake

. AM CONDI TI ONAL: Conditionals

. AM CONFI G_HEADER: Public macros

. AM CPPFLAGS: Program variables

. amcv_sys _posi x_term os: Public macros

« AM CXXFLAGS: C++ Support

. AM ETAGSFLAGS: Tags

. AM FFLAGS: Fortran 77 Support

. AM GCJFLAGS: Java Support

« AM GNU_GETTEXT: Optional

. AM HEADER TI OCGW NSZ_NEEDS SYS | OCTL: Public macros
« AM I NI T_AUTOMAKE: Requirements

« AM | NSTALLCHECK STD_OPTI ONS_EXEMPT: Options
. AM JAVACFLAGS: Java

. AM LDFLAGS: Program variables, Linking

. AM_MAI NTAI NER_MODE: maintainer-mode, Optional
. AM_MAKEI NFOFLAGS: Texinfo

. AM PATH LI SPDI R: Public macros

. AM PROG_GCJ: Public macros

. AM RFLAGS: Fortran 77 Support

. AM RUNTESTFLAGS: Tests

« AUTOCONF: Invoking Automake

. AUTOVAKE_OPTI ONS: Options, Dependencies, ANSI
. bi n_PROGRANS: Program Sources

. bin_SCRI PTS: Scripts

. build_alias:Optiona

. BU LT _SOURCES: Sources

. CC: Program variables

. CCAS: Assembly Support

. CCASFLAGS: Assembly Support

« CFLAGS: Program variables

. check LTLI BRARI ES: Libtool Convenience Libraries
. check PROGRAMS: Program Sources

. check SCRI PTS: Scripts

. CLASSPATH_ENV: Java

. CLEANFI LES: Clean

. COWVPI LE: Program variables

. CPPFLAGS: Program variables

. CXX: C++ Support

file://IC|/pdfing/automake.html.htm (105 of 124)27. 1. 2004 18:45:04

automake

. CXXCOWPI LE: C++ Support

« CXXFLAGS: C++ Support

« CXXLI NK: C++ Support

. DATA: Data, Uniform

. dat a_DATA: Data

. DEFS: Program variables

. DEJATOOL: Tests

. DESTDI R: Install

. dist_:Dist

. dist_lisp_LISP:EmacsLisp

. dist_noinst_ LI SP: EmacsLisp

. DI ST_SUBDI RS: Dist, Top level

. DI STCHECK CONFI GURE_FLAGS: Dist
. distcleancheck listfil es:distcleancheck, Dist
. DI STCLEANFI LES: Clean

. distuninstallcheck listfiles:Dist
. ELCFI LES: EmacsLisp

. ETAGS ARGS: Tags

. ETAGSFLAGS: Tags

. EXPECT: Tests

. EXTRA DI ST: Dist

. EXTRA PROGRAMS: Conditiona Programs
. F77: Fortran 77 Support

. F77COWVPI LE: Fortran 77 Support

. FFLAGS: Fortran 77 Support

. FLI NK: Fortran 77 Support

. GCIJFLAGS: Java Support

. GIAGS ARGS: Tags

. HEADERS: Headers, Uniform

. host _al i as: Optiona

. host _triplet: Optiona

. i ncl ude_ HEADERS: Headers

. | NCLUDES: Program variables

. 1 nfo_TEXI NFOS: Texinfo

. JAVA: Uniform

. JAVAC: Java

. JAVACFLAGS: Java

. JAVAROOT: Java

file://IC|/pdfing/automake.html.htm (106 of 124)27. 1. 2004 18:45:04

automake

. LDADD: Linking

. LDFLAGS: Program variables

. lib_LI BRARI ES: A Library

« l'ib_LTLI BRARI ES: Libtool Libraries
. LI BADD: A Library

. | i bexec PROGRANMS: Program Sources
. i bexec_SCRI PTS: Scripts

. LI BOBJS: LTLIBOBJ, Optional

. LI BRARI ES: Uniform

. LI BS: Program variables

. LI NK: Program variables

« LI SP: Emacs Lisp, Uniform

« lisp_LISP:EmacsLisp

. | ocal st at e DATA: Data

. LTLI BOBJS: LTLIBOBJ

. MAI NTAI NERCLEANFI LES: Clean

. MAKE: Top level

. MAKEFLAGS: Top level

. MAKEI NFO Texinfo

. MAKEI NFOFLAGS: Texinfo

. man_MANS: Man pages

. MANS: Man pages, Uniform

. MOSTLYCLEANFI LES: Clean

. nodi st _:Dist

. hoi nst _HEADERS: Headers

. hoi nst_LI BRARI ES: A Library

« nhoi nst_LI SP: EmacsLisp

. noi nst _LTLI BRARI ES: Libtool Convenience Libraries
. hoi nst _PROGRAMS: Program Sources
. noi nst _SCRI PTS: Scripts

. ol di ncl ude_HEADERS: Headers

. PACKAGE: Dist

. PACKAGE, directory: Uniform

. PACKAGE, prevent definition: Public macros
. pkgdat a_DATA: Data

. pkgdat a_SCRI PTS: Scripts

. pkgdat adi r : Uniform

. pkgi ncl ude_HEADERS: Headers

file://IC|/pdfing/automake.html.htm (107 of 124)27. 1. 2004 18:45:04

automake

. pkgi ncl udedi r: Uniform

. pkglib_LI BRARI ES: A Library

. pkglib_LTLI BRARI ES: Libtool Libraries
. pkgl i b_PROGRAMS: Program Sources
. pkgli bdir: Uniform

. pkgpyexecdi r: Python

. pkgpyt hondi r : Python

. PROGRAMS: Uniform

. pyexecdi r: Python

« PYTHON: Python, Uniform

. PYTHON _EXEC PREFI X: Python

. PYTHON_PLATFORM Python

. PYTHON_PREFI X: Python

« PYTHON_VERSI ON: Python

« pyt hondi r: Python

. RFLAGS: Fortran 77 Support

. RUNTEST: Tests

« RUNTESTDEFAULTFLAGS: Tests

. RUNTESTFLAGS: Tests

. Sbi n_PROGRAMS: Program Sources
. Sbi n_SCRI PTS: Scripts

« SCRI PTS: Scripts, Uniform

. shar edst at e_DATA: Data

. SOURCES: Program Sources

. SUBDI RS: Top level

. SUFFI XES: Suffixes

. sysconf DATA: Data

. TAGS DEPENDENCI ES: Tags

. target ali as: Optional

. TESTS: Tests

. TESTS_ENVI RONVENT: Tests

. TEXI NFO_TEX: Texinfo

. TEXI NFCS: Texinfo, Uniform

. VERSI ON: Dist

. VERSI QN, prevent definition:Public macros
. WARNI NGS: Invoking Automake

. W TH _DMALLQOC: Public macros

. W TH_REGEX: Public macros

file://IC|/pdfing/automake.html.htm (108 of 124)27. 1. 2004 18:45:04

automake

. XFAlI L_TESTS: Tests
« YACC: Optional

Node: Genera Index, Previous: Macro and Variable Index, Up: Top

General Index

(special Automake comment): General Operation
. --acdi r: aclocal options

. --add- m ssi ng: Invoking Automake

. --copy: Invoking Automake

. --cygnus: Invoking Automake

. --enabl e- mai nt ai ner - node: Optional

. --force-m ssing: Invoking Automake

. --foreign:Invoking Automake

. --gnits:Invoking Automake

. --gnu: Invoking Automake

. --hel p: aclocal options, Invoking Automake

« --include-deps: Invoking Automake

« --11ibdir:Invoking Automake

. --no-force: Invoking Automake

. --out put : aclocal options

. --out put -di r: Invoking Automake

. --print-ac-dir:aclocal options

. --ver bose: aclocal options, Invoking Automake
. --version: acloca options, Invoking Automake
. --war ni ngs: Invoking Automake

« --w th-dmal | oc: Public macros

. --W th-regex: Public macros

. - a: lnvoking Automake

. - C: Invoking Automake

. -enable-debug, example: Conditionals

. - f:Invoking Automake

. -gnits, complete description: Gnits

. -gnu, complete description: Gnits

« -gnu, required files: Gnits

. -hook targets: Extending

file://IC|/pdfing/automake.html.htm (109 of 124)27. 1. 2004 18:45:04

automake

. -1 :aclocal options

« -1 :Invoking Automake

. -local targets: Extending

. -module, libtool: Libtool Modules

« - 0: Invoking Automake

. - V:Invoking Automake

« - W Invoking Automake

. Jlasuffix, defined: Libtool Concept

. _DATA primary, defined: Data

. _DEPENDENCIES, defined: Linking

. _HEADERS primary, defined: Headers

. _JAVA primary, defined: Java

. _LDFLAGS, defined: Linking

. _LDFLAGS, libtool: Libtool Flags

. _LIBADD primary, defined: A Library

. _LIBADD, libtool: Libtool Flags

. _LIBRARIES primary, defined: A Library
« _LISPprimary, defined: Emacs Lisp

. _LTLIBRARIES primary, defined: Libtool Libraries
« _MANS primary, defined: Man pages

« PROGRAMS primary variable: Uniform
« _PYTHON primary, defined: Python

. _SCRIPTS primary, defined: Scripts

. _SOURCES and header files: Program Sources
« _SOURCES primary, defined: Program Sources
. _TEXINFOS primary, defined: Texinfo

. AC_SUBST and SUBDI RS: Top level

. acinclude.m4, defined: Complete

. aclocal program, introduction: Complete

. aclocal search path: Macro search path

. aclocal, extending: Extending aclocal

. aclocal, Invoking: Invoking aclocal

. aclocal, Options: aclocal options

. aclocal.m4, preexisting: Complete

. Adding new SUFFIXES: Suffixes

. al | : Extending

. all-Iocal : Extending

« ALLQOCA, specia handling: LIBOBJS

file://IC|/pdfing/automake.html.htm (110 of 124)27. 1. 2004 18:45:04

automake

. AM CONDI Tl ONAL and SUBDI RS: Top level

. AM_INIT_AUTOMAKE, example use: Complete

. AM_MAINTAINER_MODE, purpose: maintainer-mode
. ansi 2knr: ANSI

. ansi 2knr and LI BOBJS: ANSI

. ansi 2knr and LTLI BOBJS: ANSI

. Append operator: General Operation

. autogen.sh and autoreconf: Libtool |ssues

. Automake constraints: Introduction

. Automake options: Invoking Automake

. Automake requirements. Requirements, Introduction
. Automake, invoking: Invoking Automake

. Automake, recursive operation: General Operation

. Automatic dependency tracking: Dependencies

. Automatic linker selection: How the Linker is Chosen
. autoreconf and libtoolize: Libtool Issues

. Auxiliary programs: Auxiliary Programs

. Avoiding path stripping: Alternative

. bootstrap.sh and autoreconf: Libtool Issues

. BUGS, reporting: Introduction

. BUILT_SOURCES, defined: Sources

. C++ support: C++ Support

« canonicalizing Automake variables. Canonicalization
. cfortran: Mixing Fortran 77 With C and C++

. check: Extending

. check primary prefix, definition: Uniform

. check-1 ocal : Extending

. ¢l ean: Extending

. cl ean-1 ocal : Extending

. Comment, special to Automake: General Operation

. Complete example: Complete

. Conditional example, -enable-debug: Conditionals

. conditional libtool libraries: Conditional Libtool Libraries
« Conditional programs: Conditional Programs

. Conditional subdirectories: Top level

. Conditional SUBDI RS: Top level

. Conditionals: Conditionals

. config.guess: Invoking Automake

file://IC|/pdfing/automake.html.htm (111 of 124)27. 1. 2004 18:45:04

automake

. configure.in, from GNU Hello: Hello

. configure.in, scanning: configure

. Constraints of Automake: Introduction

. convenience libraries, libtool: Libtool Convenience Libraries
. cpio example: Uniform

. CVSand generated files: CVS

. CVSand third-party files: CVS

. CVSandtimestamps: CVS

. cvs-di st : Genera Operation

. cvsdist, non-standard example: General Operation
. Cygnus strictness. Cygnus

. DATA primary, defined: Data

. de-ANSI-fication, defined: ANSI

. dej agnu: Tests

« depcomp: Dependencies

. dependencies and distributed files. distcleancheck
. Dependency tracking: Dependencies

. Dependency tracking, disabling: Dependencies
. dirlist:Macrosearch path

. Disabling dependency tracking: Dependencies
. di st:Dist

. di st-Dbzi p2: Options

. di st-gzip: Dist

. di st - hook: Extending, Dist

. di st-shar: Options

. dist-tarZ: Options

. di st-zip:Options

. dist_and nobase : Alternative

. DI ST_SUBDI RS, explained: Top level

. di st check: Digt

. di st cl ean: distcleancheck, Extending

. distclean, diagnostic: distcleancheck

. di stcl ean-1 ocal : Extending

. di st cl eancheck: distcleancheck, Dist

. dmalloc, support for: Public macros

. dvi : Extending

. dvi -1 ocal : Extending

. E-mail, bug reports: Introduction

file://IC|/pdfing/automake.html.htm (112 of 124)27. 1. 2004 18:45:04

automake

. EDITION Texinfo flag: Texinfo

. el se: Conditionals

. endi f : Conditionals

. Example conditional -enable-debug: Conditionals

. Example of recursive operation: General Operation

. Example of shared libraries: Libtool Libraries

. Example, EXTRA_PROGRAMS: Uniform

. Example, false and true: true

. Example, GNU Hello: Hello

. Example, handling Texinfo files: Hello

. Example, mixed language: Mixing Fortran 77 With C and C++
. Example, regression test: Hello

. Executable extension: EXEEXT

. Exit status 77, special interpretation: Tests

. Expected test failure: Tests

. Extending aclocal: Extending aclocal

. Extending list of installation directories: Uniform

. Extension, executable: EXEEXT

. Extrafilesdistributed with Automake: Invoking Automake
. EXTRA_, prepending: Uniform

. EXTRA_prog SOURCES, defined: Conditional Sources

. EXTRA_PROGRAMS, defined: Conditional Programs, Uniform
. false Example: true

. Filesdistributed with Automake: Invoking Automake

. First line of Makefile.am: General Operation

. FLIBS, defined: Mixing Fortran 77 With C and C++

. foreign strictness: Strictness

. Fortran 77 support: Fortran 77 Support

. Fortran 77, mixing with C and C++: Mixing Fortran 77 With C and C++
. Fortran 77, Preprocessing: Preprocessing Fortran 77

. generated filesand CVS: CVS

. generated files, distributed: CVS

. Gettext support: gettext

. gnitsstrictness: Strictness

. GNU Gettext support: gettext

. GNU Héllo, configure.in: Hello

« GNU Heéllo, example: Hello

. GNU make extensions. General Operation

file://IC|/pdfing/automake.html.htm (113 of 124)27. 1. 2004 18:45:04

automake

. GNU Makefile standards: |ntroduction

« gnu strictness: Strictness

. Header filesin _ SOURCES: Program Sources
. HEADERS primary, defined: Headers

. HEADERS, installation directories. Headers
. Hello example: Hello

. Hello, configure.in: Hello

« hook targets. Extending

« HP-UX 10, lex problems: Public macros

. HTML support, example: Uniform

. 1d:Tags

. | f: Conditionas

. i ncl ude: Include

. INCLUDES, example usage: Hello

. Including Makefile fragment: Include

. I nf o: Extending, Options

. i nfo-1ocal : Extending

. i nstall: Extending, Install

. Instal hook: Install

. Install, two parts of: Install

. install-data:Instal

nst al | - dat a- hook: Extending

nst al | - dat a- | ocal : Extending, Install
nst al | - exec: Extending, Install

nst al | - exec- hook: Extending

nst al | - exec-1 ocal : Extending, Install
nst al | - i nf o: Options, Texinfo

. install-info target: Texinfo

. i nstall-nman: Options, Man pages

. install-man target: Man pages

. install-strip:Instal

. Instalation directories, extending list: Uniform
. Installation support: Install

. i nstall check: Extending

. instal |l check-I ocal : Extending

. install dirs: Extending, Instal

. installdirs-1ocal :Extending

. Installing headers. Headers

file://IC|/pdfing/automake.html.htm (114 of 124)27. 1. 2004 18:45:04

automake

. Installing scripts: Scripts

. installing versioned binaries. Extending

. Invoking aclocal: Invoking aclocal

. Invoking Automake: Invoking Automake

. JAVA primary, defined: Java

. JAVA restrictions: Java

. Javasupport: Java Support

. lex problems with HP-UX 10: Public macros

. lex, multiple lexers: Yacc and Lex

. LIBADD primary, defined: A Library

. libltdl, introduction: Libtool Concept

. LI BOBJSandansi 2knr: ANSI

. LI BOBJS, special handling: LIBOBJS

. LIBRARIES primary, defined: A Library

. libtool convenience libraries. Libtool Convenience Libraries
. libtool libraries, conditional: Conditional Libtool Libraries
. libtool library, definition: Libtool Concept

. libtool modules: Libtool Modules

. libtool, introduction: Libtool Concept

. libtoolize and autoreconf: Libtool Issues

. libtoolize, no longer run by Automake: Libtool |ssues
. Linking Fortran 77 with C and C++: Mixing Fortran 77 With C and C++
« LISP primary, defined: Emacs Lisp

. LN_Sexample: Extending

. local targets. Extending

. LTLI BOBJSand ansi 2knr: ANSI

« LTLI BOBJS, specia handling: LTLIBOBJ

. LTLIBRARIES primary, defined: Libtool Libraries

. Itmain.sh not found: Libtool Issues

« Macro search path: Macro search path

. Macros Automake recognizes: Optional

. make check: Tests

. make clean support: Clean

. makedist: Dist

. make distcheck: Dist

. make distcleancheck: Dist

. make distuninstallcheck: Dist

. makeinstall support: Install

file://IC|/pdfing/automake.html.htm (115 of 124)27. 1. 2004 18:45:04

automake

. make installcheck: Options

. Make targets, overriding: General Operation

. Makefile fragment, including: Include

. Makefile.am, first line: General Operation

« MANS primary, defined: Man pages

. mdate-sh: Texinfo

. Mmissing, purpose: maintainer-mode

. Mixed language example: Mixing Fortran 77 With C and C++
. Mixing Fortran 77 with C and C++: Mixing Fortran 77 With C and C++
. Mixing Fortran 77 with C and/or C++: Mixing Fortran 77 With C and C++
. modules, libtool: Libtool Modules

. nostl ycl ean: Extending

. nostl ycl ean-1 ocal : Extending

. Multiple configure.in files: Invoking Automake

. Multiple lex lexers: Yacc and Lex

. Multiple yacc parsers. Yacc and Lex

. ho-dependenci es: Dependencies

. no-installinfo: Texinfo

. no-install man: Man pages

. no-texinfo.tex: Texinfo

. hobase : Alternative

. hobase anddist_or nodist_: Alternative

. hodist_and nobase : Alternative

« hoinst primary prefix, definition: Uniform

. noinstall-info target: Texinfo

. hoinstall-man target: Man pages

. Non-GNU packages:. Strictness

« Non-standard targets. General Operation

. Objectsin subdirectory: Program and Library Variables
. Option, ansi2knr: Options

. Option, check-news. Options

« Option, cygnus: Options

. Option, dgjagnu: Options

. Option, dist-bzip2: Options

. Option, dist-shar: Options

. Option, dist-tarZ: Options

. Option, dist-zip: Options

« Option, foreign: Options

file://IC|/pdfing/automake.html.htm (116 of 124)27. 1. 2004 18:45:04

automake

« Option, gnits: Options

« Option, gnu: Options

. Option, no-define: Options

. Option, no-dependencies: Options

« Option, no-exeext: Options

« Option, no-installinfo: Options

« Option, no-installman: Options

« Option, no-texinfo: Options

. Option, nostdinc: Options

« Option, readme-alpha: Options

« Option, version: Options

. Option, warnings: Options

. Options, aclocal: aclocal options

. Options, Automake: Invoking Automake

. Options, std-options: Options

. Overriding make targets: General Operation

. Overriding make variables. General Operation
. Path stripping, avoiding: Alternative

. pdf : Extending

. pdf -1 ocal : Extending

. per-target compilation flags, defined: Program and Library Variables
. pkgdatadir, defined: Uniform

. pkgincludedir, defined: Uniform

« pkglibdir, defined: Uniform

. POSIX termios headers. Public macros

. Preprocessing Fortran 77: Preprocessing Fortran 77
. Primary variable, DATA: Data

. Primary variable, defined: Uniform

. Primary variable, HEADERS: Headers

. Primary variable, JAVA: Java

. Primary variable, LIBADD: A Library

. Primary variable, LIBRARIES: A Library

. Primary variable, LISP: Emacs Lisp

. Primary variable, LTLIBRARIES: Libtool Libraries
. Primary variable, MANS: Man pages

. Primary variable, PROGRAMS: Uniform

. Primary variable, PY THON: Python

. Primary variable, SCRIPTS: Scripts

file://IC|/pdfing/automake.html.htm (117 of 124)27. 1. 2004 18:45:04

automake

. Primary variable, SOURCES:. Program Sources
. Primary variable, TEXINFOS: Texinfo

. prog_LDADD, defined: Linking

. PROGRAMS primary variable: Uniform

. Programs, auxiliary: Auxiliary Programs

. PROGRAMS, bindir: Program Sources

. Programs, conditional: Conditional Programs

. ps: Extending

. ps-1ocal : Extending

. PYTHON primary, defined: Python

. Ratfor programs: Preprocessing Fortran 77

. README-alpha: Gnits

. rebuildrules: CVS

. Recognized macros by Automake: Optional

. Recursive operation of Automake: General Operation
. regex package: Public macros

. Regression test example: Hello

« Reporting BUGS: Introduction

. Requirements of Automake: Requirements

. Requirements, Automake: Introduction

. Restrictionsfor JAVA: Java

. Ix package: Public macros

. Scanning configure.in: configure

« SCRIPTS primary, defined: Scripts

. SCRIPTS, installation directories: Scripts

. Selecting the linker automatically: How the Linker is Chosen
. Shared libraries, support for: A Shared Library

. Site.exp: Tests

« SOURCES primary, defined: Program Sources
. Specia Automake comment: General Operation
. Strictness, command line: Invoking Automake
. Strictness, defined: Strictness

. Strictness, foreign: Strictness

. Strictness, gnits: Strictness

. Strictness, gnu: Strictness

. Subdirectories, building conditionally: Top level
. Subdirectory, objects in: Program and Library Variables
. SUBDI RS and AC_SUBST: Top level

file://IC|/pdfing/automake.html.htm (118 of 124)27. 1. 2004 18:45:04

automake

. SUBDI RS and AM _CONDI TI ONAL: Top level
. SUBDI RS, conditional: Top level

. SUBDIRS, explained: Top level

. Suffix .la, defined: Libtool Concept

. suffix .lo, defined: Libtool Concept

. SUFFIXES, adding: Suffixes

« Support for C++: C++ Support

« Support for Fortran 77: Fortran 77 Support
« Support for GNU Gettext: gettext

« Support for Java: Java Support

. tags: Tags

. TAGS support: Tags

. Target, install-info: Texinfo

. Target, install-man: Man pages

. Target, noinstall-info: Texinfo

. Target, noinstall-man: Man pages

. termios POSIX headers. Public macros

. Test suites: Tests

. Tests, expected faillure: Tests

. Texinfo file handling example: Hello

. Texinfo flag, EDITION: Texinfo

. Texinfoflag, UPDATED: Texinfo

. Texinfo flag, UPDATED-MONTH: Texinfo
. Texinfo flag, VERSION: Texinfo

. texinfo.tex: Texinfo

« TEXINFOS primary, defined: Texinfo

. third-party filesand CVS. CVS

. timestampsand CVS. CVS

. true Example: true

. underquoted AC_DEFUN: Extending aclocal
« Uniform naming scheme: Uniform

. uni nst al | : Extending, Install

. uni nstal | - hook: Extending

. uninstall -1l ocal : Extending

. UPDATED Texinfo flag: Texinfo

. UPDATED-MONTH Texinfo flag: Texinfo
. user variables: User Variables

. Variables, overriding: General Operation

file://IC|/pdfing/automake.html.htm (119 of 124)27. 1. 2004 18:45:04

automake

. Vvariables, reserved for the user: User Variables
VERSION Texinfo flag: Texinfo

versioned binaries, installing: Extending
wildcards: wildcards

Windows. EXEEXT

yacc, multiple parsers: Yacc and Lex

ylwrap: Yacc and Lex

zardoz example: Complete

Table of Contents

GNU Automake

| ntroduction
Generdl ideas

O

General Operation

Strictness

The Uniform Naming Scheme
How derived variables are named
Variables reserved for the user
Programs automake might require

Some exampl e packages

O

O

O

A simple example, start to finish
A classic program
Building true and false

CreatingaMakefile.in
Scanningconfigure.in

Configuration reguirements
Other things Automake recognizes
Auto-generating aclocal.m4
aclocal options
Macro search path
« Modifying the macro search path: - - acdi r
« Modifying the macro search path: - 1 dir
« Modifying the macro search path: di r | i st
Autoconf macros supplied with Automake
« Public macros
« Private macros
Writing your own aclocal macros

file://IC|/pdfing/automake.html.htm (120 of 124)27. 1. 2004 18:45:04

automake

. Thetop-level Makefil e. am
o Recursing subdirectories
o Conditional subdirectories
= Conditiona subdirectories with AM_CONDI T1 ONAL
= Conditional subdirectories with AC_SUBST
-« How DI ST _SUBDI RS is used
. An Alternative Approach to Subdirectories
. Rebuilding Makefiles
. Building Programs and Libraries
o Building aprogram
« Defining program sources
« Linking the program
« Conditional compilation of sources
« Conditional compilation using _L DADD substitutions
« Conditional compilation using Automake conditionals
« Conditional compilation of programs
» Conditional programs using conf i gur e substitutions
« Conditional programs using Automake conditionals
o Building alibrary
o Building a Shared Library
« TheLibtool Concept
« Building Libtool Libraries
« Building Libtool Libraries Conditionally
« Libtool Libraries with Conditional Sources
= Libtool Convenience Libraries
« Libtool Modules
« LIBADD and LDFLAGS
« LTLI BOBJS
« Common Issues Related to Libtool's Use
« required file ~./ltmain.sh'" not found
« Objectscreated with both Iibtool and w thout

o Program and Library Variables

o Specia handling for LIBOBJS and ALLOCA
o Variables used when building a program

o Yacc and Lex support

o C++ Support

o Assembly Support

o Fortran 77 Support

file://IC|/pdfing/automake.html.htm (121 of 124)27. 1. 2004 18:45:04

automake

« Preprocessing Fortran 77
« Compiling Fortran 77 Files
« Mixing Fortran 77 With C and C++
« How the Linker is Chosen
« Fortran 77 and Autoconf
o Java Support
o Support for Other Languages
o Automatic de-ANSI-fication
o Automatic dependency tracking
o Support for executable extensions
« Other Derived Objects
o Executable Scripts
o Header files
o Architecture-independent datafiles
o Built sources
« Built sources example
« Firsttry
« UsingBUI LT_SOURCES
« Recording dependencies manualy

« Buildbi ndi r. hfromconfi gure
« Buildbindir.c,notbindir.h
« Which s best?
. Other GNU Tools
o EmacsLisp
o Gettext
o Libtool
0 Java
0 Eython
Building documentation
o Texinfo
o Man pages
. What Gets Installed
o Basics of installation
o Thetwo parts of install
o Extending installation
o Staged installs
o Rulesfor the user
What Gets Cleaned

file://IC|/pdfing/automake.html.htm (122 of 124)27. 1. 2004 18:45:04

automake

. What Goesin aDistribution
o Basicsof distribution
o Fine-grained distribution control
o Thedist hook
o Checking the distribution
o Thetypes of distributions
. Support for test suites
o Simple Tests
o DejaGnu Tests
o Install Tests
. Changing Automake's Behavior
. Miscellaneous Rules
o Interfacing to et ags
o Handling new file extensions
o Support for Multilibs
. Include
. Conditionals
. Theeffectof --gnuand--gnits
. Theeffect of - - cygnus
. When Automake Isn't Enough
. Distributing Makefil e.ins
. Automake API versioning
. Freguently Asked Questions about Automake
o CVSand generated files
« Background: distributed generated files
= Background: CVS and timestamps
« Living with CVSin Autoconfiscated projects
« Third-party files
o m ssing and AM MAI NTAI NER_MODE
= M SSi Nng
= AM NMAI NTAI NER_MODE
o Why doesn't Automake support wildcards?
o Filesleft in build directory after distclean
o Why are object files sometimes renamed?
. Macro and Variable Index
. Genera Index

file://IC|/pdfing/automake.html.htm (123 of 124)27. 1. 2004 18:45:04

automake

Footnotes

1. These variables are also called make macrosin Make terminology, however in this manua we
reserve the term macro for Autoconf's macros.

2. Autoconf 2.50 promotesconf i gur e. ac over confi gur e. i n. Therest of this
documentation will refer toconf i gur e. i n asthisuseis not yet spread, but Automake
supportsconf i gur e. ac too.

3. Don't try seeking a solution where opt / Makef i | e iscreated conditionaly, thisisalot trickier
than the solutions presented here.

4. We believe. Thiswork is new and there are probably warts. See Introduction, for information on
reporting bugs.

5. There are other, more obscure reasons reasons for this limitation as well.

6. Much, if not most, of the information in the following sections pertaining to preprocessing
Fortran 77 programs was taken almost verbatim from Catal ogue of Rules.

7. For example, the cfortran package addresses all of these inter-language issues, and runs under

nearly all Fortran 77, C and C++ compilers on nearly all platforms. However, cf ort r an isnot
yet Free Software, but it will be in the next magjor release.

8. See http://sources.redhat.com/automake/dependencies.html for more information on the history
and experiences with automatic dependency tracking in Automake

9. However, for the case of a non-installed header file that is actually used by a particular program,
we recommend listing it in the program’'s _ SOURCES variable instead of in noi nst _ HEADERS.
We believe thisismore clear.

file://IC|/pdfing/automake.html.htm (124 of 124)27. 1. 2004 18:45:04

file:///C|/pdfing/make.html#Catalogue%20of%20Rules
http://www-zeus.desy.de/~burow/cfortran/
http://sources.redhat.com/automake/dependencies.html

	Local Disk
	automake

